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Preface

If people do not believe that mathematics is simple,
it is only because they do not realize
how complicated life is

John von Neumann

About 30 years ago Jean Morlet introduced for the first time the notion of a wavelet
as a soliton-like function. At the beginning he applied this function to the analysis of
backscattered seismic signals, but soon he realized that wavelets have a significantly
broader field of possible applications. In 1981, Alexander Grossmann interpreted
wavelets as coherent states and gave an elegant proof of Morlet’s reconstruction
algorithm. Since then this technique has witnessed explosive growth and it now
represents a universal mathematical tool with useful applications in many scientific
and engineering studies.

Originally wavelets emerged as an alternative to the classical spectral analysis
based on the Fourier transform, such as windowed Fourier analysis or the Gabor
transform. In order to improve processing of transient components in complex
signals, Morlet decided to replace Gabor functions, which have a fixed duration,
by new building blocks or time–frequency atoms, which can have an arbitrarily
small duration. Later this concept led to new insights and a mathematically rigorous
foundation.

Nowadays, there is no doubt that the introduction of wavelets theory was one
of the most important events in mathematics over the past few decades. This
is probably the only concept that has been applied in practically all fields of
basic science. Moreover, wavelets are widely used for image recognition and
compression, for analysis and synthesis of complex signals, in studies of turbulent
flows and biological data, etc.

This book is devoted to application of wavelet-based methods in neuroscience.
We have attempted to illustrate how wavelets may provide new insight into the
complex behavior of neural systems at different levels: from the microscopic
dynamics of individual cells (e.g., analysis of intracellular recordings) to the
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macroscopic level of widespread neuronal networks (e.g., analysis of EEG and MEG
recordings). Our main aim has been to show how and where wavelet-based tools can
gain an advantage over classical approaches traditionally used in neuroscience. We
hope that the logical structure of the book as regards content (from micro to macro
scale) represents a new approach to experiential data analysis and could be helpful
in everyday use. The book describes several examples obtained by the authors in
experimental neuroscience.

The book results from a long-term cooperation between research groups at
Saratov State University, Saratov State Technical University, Universidad Com-
plutense de Madrid, and the Moscow Institute of Higher Nervous Activity and
Neurophysiology of the Russian Academy of Science. We want to express our
sincere gratitude to Prof. V. S. Anishchenko and Prof. D. I. Trubetskov for their
constant support, scientific exchange, and interest in our work. We thank our
collaborators A. Brazhe, N. Brazhe, D. Dumsky, V. Grubov, G. van Luijtelaar,
A. Luttjohann, A. Moreno, E. Mosekilde, A. Nazimov, A. Ovchinnikov, F. Panetsos,
C. M. van Rijn, O. Sosnovtseva, A. Tupitsyn, and J. A. Villacorta-Atienza with
whom we have worked on different aspects of neural dynamics over the last decade.
Our special thanks go to Prof. J. Kurths who has encouraged us to write this book.
We acknowledge fruitful discussions with our colleagues A. Balanov, I. Belykh,
V. Kazantsev, I. Khovanov, A. Neiman, G. Osipov, V. Ponomarenko, M. Prokhorov,
and V. Raevskiy. We also extend our warmest thanks to the Rector of Saratov State
Technical University Prof. I. Pleve for support and help with preparation of this
book. Finally, we would like to express our sincere gratitude to our families for
their constant support and inspiration.

Over the years, our studies in the field of wavelets have been supported by the
Russian Foundation of Basic Research (Russia), the Russian Scientific Foundation
(Russia), the Ministry of Education and Science of Russian Federation (Russia), the
U.S. Civilian Research and Development Education (USA), the BrainGain Smart
Mix Program of the Netherlands Ministry of Economic Affairs (the Netherlands),
and the Dynasty Foundation (Russia).

Saratov, Russia Alexander E. Hramov
Saratov, Russia Alexey A. Koronovskii
Madrid, Spain Valeri A. Makarov
Saratov, Russia Alexey N. Pavlov
Moscow, Russia Evgenia Sitnikova
July 2014
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Chapter 1
Mathematical Methods of Signal Processing
in Neuroscience

Abstract This chapter offers a brief introduction to the novel advanced math-
ematical methods of analysis and processing of neurophysiological data. First,
we give the rationale for the development of specific mathematical approaches
for decoding information from non-stationary neurophysiological processes with
time-varying features. Second, we focus on the development of mathematical
methods for automatic processing and analysis of neurophysiological signals, more
specifically, in the development of brain–computer interfaces (BCIs). Finally, we
give an overview of the main applications of wavelet analysis in neuroscience, from
the microlevel (the dynamics of individual cells or intracellular processes) to the
macrolevel (dynamics of large-scale neuronal networks in the brain as a whole,
ascertained by analyzing electro- and magnetoencephalograms).

1.1 General Remarks

Neurodynamics is a contemporary branch of interdisciplinary neuroscience that
examines mechanisms of the central nervous system based on the mutual experience
of chemists, biologists, physicists, mathematicians, and specialists in the nonlinear
theory of oscillations, waves, and dynamical chaos [1–6]. Practical applications of
modern methods in neuroscience facilitate an interdisciplinary approach to brain
functions and attract experts in experimental and theoretical neurobiology, psy-
chophysiology, cognitive neuroscience, biophysics, physics, nonlinear dynamics,
etc. This interdisciplinary collaboration provides unique methods for analyzing the
functional activity of the central nervous system (CNS) that focus on the basic
principles of the neuronal dynamics of individual cells and neural networks.

Recent progress in understanding molecular and ionic mechanisms of neuronal
activity [7] encourages further investigation of certain key problems in mod-
ern physics, such as exploration of the functional properties and principles of
information coding, as well as its representation and the processing of sensory
data in the central nervous system. Perception and information processing are

A.E. Hramov et al., Wavelets in Neuroscience, Springer Series in Synergetics,
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important functions of the CNS. Visual, acoustic, tactile, and gustatory stimuli are
transformed by the sensory receptors of the first order neurons into a sequence of
electrical pulses. These first-order sensory neurons are therefore involved in primary
processing of sensory information [8–12]. Sensory information is then passed
through relay stations (brain stem and thalamic nuclei) that transform and convolve
the information code, until finally it reaches the cerebral cortex which shapes the
“fingerprint” of the external world [13,14]. At each subsequent stage, the processes
of information transfer become increasingly difficult to study. The question of how
the totality of nervous impulses (action potentials or spikes) generated by single
neurons can reflect the full complexity and diversity of the external world remains
one of the biggest challenges in fundamental science [13, 15–17].

Experimental methods have recently been developed for registering the neuronal
activity underlying processes of information encoding–decoding at different levels
of the nervous system—from molecular changes in membrane properties of receptor
cells to changes in the local (electrical) field potentials in the cerebral cortex.
Traditional and noninvasive methods for registering electrical brain activity, such
as electroencephalography (EEG) with electrodes arranged on the skin of the head,
offer several advantages, and this method is still commonly used in neurophysiology
and medicine. EEG is often used in various studies of brain functions in humans
and animals [18, 19]. There are also invasive methods using implanted electrodes
which provide better spatial resolution, and these are advantageous when examining
neuronal activity in small groups of neurons in superficial (cortex) and deep
(subcortical) structures. Another advantage of invasive recording techniques is
that implanted electrodes can also be used for electrical stimulation with different
research purposes, e.g., suppression of epileptic discharges [20–22]. The relatively
new noninvasive recording technique known as magnetic encephalography (MEG)
has become more popular over the last few years, because it provides better spatial
resolution than EEG and better quality of signals reflecting brain activity [23–25].

1.2 Nonstationarity of Neurophysiological Data

Despite technical progress in developing new methods of data acquisition in
experimental neurophysiology, mathematical methods of experimental data analysis
could not be readily applied, and this may impede further progress. In the vast
majority of experimental studies in neuroscience, only a few statistical methods of
data analysis are used, e.g., calculation of the mean spike frequency, construction
of various correlation characteristics and distribution functions, etc. Traditional
methods of statistical analysis are undoubtedly useful, but most of them unable to
evaluate the relevant information regarding complex processes in the CNS. In order
to illustrate this fact, we give an example that demonstrates the response of a sensory
neuron to periodic stimulation. From a mechanical point of view, the response of
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Fig. 1.1 Illustration of adaptation reaction of neuronal firing activity to a repeated stimulation.
This neuron was recorded in a rat in the trigeminal sensory nuclear complex which receives tactile
information from vibrissae. Stimulation was performed by periodic mechanical deflection of one
whisker by a series of short directed air puffs (duration of each air pulse 5 ms). From top to bottom:
start and end of stimulation by the sequence of periodic impulses, firing activity of a single neuron
(train of spikes), and dynamics of the mean spike frequency (averaging over a sliding time window
of 500 ms duration)

the neuron to a sequence of equal external stimuli could be identical, so periodic
stimulation of a neuron with a series of impulses could elicit a periodic sequence
of spikes (action potentials, for example, 2 or 3 spikes per stimulus). However, in
the experimental situation, we often obtain time- and activity-dependent variations
in the neuron’s response (the neuron does not demonstrate an equal response
to repeated identical stimuli) which reflect neuronal plasticity. The phenomenon
of synaptic neuronal plasticity (the basic mechanism underlying memory and
learning) reflects adaptation to external afferent activity modified by the internal
characteristics of individual cells and the global dynamics of the wider neuronal
network interactions [26, 27]. It is known that a neuron can even stop responding to
the next stimulus from a certain moment.

Figure 1.1 illustrates the adaptive response of a neuron of the trigeminal complex
to periodic stimulation. Maximum neuron activity (27 spikes/s) is observed at the
onset of stimulation; it falls to an average of 10 spikes/s within a few seconds and
varies thereafter, exhibiting a slow negative drift. On the one hand, such behavior
of a living cell makes it extremely difficult to define characteristic forms/patterns
of neural activity associated with the peculiar properties of a given stimulus.
On the other hand, such complexity in neuronal activity encourages the development
of more relevant (complex) methods of data analysis, in addition to the simple
description of statistical characteristics of neuronal responses that is one of the tasks
of neurodynamics. We conclude that more specific mathematical methods must be
applied, such as wavelets [28–30], the Hilbert–Huang transform [31–33], and the
Wigner–Ville transform [34–36], which are more suitable for decoding information
about non-stationary processes with time-varying features.
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1.3 Wavelets in Basic Sciences and Neuroscience

Wavelet analysis [28, 37–40] is unique in the sense that even the first practical
application to neurophysiological data analysis produced prominent results [29,41–
45]. For this reason, it is considered a very powerful analytical tool for studying the
dynamics of neural systems.

Wavelet terminology was introduced in the 1980s [37,46,47]. This mathematical
approach was initially proposed as an alternative to classical spectral analysis
based on the Fourier transform. Wavelet theory is considered to be one of the
most important events in mathematics of the past decades. Indeed, it appears to
be the sole new mathematical concept that was immediately recognized as a tool
in practically all branches of basic science (first and foremost, in physics and
related disciplines) and many technical fields [30,48–55]. In fact, introduction of the
wavelet theory itself was not entirely unexpected. It was developed to meet the very
real needs of experimental investigations, particularly in geophysics and seismology.
Contemporary wavelet analysis combines various pre-existing ideas and methods.
For example, fast wavelet transform algorithms are based on the subband coding ide-
ology known from radio and electric engineering [56]. Some ideas were borrowed
from physics (coherent states [57], etc.) and mathematics (studies on Caldéron–
Zygmund integral operators [58]). Wavelet analysis is logically related to the theory
of diffusion differential equations [59].

Today, wavelets are widely used for the analysis and synthesis of various signals,
image processing and recognition, compression of large volumes of information,
digital filtration, the study of fully developed turbulence, and the solution of certain
differential equations. This list can certainly be extended [54, 59–67]. The new
theory aroused great interest from the very beginning. According to well-known
estimates [48], since the 1990s, the number of publications using wavelets in physics
has been growing continuously. The number of references to Internet sources
containing the term “wavelet” has reached several million. In fundamental science,
this mathematical approach is mostly applied to study complex temporally non-
stationary or spatially nonhomogeneous nonlinear processes. Wavelet analysis is
well adapted for studying the complex structure of signals from living systems, since
other traditional computation techniques can be applied only to processes with time
(or space)-constant parameters (i.e., stationary in time or spatially homogeneous).
Despite the fact that wavelet analysis has long been regarded as a standard tool for
studying complex processes and practical application of this method in neuroscience
and medicine is just beginning, prognoses for its successful application are rather
optimistic. In this monograph we highlight recent advances made by practical
application of wavelet in neurodynamics and neurophysiology.
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Fig. 1.2 Wavelet-based methods of automatic EEG diagnostics, processing, and analysis

1.4 Automatic Processing of Experimental Data
in Neuroscience

An important field of wavelet applications in neurophysiology and neuroscience
is the development of methods for automatic processing and analysis of brain
signals. Electrical signals that can be recorded from the brain (EEG) represent
a linear mixture of coexisting oscillatory components, i.e., nonlinear effects do
not complicate the process of recognition. The development of expert systems for
automatic EEG analysis is of particular interest for both fundamental neuroscience
and clinical practice due to a wide spectrum of possible applications (classified in
Fig. 1.2). One must distinguish between on-line and off-line analysis. Automatic
(i.e., without the attention and control of an operator) analysis of pre-recorded EEG
signals (off-line diagnostics) aims to reduce routine work, for example, to suppress
artifacts in the recorded EEG. EEG analysis in real time (on-line) aims at fast
detection of certain EEG events and the organization of closed-loop control systems.
Clinically-oriented applications are the most effective field of on-line analysis of
neurophysiological signals, including EEG monitoring with predictive diagnostic
purposes, e.g., for the suppression of epileptic activity, the so-called spike–wave
discharges [20].
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Fig. 1.3 General scheme of a simple brain–computer interface. Modern IBC is a system that
registers and analyzes signals of electrical brain activity (usually EEG) from the user and
“converts” them into a “machine” command for external device control. The central point of such a
system is the development of algorithms for real-time recognition of EEG patterns corresponding
to certain cogitative operations. Note the importance of the feedback loop in the BCI. This is
necessary to adapt the aforementioned algorithms to recognize the specific patterns of electrical
brain activity based on EEG features. Also the operator (user) must learn to evoke and control the
relevant mental state, which is impossible without the use of feedback

1.5 Brain–Computer Interfaces

One of the most exciting applications of wavelets is to use it for mental control
of brain functions, which, as a matter of fact, is a new form of human–computer
interaction [68, 69]. The specific dynamics of electrical brain activity characterizes
mental activity that includes compilation of imaginary commands (“mental action”).
This “mental action” is associated with specific changes in the time–frequency char-
acteristics and spatial structure of EEG [70–73]. In the brain–computer interface,
mental control systems must perform the following steps (see Fig. 1.3):

• Recognize and select characteristic changes in the EEG (event-related oscillatory
patterns).

• Decrypt their meaning (associated with a specific operation).
• Convert this meaning into commands for hardware control.

Mental control systems should be able to solve two main problems. First, the
technical problem of precise recognition of an EEG pattern, subsequent formulation
of a “command”, and transmission to control. Second, cognitive and psychological
tasks in which the operator (a person) should learn to keep specific mental states
that can be recognized from analysis of the spatial-temporal structure of his/her
EEG. An additional problem is that the system should work in real time. Earlier
control systems were suggested to use information about complex physical activity
expressed as body movements of the operator, e.g., the trajectory when moving
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a hand in the process of equipment handling. These interfaces encountered many
problems, including registration of complex information, isolation of relevant
information from the general data stream, and correct interpretation. Besides that,
such interfaces require a system of sensors for registration of motor activity and a
wireless device for data transmission from operator to computer. Therefore, simple
brain–computer interfaces (BCI) are of particular interest, such as interfaces that
are able to monitor electrical brain activity and detect the mental intentions of the
operator. For example, simple stimulus–symbol interfaces conceived by the operator
[74, 75] open up new prospects for resolving the problem of mental control.

Thus, algorithms of automatic EEG pattern recognition associated with specific
cogitative operations in real time help to effectively perform the first step (pattern
recognition) in brain–computer interfaces. Wavelet-based methods are perfectly
suited to pattern recognition tasks [76–79].

Note that brain–computer interfaces have already been used as an alternative
to traditional devices for inputting information into the computer. So for certain
categories of users, for example, people with motor function disabilities, this
way of interacting with the computer can improve their quality of life, at least
partly, opening the way to a full-fledged life in society [80–83]. One of the first
successfully worked BCIs was developed at Emory University by Roy Bakay and
Phillip Kennedy, who used implanted depth electrodes in the brain motor center of
a paralyzed 53-year-old patient, who was able to move the cursor on a computer
screen, and thus communicate with doctors (writing several simple sentences)
[84]. Rapid progress in neuroscience and technology suggests that brain–computer
interfaces could be widely used for control of artificial limbs, manipulators, and
robot technical devices (for example, wheelchairs), and also in the gaming industry
[85–88].

1.6 Topics to Consider

A mathematically rigorous description of wavelet analysis can be found in numerous
textbooks and monographs (see, for example, [28, 53, 55, 60, 89–93]) as well as
in reviews in scientific journals [17, 51, 52, 94]. This book focuses on the new
possibilities provided by the wavelet approach for decoding information from
signals recorded on the level of individual neurons and groups of neurons, as
well as neural network activity. A large number of the aforementioned scientific
publications aimed to identify the most important problems in the field of wavelet
applications to neurodynamics and neurophysiology. On this topic, we distinguish
the following three areas of wavelet applications in neuroscience:

• Microlevel (cellular/intracellular)—wavelet analysis of the dynamics of individ-
ual cells or intracellular processes.

• Mesolevel (groups of cells)—analysis of information processes in small neuronal
ensembles.
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• Macrolevel (brain activity)—analysis of macrodynamics in widespread neural
networks (EEG/MEG, neuroimaging data).

This monograph discusses the progress made on each of these levels in a consistent
manner. The book contains seven chapters:

• Chapter 2 provides a mathematical introduction to wavelet analysis, including
the basic concepts and definitions of wavelet theory, and considers practically
significant questions related to effective numerical implementation of the wavelet
transform (both, discrete and continuous). Special attention is paid to the impor-
tance of the relationship between wavelet and Fourier analysis. This chapter
specifically addresses those readers who are not familiar with the mathematical
concepts of complex signal processing.

The next two chapters describe methods for wavelet investigation of neurophysio-
logical systems.

• Chapter 3 discusses the application of wavelets for analysis of cellular dynamics
at the microscopic level (individual cells or intracellular processes). This chapter
also presents the principles for analyzing the information from a single cell, using
electrical signals of individual neurons.

• Chapter 4 describes the main aspects of the wavelet analysis of a variety of
impulse shapes (action potentials) of individual neurons using extracellular
records of single-unit neuronal activity. We consider different approaches to
classifying neuronal impulses in terms of their configuration, some based solely
on wavelets, and others involving combined methods, such as wavelet neural
networks.

The last three chapters of the book consider the macrodynamics of neuronal
networks using wavelet analysis of electroencephalograms (EEGs).

• Chapter 5 considers the main definitions and principles of electroencephalogra-
phy that are required for a better understanding of Chaps. 6 and 7. We describe
general physical and mathematical approaches to time–frequency analysis of
rhythmic EEG activity using continuous wavelet transforms. We also review
some recent achievements of wavelet-based studies of electrical brain activity,
including (i) time–frequency analysis of EEG structure, (ii) automatic detection
of oscillatory patterns in pre-recorded EEG, (iii) classification of oscillatory
patterns, (iv) real-time detection of oscillatory patterns in EEG, (v) detection of
synchronous states of electrical brain activity, (vi) artifact suppression/rejection
in multichannel EEG, and (vii) the study of cognitive processes.

• Chapter 6 describes some results of time–frequency analysis of EEG structure
using the continuous wavelet transform. In this chapter we pay special attention
to technical and computational details of time–frequency analysis of neuro-
physiological signals (EEG of animals and humans). This chapter also presents
wavelet analysis of hypersynchronous rhythmic activity in multichannel EEG,
characterizing the onset of absence epilepsy in patients.



References 9

• Chapter 7 considers basic problems of automatic diagnostics and processing
of EEG. We discuss the wavelet-based techniques in order to fully automatize
“routine” operations, such as visual inspection of EEG. In addition, we exhibit
examples of practical applications of wavelet methods for automatic analysis
of pre-recorded EEG and MEG signals (off-line diagnostics), and also some
examples of EEG analysis in real-time (on-line). We also discuss the principles
of fast and precise detection of transient events in EEG and the organization
of closed-loop control systems that can be used in BCI. Finally, we consider
methods of artifact suppression in multichannel EEG based on a combination of
wavelets and independent component analysis

This book is based primarily on the fundamental results in neurodynamics obtained
recently by the authors—physicists, mathematicians, and biologists in close col-
laboration with specialists in experimental neurophysiology. At the same time, the
book contains a relatively complete bibliography (over 400 sources) characterizing
the application of wavelets in neurophysiological research. In general, this book
overviews theoretical and practical knowledge and, in our opinion, demonstrates
the advantages of powerful analytical tools and novel mathematical methods of
signal processing and nonlinear dynamics in order to address neurophysiological
problems. Moreover, wavelet analysis helps to reveal important information and
facilitates a deeper understanding of the investigated phenomena. More intensive
studies in this area can contribute to interdisciplinary interactions between physics,
nonlinear dynamics, applied mathematics, and neurophysiology and promote further
mutual research in these areas.
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Chapter 2
Brief Tour of Wavelet Theory

Abstract In this chapter, the main definitions of wavelet theory are given. To
explain the basic ideas of the continuous wavelet transform, we describe a transition
from Fourier analysis to wavelets. Mother functions and numerical techniques for
implementing the wavelet transform are described. The problem of visualising
the results is considered. Finally, features of the discrete wavelet transform are
discussed.

2.1 Introduction

As already mentioned in Chap. 1, wavelet analysis constitutes a powerful tool for
studying the nonstationary dynamics of nonlinear systems. Although it arose not
so long ago [1–3], researchers are already widely using wavelets in different areas
of modern science. At present, there are many monographs and reviews devoted to
wavelets and their applications in different areas of science and technology, e.g., in
physics, biophysics, biology, medicine, economics, meteorology, etc. [4–11]. Thus,
wavelet analysis has become an essential mathematical tool, providing effective
solution for various problems related to the study and diagnostics of complex
nonlinear processes, as well as digital signal processing. Over the past few decades,
wavelet analysis has been widely considered as an interdisciplinary technique.
One of the most impressive examples of such interdisciplinary cooperation is the
application of wavelets to neurodynamics and neurophysiology, where wavelet
analysis is increasingly used to examine neurophysiological data as well as to
diagnose both normal and pathological processes in neural systems.

In the present chapter, we give a brief mathematical introduction to the wavelet
theory. Here we try to explain the main principles of the wavelet transform (for both,
the continuous and the discrete form), a method for numerical implementations of
the transform, and the potential of wavelets for investigating complex signals asso-
ciated with physiological processes. With a view to providing easier explanations,
we restrict the discussion to simple mathematical examples and models.

A.E. Hramov et al., Wavelets in Neuroscience, Springer Series in Synergetics,
DOI 10.1007/978-3-662-43850-3__2, © Springer-Verlag Berlin Heidelberg 2015
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Fig. 2.1 Signals (2.1) and (2.2) and the corresponding Fourier spectra (a) and (b), respectively

2.2 From Fourier Analysis to Wavelets

We begin our considerations with the well-known Fourier transform [5,12], which to
some extent provides the background for the wavelet theory. As a first example, let
us consider a signal representing the sum of two harmonic functions with different
angular frequencies !1 and !2, viz.,

x.t/ D cos.!1t/C cos.!2t/ : (2.1)

The Fourier spectrum of this signal (see Fig. 2.1) is characterized by two sharp peaks
corresponding to the frequencies1 !1 and !2. If both components exist permanently,
the Fourier spectrum detects their frequencies, providing the researcher with full
information about the signal under investigation.

Further, we consider another signal in which the harmonics appear and disappear
with time:

x.t/ D �
1 �H.t/� cos.!1t/CH.t/ cos.!2t/ ; (2.2)

1Note that hereafter we will consider only the positive range of frequencies, since the negative
frequency region is the “mirror image” of the positive one and does not provide any additional
useful information.
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Fig. 2.2 Signal x.t/ D cosŒ!.t/t � with linearly increasing frequency !.t/ D !1 C a.!2 � !1/t

and its Fourier spectrum. Having examined only the spectrum jS.!/j, one can suppose that the
signal contains all frequencies in the range Œ!1; 2!2 � !1�

where

H.t/ D

8
ˆ̂<

ˆ̂:

0 ; t < 0 ;

1=2 ; t D 0 ;

1 ; t > 0

is the Heaviside function.
Comparing the Fourier spectra2 jS.!/j of the considered signals (2.1) and (2.2),

one can see that they are quite similar (see Fig. 2.1a, b). In other words, the Fourier
spectrum is unable to provide enough information about frequencies that can be
recognized in the analyzed signal at a given moment of time. The spectrum jS.!/j
of the signal does not allow one to say whether the signal is a superposition of
two harmonic functions or whether it consists of two distinct components existing
during clearly different time intervals. In other words, spectral analysis reveals the
occurrence of different harmonic components, but it does not provide information
related to their time localization. Nevertheless, the Fourier transform is a powerful
tool for examining time series produced by systems with constant parameters.
The spectral composition of such signals remains unchanged during the whole
observation period. On the other hand, if the frequency components appear and
disappear with time or if the frequency changes smoothly (see, e.g., Fig. 2.2),
another spectral technique is required.

This circumstance is brought about by the core mechanism of the Fourier
transform, which performs integration over the whole available signal. From the
mathematical point of view, the time interval of integration is infinite3:

S.!/ D
C1Z

�1
x.t/e�i!t dt ; (2.3)

2More precisely, amplitude spectra of the Fourier transform.
3Of course, in the case of experimental signals or data from numerical simulation, researchers deal
with finite time series.
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and each frequency component makes a contribution to the spectrum. Thus, using
spectral analysis, we can detect characteristic rhythms in the signal, but we are
unable to reveal their time localization. In other words, infinite oscillating harmonic
functions sine and cosine used within the Fourier transform cannot be applied for
localized spectral analysis [13, 14].

As a consequence, if we are going to localize the frequency components in time,
we have to pass from integration over the infinite time interval (�1,C1) to a
certain time “window”4 with duration 2T , viz., Œt0 � T; t0 C T �, where t0 is the time
at which we are (locally) defining frequency components in the signal:

S.!; t0/ D
t0CTZ

t0�T
x.t/e�i!t dt : (2.4)

To evaluate the dynamics of the frequency components over time, we must shift the
observation window along the time series. In this case we obtain the instantaneous
spectrum depending on t0. This spectrum changes as the observation window is
moved along the time axis (see Fig. 2.3). Since t0 is a variable in (2.4), the spectrum
S.!; t0/ should be considered as a two-dimensional function.

However, this approach with the rectangular window, known as the short-time
Fourier transform, also has several limitations [15]. Indeed, the spectrum of a
harmonic signal is the ı-function only in the case when the signal is infinite and the
integration is performed over the whole infinite time interval. If the signal is finite
(or if the integration is performed over a finite time interval), the spectral image of
the signal is characterized by the finite width, and the shorter the duration of the
signal, the broader its image in the Fourier space. So, using the short-time Fourier
transform, one has to operate with the shortest length 2T of the observation window
to localize the appearance (or disappearance) of the frequency components of the
signal more precisely. On the other hand, however, this decreases the resolution
of the method in the frequency domain. In other words, the more precisely we
define the frequency of the spectral components, the less exactly we can localize
this component in time, and vice versa.

If we wish to maintain the possibility of tracing the modifications of the
signal with time, but also to reduce the lack of precision in frequency detection,
the transform (2.4) needs to be modified. Note also that the short-time Fourier
transform performed only once does not give full information about the signal
under consideration. A set of transformations performed for the same signal and
different widths 2T of the observation window is more informative. Indeed, the
transformation with a narrow window may be used to localize modifications of the
signal in the time domain, whereas the transformation with a broad window can
provide information about the frequencies. Of course, this approach is inconvenient,

4Here, for simplicity, a rectangular window is used. In a more general case (known as the Gabor
transform), we use a window function g.t/ that is localized in both the time and frequency domains.
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(rectangle) are shown. Shifting the window along the time series results in a transformation of
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Fig. 2.4 Surface � defined in
the 3D space ˝ D .!; t0; T /

(frequency–time–length of
observation window)

since one has to consider a function S.!; t0; T / depending on three variables
instead of two, ! and t0, and this requires representation in a space of at least four
dimensions.

To reduce the number of the variables, one can link the frequency ! of the
harmonic filling with the length of the observation window T , e.g., for each value
of T one can use ! D !n D 2�n=T , where n 2 N is the number of filling periods
fitted into the window length. Then, the short-time Fourier transform may be written
in the form

S.T; t0/ D
t0CTZ

t0�T
x.t/ exp

�
�i
2�n

T
t

�
dt ; n > 0 : (2.5)

In fact, in the 3D space .!; t0; T /, where the function S.!; t0; T / is defined,
a surface � is introduced and further consideration is carried out at the points
belonging to this surface. Obviously, some information is lost in this case, but the
remaining data allow us to understand the particularity of the time series under
study, since the surface � covers both the frequency and the time domain (see
Fig. 2.4).

Moreover, the length of observation window that is optimal to detect different
frequency components of the signal is defined by the corresponding time scales. To
pick out the low-frequency components, a longer part of the time series should be
used than for analysis of high-frequency oscillations. The relation !n D 2�n=T

provides a reasonable ratio between the analyzed frequency and the length of the
observation window.

Transforming (2.5) for the time series x.t/ D sin.!t/ results in

S.T; t0/ D 2T sin.!T /

!2T 2 � 4�2n2
�
!T sin.!t0/ � i2�n cos.!t0/

�
exp

�
�i2�n

t0

T

�
:

(2.6)
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Fig. 2.5 Transformation (2.5) of the signal x.t/ D sin.!t/ (! D � , t0 D 0) for (a) n D 2,
(b) n D 4

As for the spectral analysis, the result of this transformation is characterized by both
real and imagine parts. By analogy with the Fourier transform, there is a reason for
considering the square of the absolute value of S , i.e.,

jS.T; t0/j2 D 4T 2 sin2.!T /

.!2T 2 � 4�2n2/2
h
!2T 2 sin2.!t0/C 4�2n2 cos2.!t0/

i
: (2.7)

One can see that in this case the quantity of jS.T; t0/j2 takes its maximal value
4�2n2=!2 for Tm D 2�n=! (Fig. 2.5), i.e., as for the Fourier transform, the
transformation (2.5) allows detection of the time scale Tm (related to the frequency
! of the signal) corresponding to the main rhythm of the analyzed signal.

There are several important points to be made here. Firstly, for the same signal
x.t/ D sin.!t/ and different values of the parameter n (which is determined as
the number of periods of the harmonic function with the corresponding frequency
that would fill the integration window of length 2T ), the values Tm corresponding to
the maximal magnitude of jS.T; t0/j2 are different (see Fig. 2.5a, b). This becomes
clear when one takes into account the fact that the quantity jS.T; t0/j2 reaches its
maximum when the harmonic filling is characterized by the same frequency !
as the main frequency of the signal under study x.t/ (Fig. 2.6). In other words,
the quantity jS.T; t0/j2 is maximal when T D Tm D 2�n=!, where ! is the
frequency of the signal x.t/ under investigation. In fact, the same situation is
also observed for Fourier analysis. Note that the value of Tm (when the quantity
jS.T; t0/j2 becomes maximal) depends on the integration window and, in general,
does not coincide with the corresponding time scale of the signal. Note also
that the more periods are considered within the integration window, the more
clearly the corresponding harmonic in jS.T; t0/j2 is defined (compare Fig. 2.5a, b).
Nevertheless, as a consequence, the length of the integration window corresponding
to the maximal value of jS.T; t0/j2 also increases with the growth of the period
number n. As mentioned above, this results in the deterioration of the resolution of
the transformation (2.5) in the time domain.
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Fig. 2.6 (a) Time series x.t/ D sin.�t/ and several integration windows (b–d) with different
lengths 2T and the analyzing harmonic filling exp.�i2�n=T /. The real part of the filling is shown
by the solid line, and the imaginary part by the dashed line. The maximal value of jS.T; t0/j2 is
observed for T D 4 (c), when the frequency of the filling coincides with the signal frequency !.
(e) Shift of the integration window by the value determined by the second variable t0

Secondly, one should note that the quantity S.T; t0/ that results from the
transformation (2.5) is a function of two variables, i.e., T and t0. The parameter T
defines the time interval used for the integration and the frequency of the harmonic
filling. So the frequency of the analyzing harmonic filling is closely related to the
length 2T of the window. The variable t0 determines the time moment associated
with the transformation. In fact, it defines a shift of the integration window along the
time axis. At the same time, the harmonic filling remains fixed when the integration
window is shifted (see Fig. 2.6d, e). In other words, the phase of the filling changes
continuously when the integration window is moved along the time axis. To avoid
this problem the filling phase should be fixed relative to the observation window by
means of the following modification of (2.5):

S.T; t0/ D
t0CTZ

t0�T
x.t/ exp

�
�i
2�n

T
.t � t0/

�
dt : (2.8)
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Clearly, changes in the phase of the harmonic filling do not influence the value of
jS.T; t0/j2. For the harmonic signal x.t/ D sin.!t/, the transform (2.8) gives

S.T; t0/ D 2T sin.!T /

!2T 2 � 4�2n2
h
!T sin.!t0/ � i2�n cos.!t0/

i
: (2.9)

It is easy to see that the difference between (2.6) and (2.9) consists only of the factor
exp.�i2�nt0=T /.

Thirdly, one has to take into account the fact that different frequency components
of the signal with equal amplitude are detected by the transformation (2.8) in dif-
ferent ways. The corresponding maxima are characterized by different magnitudes.
The squares of these maxima are related to each other by

jS1j2
jS2j2 D

�
!2

!1

�2
; (2.10)

which may be obtained directly from (2.7). In other words, the lower the frequency,
the larger its contribution to the signal spectrum, under the condition that the
amplitudes of the considered spectral components are equal (see Fig. 2.7). This
means that, if there are two or more components in the signal whose frequencies
differ sufficiently from each other, the components with higher frequencies may be
missed.

Equation (2.8) may be written in the more general form

S.T; t0/ D
C1Z

�1
x.t/ �

�
t � t0
T

�
dt ; (2.11)

where  .�/ is the analyzing function (see Fig. 2.8)

 .�/ D �
H.� C 1/ �H.� � 1/�ei2�� ; (2.12)
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ψ(ξ)

ξ

Fig. 2.8 The real (solid line) and imaginary (dashed line) parts of the sine wavelet (2.12)

and the star hereafter indicates complex conjugation. In fact, (2.11) may already be
considered (with some corrections) as the wavelet transform. So we have gone in
stages from the Fourier transform to the wavelet analysis.

The transformation (2.11) consists in the expansion and shift of the function .�/
as described above and shown in Fig. 2.6. In this case the quantity T describes the
expansion of the analysing function .�/, whereas the variable t0 corresponds to the
shift of .�/ along the time axis. The function .�/ is known as the mother wavelet,
and all other functions  ..t � t0/=T / used for other time scales are obtained from
it by expansions and shifts. For convenience, a normalization condition is imposed
on the mother wavelet:

k kL2 D
2

4
C1Z

�1
 .�/ �.�/d�

3

5

1=2

D 1 : (2.13)

Taking into account the requirement (2.13), the mother wavelet (2.12), denoted by
 0, should be written in the form

 0.�/ D H.� C 1/ �H.� � 1/p
2

ei2�� : (2.14)

The wavelet functions  0..t� t0/=T / obtained for other time scales by means of the
expansion and shift of the mother wavelet  0 do not satisfy the requirement (2.13).
To satisfy the normalization condition for every time scale T , a normalization factor
depending on the time scale T should be introduced. Then the function  0.�/ with
normalization coefficient T �1=2 should be used instead of  .�/ in (2.11):

 T;t0 .t/ D 1p
T
 0

�
t � t0
T

�
: (2.15)
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Finally, (2.11) takes the form

S.T; t0/ D 1p
T

C1Z

�1
x.t/ �

0

�
t � t0
T

�
dt : (2.16)

Equation (2.16) is the standard form of the continuous wavelet transform introduced
in the scientific literature [7,12,14,16–20]. At the end of this section we need also to
compare the notation in this section with the one used traditionally in the literature.
For the continuous wavelet transform, the time scale is traditionally denoted by s
(so in the above consideration, T � s), whereas for the wavelet surface being result
of the transformation, the symbol W is used, i.e.,

W.s; t0/ D 1p
s

C1Z

�1
x.t/ �

0

�
t � t0
s

�
dt : (2.17)

Often, the notion of “frequency” f is considered instead of the “time scale” s since
it is more suitable in many studies. In fact, the frequency f used in the wavelet
analysis carries the same meaning as the frequency of the Fourier transform. In
particular, this approach is commonly used in neuroscience and neurophysiology.
At the same time, researchers have to be very careful using the term “frequency” for
wavelets, since in general the relationship between the time scale s of the wavelet
analysis and the frequency f of the Fourier transform differs from the equation
f D 1=s, which becomes correct only for special choices of the mother wavelet
and its parameters.

So we have moved gradually from the Fourier transform to the wavelet analysis,
aiming to expose the underlying ideas of wavelets. By analogy with the Fourier
transform, the wavelet analysis expands the given signal x.t/ in terms of a certain
functional basis. At the same time, the functional bases used for the Fourier and
wavelet transforms are not the same. While the infinite-in-time harmonic functions
sine and cosine are used in classical spectral analysis, functions  s;t0 that are well-
localized in both time and frequency (obtained by expansion and shift of the mother
wavelet  0) are used in wavelet analysis. These localized functions (wavelets) allow
us to examine processes with statistical characteristics that vary in time (or in space),
and provide a two-dimensional representation of the signal x.t/ when the time and
frequency are interpreted as independent variables.

We shall refer to the mother wavelet (2.14) obtained by the gradual transition
from the Fourier transform shown in Fig. 2.8 as the sine wavelet. The sine wavelet
is not widely used in practical applications (in particular, due to the low level
of localization in the frequency domain), but it brings out the main ideas and
methodology of continuous wavelet analysis. An important particularity of the
wavelet transform is the possibility of using an arbitrary function satisfying certain
conditions (which will be discussed in Sect. 2.3) as the mother wavelet.
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Finally, note that, besides the continuous wavelet transform, the discrete wavelet
transform is also used in many applied problems. General information concerning
these two counterparts of the wavelet transform is given below.

2.3 Continuous Wavelet Transform

2.3.1 Main Definitions: Properties of the Continuous Wavelet
Transform

In the following, we restrict the class of mother functions to f 2 L2.R/. The
function space L2 contains signals with limited energy, i.e., with finite norm kf kL2 .
The continuous wavelet transform (CWT) is performed by convolution of the
examined function f .t/ with the two parameter wavelet function  s;t0 .t/, viz.,

W.s; t0/ D
C1Z

�1
f .t/ �

s;t0
.t/dt : (2.18)

The wavelet function is obtained from the mother wavelet  0.t/ by means of an
expansion and a shift:

 s;t0 .t/ D 1p
s
 0

�
t � t0
s

�
: (2.19)

The parameter s, known as the time scale of the wavelet transform .s 2 R
C/,

determines the width of the wavelet in the time domain, whereas the parameter
t0 2 R specifies the wavelet location on the time axis. The factor 1=

p
s in (2.19)

provides the constant unit norm of the wavelets in the function space L2.R/, i.e.,

k s;t0kL2 D k 0kL2 D 1 ; (2.20)

where the norm in the space L2.R/ is defined by

kf kL2 D
2

4
C1Z

�1
jf .x/j2 dx

3

5

1=2

: (2.21)

Below, we will use the following notation for the wavelet functions:

•  0 for the mother wavelet.
•  s;t0 for the wavelet function obtained from the mother wavelet  0 by (2.19).
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•  for the wavelet function obtained from the mother wavelet  0, for which the
normalizing factor is not yet defined, i.e.,  D a 0, where a is unknown.

• � for the wavelet function used in the calculation of the wavelet surface using
the fast Fourier transform.

By the Parseval formula, the condition (2.20) implies that

1

2�

C1Z

�1
j O 0.!/j2 d! D 1 ; (2.22)

where O 0.!/ is the Fourier image of the mother wavelet function

O 0.!/ D 1p
2�

1Z

�1
 0.t/e

�i!t dt : (2.23)

Analogously,

1

2�

C1Z

�1
j O s;t0 .!/j2 d! D 1 ; (2.24)

where O s;t0 .!/ is the Fourier image of the wavelet function  s;t0 .t/.
So the continuous wavelet transform maps the space of one-dimensional func-

tions into the two-dimensional (in general, complex) space.

W W L2.R/ ! C.R � R
C/ ;

and as a consequence, information contained in the wavelet coefficients is abundant.
This fact results, e.g., in the presence of a correlation in the wavelet spectrum of a
random signal (noise), although this correlation is not actually present in the signal
(so this is a consequence of the wavelet transform). This may be considered as a
significant disadvantage of the wavelet transform that must be taken into account
when wavelet spectra are interpreted.

The mother wavelet can be chosen rather arbitrarily, e.g., as in Sect. 2.2, but it
must fulfill several requirements. First of all, we should mention the boundedness
condition

C1Z

�1
j 0.t/j2dt < 1 : (2.25)
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Then there is the localization condition, according to which the mother wavelet
function  0 must be localized in both the time and frequency domains. This
condition is satisfied if the function  0 decreases rapidly and is quite regular.
As an estimate for good localization and boundedness, the conditions j 0.t/j <
1=.1Cjt jn/ or j O 0.!/j < 1=.1Cj!�!0jn/may be used, where !0 is the dominant
frequency of the wavelet and the parameter n should be as large as possible [21].

According to the admissibility condition, the Fourier image O 0.!/ of the mother
wavelet  0.t/ must obey the condition

C D
C1Z

�1

j O 0.!/j2
!

d! < 1 : (2.26)

Since in practice only positive frequencies are usually considered, (2.26) can often
be replaced by

C1Z

0

j O 0.!/j2
!

d! D
C1Z

0

j O 0.�!/j2
!

d! < 1 : (2.27)

Note also that, for practical purposes, the condition (2.26) is analogous to the
condition of zero mean as a consequence of (2.22):

C1Z

�1
 0.t/dt D 0 ; (2.28)

or

O 0.0/ D 0 ; (2.29)

whence the mother wavelet  0.t/ must be an oscillatory function.
Sometimes this requirement may be important not only for the zero

moment (2.28), but also for the m first moments, i.e.,

C1Z

�1
t k 0.t/dt D 0 ; k D 0; 1; : : : ; m : (2.30)

Such mth order wavelets may be used to analyse small-scale fluctuations and
high order features by ignoring quite regular (polynomial) components. Indeed,
expanding the function f .t/ in (2.18) in a Taylor series at t0, one obtains
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W.s; t0/ D 1p
s

"

f .t0/

C1Z

�1
 �
0

�
t � t0
s

�
dt

C f 0.t0/
C1Z

�1
.t � t0/ �

0

�
t � t0
s

�
dt

C � � � C f .n/.t0/

nŠ

C1Z

�1
.t � t0/n �

0

�
t � t0
s

�
dt C : : :

#

:

(2.31)

By (2.30), the first m terms of (2.31) vanish, and as a consequence, they do not
contribute to W.s; t0/. Note that it may be enough for practical purposes if (2.30) is
approximately satisfied.

If the admissibility condition (2.26) is satisfied, the inverse wavelet transform
exists (see, e.g., [22] for details):

f .t/ D 1

C 

C1Z

0

ds

s2
p
s

C1Z

�1
 0

�
t � t0
s

�
W.s; t0/dt0 : (2.32)

By analogy with the Fourier power spectrum P.!/ D j Of .!/j2, the distribution
of instantaneous energy over the time scales of the wavelet transform can be
introduced by

E.s; t0/ D jW.s; t0/j2 ; (2.33)

along with the time-averaged integral wavelet spectrum or scalogram

hE.s/i D 1

T

TZ

0

jW.s; t0/j2 dt0 : (2.34)

Since the distribution of the wavelet energy is related to the Fourier power spectrum
[16] by

hE.s/i � s

Z
P.!/j O 0.s!/j2 d! ; (2.35)

this means that hE.s/i is a smoothed Fourier power spectrum, defined by the Fourier
image O 0 of the mother wavelet  0.
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Fig. 2.9 Time-and-frequency localization in the space time t–frequency ! for different transfor-
mations. (a) discrete sample (Shannon transform), (b) Fourier transform, (c) short-time Fourier
transform, (d) continuous wavelet transform

One important point is the ability of the wavelets to pick out information
concerning local properties of a signal. As discussed above (Sect. 2.2), in order to
obtain precise information about high-frequency components with good temporal
resolution, rather short time intervals must be used. However, extracting information
about low-frequency spectral components requires relatively long fragments of time
series.

Figure 2.9 illustrates the ability of different transformations to extract localized
information. Figure 2.9a shows a segmentation of the time t–frequency ! space for
discrete samples of the signal values, when the ı-function plays the role of the basis
function (Shannon transform). One can see that this transform provides excellent
time resolution, but no frequency information at all can be extracted. In contrast, the
Fourier transform is characterized by perfect frequency resolution, but there is no
localization in time (see Fig. 2.9b). Figure 2.9c corresponds to the short-time Fourier
transform, where the resolution on short and long time scales is determined by the
length of the integration window. In the case of the wavelet transform (Fig. 2.9d),
the time resolution determined by the width of the wavelet  .t=s/ decreases with
the growth of the time scale s, whereas the frequency resolution determined by the
width of the Fourier image of the wavelet O .s!/ increases. It provides good time
localization for small scales and good frequency resolution for large scales (see
Fig. 2.9d).
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Fig. 2.10 Influence angle of
the wavelet transform on the
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So the main feature of the wavelet transform which is extremely important when
analyzing complex nonstationary processes is the ability to respect the locality of
the signal representation, and as a consequence, the ability to reconstruct the signal
locally. Importantly, the continuous wavelet transform allows us to determine the
contribution of a certain scale at a given moment of time. It also provides the
possibility to reconstruct only a part of the signal. In fact, there is a relationship
between local properties of the signal and local behavior of the wavelet surface
related to this signal. This means that, in order to reconstruct a part of the signal,
one has to use the values of the wavelet surfaceW.s; t/ belonging to a certain region
called the influence angle (see Fig. 2.10a).

When the wavelet function  0 is well localized in the time interval �T for the
time scale s D 1, the values of the wavelet spectrum corresponding to the time t 00 are
contained in the influence cone bounded by the straight lines s D 2.t 00� t0/=�T and
s D 2.t0� t 00/=�T . At the same time, the valueW.s0; t 00/ at point (t 00; s0) depends on
the fragment of the time series contained in the same influence cone (see Fig. 2.10b).
The longer the analyzed time scale s, the longer the fragment of time series, i.e.,
high-frequency (or, what comes to the same, short-scale) information is determined
by short fragments of the time series, whereas longer fragments of time series should
be used for low-frequency components. If the wavelet function  0 provides good
localization in the Fourier space, i.e., the Fourier image O 0 of the mother function is
concentrated in the frequency band�˝ around the dominant frequency !0 for time
scale s D 1, the values of the wavelet transform corresponding to the frequency !0
are located in the range of time scales s 2 �

.!0 � �˝=2/=!0; .!0 C �˝=2/=!0�.
If f .t/ is a locally smooth function, the corresponding values of the wavelet surface
are fairly small. When f .t/ has a singularity, the magnitude of the wavelet surface
increases in its vicinity. Note also that, if the wavelet surface contains artifacts
at certain points, they are influenced on the reconstructed signal only locally, in
the vicinity of these positions, whereas the inverse Fourier transform spreads these
errors over the whole reconstructed signal.
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2.3.2 Mother Wavelets

One important problem when using the wavelet transform is the choice of appropri-
ate mother wavelet  0 for analysis of the signal. This choice depends on both the
aim of the study and the characteristics of the analyzed signal. Thus, to detect phases
of an oscillatory process by means of the wavelet transform, complex wavelets
are used. In contrast, to reveal self-similarity on different time scales, there is
a good reason to use real wavelets. Existing traditions as well as intuition and
the experience of the researcher may also play an important role when choosing
the mother wavelet. This section discusses the main wavelets used in practical
applications.

The actual choice of mother wavelet depends on what information is to be
extracted from the analyzed signal. Each wavelet function  0 is characterized by
different properties that allow us to reveal distinct features of the signal f .t/.
Figure 2.11 shows the most commonly used wavelets  0.�/, together with their
Fourier images O 0.�/. Important characteristics of these wavelets (discussed in
detail later) are given in Table 2.1.

One of the most popular complex wavelets used to reveal the time–frequency
structure of signals is the Morlet wavelet [3] (see Fig. 2.11)

 0.�/ D ��1=4 �ei!0� � e�!20=2
	

e��2=2 ; (2.36)

where !0 is the wavelet parameter (often taken as !0 � 2�). The second term
in the brackets performs a correction of the wavelet transform for signals with
nonzero mean values. When !0 � 0, the term e�!20=2 may be neglected, whereas
the central frequency (the global maximum of the Fourier image of the wavelet) is
conventionally taken to be !0.

In fact, the Morlet wavelet is an analog of the sine wavelet described in Sect. 2.2.
Indeed, the Morlet wavelet is a plane wave modulated by a Gaussian function,
whereas the sine wavelet is the same plane wave modulated by a rectangular
impulse. The functional set obtained on the basis of the Morlet wavelet is well
localized in both the time and frequency domains. With growing value of the param-
eter !0, the resolution in Fourier space increases, whereas the time localization is
reduced. This is easily seen from the comparison of Fourier images of the Morlet
wavelet obtained for !0 D 2� and !0 D 16 (see Fig. 2.11a, b). For !0 D 16, the
Fourier image is narrower, attesting to the better resolution in the frequency domain.
However, the time resolution decreases for !0 D 16.

Another example of a complex wavelet is the Paul wavelet [23] (Fig. 2.11d)

 0.�/ D 2mimmŠ
p
�.2mŠ/

.1 � i�/�.mC1/ ; (2.37)

where m is the wavelet order corresponding to the number of zero moments.
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Fig. 2.11 Most commonly used wavelets (left) and their Fourier images (right). The real part of
each wavelet function is shown by a solid line, while the dashed line illustrates the imaginary part.
(a) Morlet wavelet with main frequency !0 D 2� . (b) Morlet wavelet with !0 D 16. (c) MHAT
wavelet (DOG wavelet with m D 2). (d) Paul wavelet with m D 4. (e) FHAT wavelet
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Table 2.1 Commonly used wavelets and their main properties. Here H.x/ is the Heaviside
function, f is the frequency of the Fourier transform, fs is the frequency of the wavelet transform
(fs D 1=s), and 	s is the width of the region of boundary effects

Wavelet  0.�/ O 0.s!/ 	s f =fs

Morlet ��1=4ei!0�e��2=2 ��1=4H.!/e.s!�!0/
2=2

p
2s

!0 C
q
2C !20

4�

Paul
2mimmŠp
�.2mŠ/

.1� i�/�.mC1/
2mp

m.2m� 1/
H.!/.s!/me�s! s=

p
2
2mC 1

4�

DOG
.�1/mC1

�



�
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��1=2
dm

d�m
e��2=2

im
�



�
mC 1

2
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p
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p
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8
<
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1; j�j < 1=3;
�1=2; 1=3 < j�j � 1;

0; j�j > 1
3H.s!/

�
sin.s!/

s!
� sin.3s!/

3s!

� p
2s 3=4

Among real wavelet functions, the DOG wavelets are widely used (DOG stands
for difference of Gaussians) [24]. DOG wavelets are constructed on the basis of
derivatives of the Gaussian function (see Fig. 2.11c):

 0.�/ D .�1/mC1
"




�
mC 1

2

�0:5#
dm

d�m
exp

���2
2

�
: (2.38)

The mother wavelet corresponding to m D 1 is called the WAVE wavelet, viz.,

 0.�/ D �e��2=2 ; (2.39)

while m D 2 corresponds to the MHAT (Mexican hat) wavelet, viz.,

 0.�/ D 

1 � �2� e��2=2 : (2.40)

Another real mother wavelet is the discrete FHAT (French hat) wavelet shown in
Fig. 2.11e, viz.,

 0.�/ D
8
<

:

1 ; j�j < 1=3 ;
�1=2 ; 1=3 < j�j � 1 ;

0 ; j�j > 1 :
(2.41)
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The simplest discrete wavelet used in many technical applications is the Haar
wavelet [25]

 0.�/ D
8
<

:

1 ; 0 � � < 1=2 ;

�1 ; 1=2 � � < 1 ;

0 ; � < 0; � 	 1 ;

(2.42)

which will be discussed in detail in Sect. 2.4 on the discrete wavelet transform.
The set of mother wavelets is not restricted to the functions considered here.

Other functions are also applied in practice and successfully used in various areas
of research. The reader can find additional examples of the mother wavelets as
well as ways to construct them, e.g., in [16, 26–30]. In the following chapters of
this book, we shall discuss examples of wavelets constructed especially to analyze
neurophysiological signals.

2.3.3 Numerical Implementation of the Continuous Wavelet
Transform

Since the analytical form of wavelet spectra can be obtained only for the simplest
cases such as, e.g., f .t/ D a sin.!t/, analysis of experimental time requires
numerical implementation of the wavelet transform.

When we carry out numerical analysis, we are dealing with time series of a
variable x.t/ whose values are known only at specified time moments. Typically,
the values of x.t/ are recorded with equal time span.5 Therefore, we shall further
consider a time series fxng, where each value xn is acquired with an equal time
interval h, i.e., xn D x.hn/, n D 0; : : : N � 1, where N is the number data points in
the time series.

The continuous wavelet transform of the sequence fxng is defined as the discrete
counterpart of the convolution of the analyzed signal and the basis function
 .�/ (2.18) which is normalized by the corresponding time scale s and shifted along
the time axis by the interval nh. One can then write

W.n; s/ D
N�1X

n0D0
xn0 �

�
.n0 � n/h

s

�
; (2.43)

5This is the most typical case in experimental studies. However, data can be acquired in such
a way that each data point is related to an arbitrary instant of time. This happens, e.g., for point
processes represented by RR intervals of the electrocardiogram [31,32]. In such a case, the relevant
algorithms must be modified [31, 32].
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where the normalization coefficient for the discrete analogue of the continuous
wavelet transform will be discussed later (see (2.59)). Changing the scale coefficient
and the time shift nh, one can localize the dynamics of any particularities of the
process fxg in the time domain s.

2.3.3.1 Effective Numerical Method for the Continuous Wavelet
Transform

Direct calculation of the wavelet transform using (2.43) is not optimal. The
simplest and most universal way to optimize the numerical procedure of the
wavelet transform is to consider the local nature of the wavelet function (see
Fig. 2.10). Indeed, the wavelet function  s;t0 is localized within the time interval
t 2 Œt0 � T .s/; t0 C T .s/�. As the function  s;t0 is normalized for different time
scales, the time localization interval 2T .s/ depends on the time scale s. Since the
wavelet function is supposed to be close to zero with high precision outside this
interval, (2.18) may be replaced by

W.s; t0/ '
t0CT .s/Z

t0�T .s/
f .t/ �

s;t0
.t/dt : (2.44)

The quantity T .s/, which also depends on the selected mother wavelet, can be found
experimentally for the preassigned precision of numerical calculations. Of course,
the higher the value of T , the more accurate the result of the wavelet transform.
For the Morlet wavelet, for instance, the optimal length of the time interval related
to a reasonable compromise between time duration and accuracy of the performed
calculations is estimated as T .s/ D 4s.

In the discrete form, (2.44) should be rewritten as

W.n; s/ D
nCŒT .s/=h�X

n0Dn�ŒT .s/=h�
xn0 �

�
.n0 � n/h

s

�
: (2.45)

One can see that, for arbitrary values of the analyzed discrete sequence fxng, the
values of the wavelet function are invariable for all time moments n, and as a
consequence, they can be calculated once and for all in the interval Œ�T .s/; T .s/�
with time span h as

ysn D  �
�

nh

s

�
; (2.46)

keeping this thereafter as the matrix.
So the problem of calculating the wavelet transform is reduced to multiplying

two matrixes, viz.,
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W.n; s/ D
ŒT .s/=h�X

iD�ŒT .s/=h�
xnCi ysi ; (2.47)

which may be done rather quickly.
To perform direct numerical realization of the wavelet transform using (2.43),

the sum should be estimated N times for every time scale s, where N is the
number of data points. Assuming that fxng is a complex sequence and the wavelet
function has already been calculated in the whole region of possible values,
M D L �8N 2CO.N / arithmetic iterations must be carried out, where L is the
number of time scales s for which the wavelet transformation is applied. Indeed,
according to (2.43), N complex multiplications (6 arithmetic operations) and N �1
complex additions (2 arithmetic operations) must be performed at each point of the
discrete space with dimension N � L .

Using (2.47) considerably reduces the required operations, since only

M D 8N �
Œsmax=�s�X

iDŒsmin=�s�

ŒT .i�s=h/�C O.N / (2.48)

operations must be carried out, where smin and smax are the minimal and maximal
boundaries of the analyzed time scales, and �s is the discretization step. If
T .s/=h 
 N , a considerable efficiency gain is obtained. For the Morlet wavelet,
the number of required iterations is estimated as

M D 64N �
Œsmax=�s�X

iDŒsmin=�s�

.i�s=h/C O.N / : (2.49)

2.3.3.2 Numerical Method for the Continuous Wavelet Transform Based
on the Fast Fourier Transform

Considering the Fourier images for the initial signal Oxk and wavelet O also reduces
the number of required operations [8, 16]. By the convolution theorem, one can
simultaneously compute all values of W.n; s/ (n D 0; : : : ; N � 1) in the Fourier
space for the fixed time scale s using the discrete Fourier transform.

For the sequence fxng, the discrete Fourier transform is estimated as follows

Oxk D
N�1X

nD0
xne�2� ikn=N ; (2.50)

where k=.Nh/ � .0; : : : .N � 1/=.Nh// forms the frequency set of initial signal xn
given by the sequence consisting of N points with the time step h.
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With a known Fourier image O 0.!/ of the mother wavelet  0.t/ (see (2.23)), one
can easily compute the Fourier image of the function  .t=s/:

�
 .t/ ! O .!/ ;
 .t=s/ ! O .s!/ ; (2.51)

i.e., renormalization of the wavelet function in the Fourier space is taken into
account by multiplying the frequency by the scale factor s.

Similarly, using the discrete Fourier transform6 one can obtain

O�.!k/ D
N�1X

nD0
�.nh/e�i!knh ;

O�.s!k/ D
N�1X

nD0
�.nh=s/e�is!knh=s ;

(2.52)

where the frequency !k is given by

!k D 2�k

Nh
: (2.53)

In the Fourier space, the wavelet transform is written as a simple multiplication of
the Fourier image of the signal Ox by the complex conjugated Fourier image O�� of
the wavelet function. The wavelet surfaceW.n; s/ is obtained by the inverse Fourier
transform

W.n; s/ D 1

N

N�1X

kD0
Oxk O��.s!k/ei!knh : (2.54)

When using the approach based on the Fourier images f Oxg and O , the wavelet
function  should be renormalized for each time scale s to correctly compare the
wavelet spectra of different signals (and, moreover, the same signal for different
time scales s). The aim of this renormalization is to provide the unit energy at each
time scale:

O�.s!k/ D
� s
h

	1=2 O�0.s!k/ : (2.55)

6Notice the difference between  , O and � , O� used for the continuous and discrete transforms,
respectively.
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Finally, the equation for the wavelet surface W.n; s/ is written as

W.n; s/ D
� s
h

	1=2 1
N

N�1X

kD0
Oxk O��

0 .s!k/e
i!knh : (2.56)

Fourier images of different wavelet functions  0.�/ are shown in Fig. 2.11 and
Table 2.1. Constant factors for each function are chosen according to the normaliza-
tion condition (the condition of the unit energy)

1Z

�1

ˇ̌
ˇ O 0.!/

ˇ̌
ˇ
2

d! D 1 : (2.57)

The analogous condition for the discrete form is

N�1X

kD0

ˇ̌
ˇ O�.s!k/

ˇ̌
ˇ
2 D N ; (2.58)

where N is the number of data points.
If (2.43) is used, the normalization of the wavelet function for the time scale s

takes the form

 

�
.n0 � n/h

s

�
D
�
h

s

�1=2
 0

�
.n0 � n/h

s

�
; (2.59)

where  0.�/ is the wavelet function obeying the condition k kL2.R/ D 1, i.e., the
wavelet function  0 is also characterized by unit energy. Taking into account (2.59),
equation (2.43) should be written in the final form

W.n; s/ D
�
h

s

�1=2 N�1X

n0D0
xn0 �

0

�
.n0 � n/h

s

�
: (2.60)

Taking into account (2.56), one can simultaneously obtain the results of the wavelet
transformW.n; s/ for the fixed value of s and all n, using the fast Fourier transform
(FFT) to determine all sums in (2.50) and (2.56). Since the FFT requires only
N log2 N iterations [33] to calculate the sums (2.50) or (2.56), the whole wavelet
surface W.n; s/ (for all considered time scales s) is computed with L � N log2 N
iterations.7 For a large number of points N , it gives sufficient gain in comparison
with the use of (2.60).

7Here we do not consider iterations for calculation of the Fourier image of the signal Ox, since this
transform should be performed only once.



40 2 Brief Tour of Wavelet Theory

An important aspect of the wavelet transform is the set of time scales fsg used
to calculate the wavelet spectrum (2.56). If the mother function represents one from
orthogonal wavelets [19, 34], this set of time scales is strongly restricted, whereas
for nonorthogonal wavelets the set fsg can be arbitrarily chosen in order to acquire
more detailed information about the signal. When the FFT procedure is used, the set
of time scales is typically considered to be some power of 2:

sl D s02
l�s ; l D 0; : : : ;L ; L D log2.Nh=s0/

�s
: (2.61)

Here s0 is the minimal time scale distinguished when the wavelet transform is
applied and L is the maximal number of time scales used to calculate the wavelet
spectrum. The minimal time scale s0 should be used in such a way that the Fourier
period corresponding to this time scale is about 2h (see below). The optimal value
of �s is determined mainly by the width �˝ of the Fourier image of the mother
wavelet O�0. If �s exceeds �˝=.2!0 � �˝/, the scale resolution of the wavelet
transform decreases, since some time scales are excluded from consideration. On
the other hand, the choice of a small �s does not provide essential improvements
in the resolution of the wavelet transform (due to the finite width of the wavelet
function in the Fourier space). However, it does increase the time required for the
calculation.

In the case of the Morlet wavelet with !0 D 2� , the maximal value of .�s/max

allowing acceptable resolution is about 0.5, whereas for other wavelet functions,
e.g., the Paul wavelet, the maximal value of �s may increase, e.g., .�s/max � 1:0

for the Paul wavelet.
The FFT procedure used for the continuous wavelet transform in (2.50) and

(2.56) also constrains the length of the considered time series fxng, since for the
FFT procedure the number of points in the time series must obey the requirement
N D 2p , where p is a natural number. Typically, it is not too difficult to obtain time
series with the required number of points. Nevertheless, in several cases, the number
of data points is limited and cannot be easily enlarged (e.g., in the case of climatic
or geological data).

If the length of such time series is roughly (but less than) 2p , the properties of the
wavelet transform allow one to effectively analyze this data using 2p points instead
of 2p�1. This may be done by forming a surrogate time series in which the first and
last .2p � N/=2 points are set equal to constant values, e.g., mean values of the
initial time series (x D P

n xn=N ) or zeros. In this case the region of edge effects
on the plane .n; s/ becomes broader (see next section).

2.3.3.3 Influence of Edge Effects

When a finite time series is used to obtain the wavelet spectrum, the errors inW.n; s/
appear near the boundaries of the time axis (i.e., near n D 0 and n D N �1) and this
results in a distortion of the time–frequency representation of the signal. Firstly, this
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is due to the fact that, for the considered time scale s, the wavelet function shifted
along the time axis starts going beyond the analysed time series. As a consequence,
the W.n; s/ values in the vicinity of the time series boundaries become incorrect.
Obviously, the region of influence of edge effects becomes broader for longer time
scales s (smaller frequencies). Secondly, use of the FFT procedure supposes that
the analysed data fxg is periodic with period Nh, whereas the considered time series
does not usually have this property.

The width 	s of the edge effect region is determined by the time interval T .s/
introduced earlier (see (2.44)). For the Morlet wavelet, the width of the region where
edge effects influence the results of the wavelet transform is given by

	s D T .s/ D 4s : (2.62)

There are different ways to suppress unwanted edge effects [8, 16, 35]. One of the
most effective solutions of this problem is the formation of a surrogate time series
fx0
ng with length 2N in which the first N points are taken from the initial time

series fxng, whereas the next N points starting from n D N are filled by zeros. The
resulting surrogate time series fx0

ng is further used for the wavelet transform (2.56).
Since N D 2p , the FFT procedure can be applied, but for a time series with length
2pC1. This approach reduces the influence of edge effects, and in addition, it is rather
fast due to the use of the FFT procedure.8

The use of a surrogate time series fx0
ng results in the appearance of a large

heterogeneity on the boundary of the initial time series xn. Nevertheless, because
half of the surrogate time series consists of constant values (e.g., zeros), the
perturbations induced this heterogeneity are in the region of very long time scales,
whereas the spectrum of the initial heterogeneity (being sufficiently less than added
one from the formal point of view) connected with the influence of the boundaries of
the time series is related to the region of time scales of the signal. As a consequence,
introducing this kind of heterogeneity results in a decrease in the amplitude jW j of
the wavelet spectrum in the vicinity of the boundaries of the time series. Obviously,
the longer the part of the surrogate time series filled by zeros, the less the influence
of edge effects. The use of surrogate time series with equal lengths of fragments
filled by initial values and zeros seems to be an optimal solution in terms of the
balance between speed of calculation, internal memory consumption, and accuracy
of the wavelet transform in the vicinity of the boundaries of the initial time series
xn [8, 16].

The region of the wavelet spectrum W.n; s/ on the plane .n; s/ where edge
effects are important and cannot be neglected will be referred to as the region of
influence of edge effects. According to [8], the region of influence of edge effects

8For time series with length N , only L � 2N.1 C log2 N / arithmetic operations are needed to
obtain the wavelet surface with the described technique for reducing edge effects.
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can be defined using the effective width 	s of the autocorrelation function, which
is calculated for the wavelet power at each time scale s. The value of 	s is equal to
the shift relative to the boundary when the power of the wavelet transform of a time
series with edge heterogeneity is halved on the logarithmic scale, i.e., on a linear
scale, it corresponds to a power decrease by a factor of e2. Such a choice for the
boundary of the region associated with edge effects guarantees that these effects can
be neglected for times nh, where .N � n/h > 	s and nh > 	s for the corresponding
scales s.

Estimates of the widths 	s for different mother wavelets are given in Table 2.1
when using the technique of surrogate time series. Comparing the value of 	s
obtained for the Morlet wavelet with the widths of the region of influence of edge
effects obtained for the case when these effects have not been suppressed (2.62),
one finds that this approach is reasonably effective, allowing effective suppression
of the influence of edge effects.

Note also that the value of 	s characterizing the region of edge effects determines
the characteristic time of influence of an isolated peak of large amplitude in the time
series on the form of the wavelet power spectrum. Considering the width of the peak
in the power spectrum, one can separate, e.g., large-amplitude artifacts in the time
series from a permanent harmonic component with the same period.

2.3.3.4 Time Scales of the Continuous Wavelet Transform vs. Frequencies
of Fourier Analysis

From Fig. 2.11 one can see that maximum of the Fourier image O .s!/ of  .s!/
does not correspond to the frequency !s D 2�fs (where fs D 1=s). In other words,
there is no equivalence between frequencies of the Fourier transform (f ) and those
of the wavelet transform (fs). Moreover, each mother wavelet is characterized by its
own relationship between f and fs (see Table 2.1). Thus, the Morlet wavelet with
!0 D 2� is characterized by f � fs , and in this case the time scale of the wavelet
transform is almost equivalent to the Fourier period. At the same time, for !0 D 16,
the frequencies f and fs are already related to each other by f=fs D 2:5527.
A similar situation occurs for the MHAT wavelet (f=fs D 0:2518) and the Paul
wavelet withm D 4 (f=fs D 0:7166). So these relations must be taken into account
when the results of the wavelet analysis are compared with the results of the Fourier
transform. This is also very important when the wavelet power spectra obtained for
different mother wavelets are compared with each other.

A relationship between the frequencies fs and f may easily be obtained either
analytically by substituting the Fourier image of a harmonic signal with known
frequency !0, i.e., ı.! � !0/ into (2.54) and determining the corresponding time
scale s (which may be found as a maximum of the wavelet power spectrum), or
numerically, with only one difference, namely that the power spectrum in this case
must be calculated with the technique described earlier.
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Fig. 2.12 Spectra of two harmonic functions with unit amplitudes and different frequencies,
calculated using the Morlet wavelet with ! D 2�

2.3.3.5 Normalization of Wavelet Spectrum

In the framework of classical Fourier analysis, the total power of oscillations is equal
to the area under the curve of spectral density jS.f /j2, while the magnitude of the
peak can be used to determine the amplitude of oscillations with the corresponding
frequency. For wavelet analysis, this situation is more complicated. When the total
power of the wavelet spectrum is considered, the amplitude cannot be estimated
correctly and vice versa. Therefore, depending on the quantity to be obtained,
different normalizations of the wavelet spectrum should be used. To illustrate this
point, we consider the evaluation of the wavelet spectrum of a harmonic function
for different frequencies of oscillation (see Fig. 2.12, where the Morlet wavelet with
!0 D 2� is used). One can see that the peak in the wavelet spectrum becomes
“blurred” with increasing frequency, while its magnitude decreases.

If one needs to calculate the energy associated with a certain frequency band,
this effect is not significant, since the increased width of the peak is accompanied
by contraction of its amplitude, and the total power of oscillations, i.e., the area
under the curve E.f / (see Fig. 2.12), remains unchanged. At the same time,
estimating the amplitudes of each sine curve as the square root of the power related
to the considered frequency gives different results, and the amplitude decreases
with growing frequency f (see also Fig. 2.7 and the corresponding discussion in
Sect. 2.2).

To estimate correctly the relationship between the amplitudes of oscillations, a
special normalization should be used. For this purpose, the factor 1=

p
s in (2.19)

should be replaced by 1=s. This allows us to determine correct amplitudes for
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rhythmic processes with different periods (with a certain constant factor as com-
pared with Fourier analysis), although energy characteristics are preserved. Below
(in Fig. 2.15c, d), both normalizations of the wavelet spectrum are given. We thus
conclude that the power in a certain frequency band and the amplitudes of charac-
teristic peaks should be considered separately using appropriate normalizations.

2.3.3.6 Signal Reconstruction Based on Wavelet Spectrum

The wavelet transform (2.18) or (2.43) can be considered as a band-pass filter with
known frequency characteristic (wavelet function  ). Therefore, the initial signal
can be reconstructed from the wavelet spectrum W.n; s/ either through inversion of
the convolution product (2.18) or by designing the inverse filter. Such manipulations
are relatively easy when one deals with an orthogonal wavelet transform. However,
for the continuous wavelet transform, reconstruction of the initial signal x.t/ is
a serious problem due to the redundancy of information contained in the wavelet
surface W.s; t/. A simple procedure for signal reconstruction based on knowledge
of the wavelet surface for a certain function (the simplest case is the ı-function) is
described in [24, 36]. In this case, the time series xn can be represented by the sum
of all coefficients of the wavelet transform on all considered time scales [8, 16]:

xn D �s
p
h

Kı 0.0/

LX

lD0

W.n; sl /p
sl

; (2.63)

where the coefficients  0.0/ and 1=
p
s are introduced to obtain the unit energy on

each time scale s. For a real signal fxng � R, the inversion formula (2.63) takes
the form

xn D �s
p
h

Kı 0.0/

LX

lD0

Re fW.n; sl /gp
sl

: (2.64)

The coefficient Kı in (2.63) and (2.64) is estimated from the reconstruction of ı-
function obtained from its wavelet spectrum, which has been calculated with the
mother wavelet  0.�/. To obtain Kı one has to construct the time series xn D ın0.
In this case, the amplitudes of harmonics in the Fourier spectra are constant for all
k, Oxk D 1=N . Having substituted Oxk into (2.54), one finds that the wavelet spectrum
at n D 0 takes the form

Wı.s/ D 1

N

NX

kD0
O �.s!k/ : (2.65)
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Table 2.2 Characteristics of
mother wavelets for the
reconstruction of the initial
signal from its wavelet
spectrum

Wavelet Kı  0.0/

Morlet (!0 D 2�) 0.776 ��1=4

Paul (m D 4) 1.132 1.079
DOG (m D 2) 3.541 0.867
DOG (m D 6) 1.966 0.884

In this case, the relation for Kı follows from the inverse formula (2.64)

Kı D �s
p
h

 0.0/

LX

lD0

Re fW.n; sl /gp
sl

: (2.66)

Therefore, the parameter Kı does not depend on the time scale s and remains
constant for each mother function  0. The values of Kı for commonly used mother
wavelets  0 are given in Table 2.2.

Obviously, the total energy of the signal must remain unchanged after the
direct and inverse wavelet transforms. This requirement results in an analogue of
Parseval’s theorem for the wavelet transform, which (in the discrete form) can be
written as

�2 D �sh

KıN

NX

nD0

LX

lD0

jW.n; sl /j2
sl

; (2.67)

where �2 is the standard deviation of the time series. The ı-function is used in (2.67)
to reconstruct the initial signal.

Equations (2.63) and (2.67) can be applied to check upon the accuracy of the
numerical realization of the wavelet transform. Having obtained information about
the accuracy of the numerical calculation of the wavelet spectrum, the minimal
time scale and the step along the time axis can be selected to achieve the required
accuracy of analysis.

2.3.4 Visualisation of Wavelet Spectra: Wavelet Spectra
of Model Signals

In general, the wavelet spectrum W.t0; fs/ D jW.t0; s/je�i'W .t0;s/ of a 1D signal
x.t/ can be considered as two surfaces, viz., the surfaces of amplitudes jW.t; s/j
and phases 'W .t; s/ of the wavelet transform, in the three-dimensional space of
time–time scale s/frequency f –amplitude jW j/phase 'W . In the case where both the
mother wavelet and the analysed signal, are real functions, the wavelet spectrum is
also a real function. In this section we shall consider only the amplitude spectrum of
the wavelet transform jW.t0; s/j, while questions related to the phase of the wavelet
transform will be considered in the next.
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Fig. 2.13 Methods for visualising wavelet spectra. Results of the wavelet transform of a harmonic
signal with frequency f D 10 for the MHAT wavelet. (a) Three-dimensional representation,
(b) projection, and (c) contour curves of the wavelet surface W.fs; t/. (d) Distribution of the total
energy hE.fs/i over the wavelet frequencies fs

As the simplest model, let us consider the harmonic function x.t/ D sin.2� ft/,
with all calculations performed with the MHAT wavelet. For simplicity, the
frequency of the signal is fixed as f D 10. The wavelet transform of this function
is shown in Fig. 2.13.

In Fig. 2.13a, the wavelet spectrum is shown in the form of a three-dimensional
surface. However, this kind of visualization is not often used due to the poor
clarity and complicated qualitative interpretation of the results. It is more typical
to represent the amplitude wavelet spectrum as the projection of the wavelet surface
on the plane .t0; s/ (or .t0; fs/) either in the form of contour curves or with shades
of gray (see Fig. 2.13b, c, respectively).

The distribution of the energy hEi (2.34) over the time scales s (or over the
wavelet frequencies fs) is also very informative. This distribution hE.fs/i is shown
for the considered harmonic function x.t/ in Fig. 2.13d. Note that the maximum
of the distribution corresponds to fs � 40, which is in good agreement with the
relationship (see Sect. 2.3.3) between the frequency f of the Fourier transform and
the wavelet frequency fs for the MHAT wavelet.

Visual analysis of the wavelet surface provides detailed information concerning
the particularities of the signal structure. There is only one characteristic time scale
which is constant during the whole time of observation. For multiple-frequency and
non-stationary signals, analysis of wavelet surfaces becomes more complicated.
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Fig. 2.14 Wavelet transform of the harmonic signal with frequency f D 10 for the Morlet
wavelet. (a) Three-dimensional representation, (b) projection, and (c) skeleton of the amplitude
surface jW.fs; t/j. (d) Distribution of the total energy hE.fs/i over the wavelet frequencies fs

The alternation of light and dark spots in the vicinity of each local maximum or
minimum overloads the wavelet spectrum by a large number of details which may
be insufficient for understanding the time–frequency structure of the signal under
study.

The results are analogous to those shown in Fig. 2.13 and can be obtained with
the help of other mother wavelets. For clarity of analysis, complex wavelet functions
are preferable (besides eliminating phase information by considering the modulus
of the wavelet surface jW.t0; s/j). In particular, the complex Morlet wavelet (2.33)
is very useful for analyzing multiple-frequency and non-stationary signals.

Different representations of the corresponding wavelet spectrum of the harmonic
signal with the same frequency f D 10 are shown in Fig. 2.14. One can see that
use of the Morlet mother wavelet gives a clearer wavelet surface than would real
wavelets. Indeed, the maximum of the wavelet surface corresponds to the unique
rhythm of the signal with frequency f D 10. Obviously, contour curves are not
convenient in this case. An alternative way of visualizing the wavelet surface, the
so-called skeleton, may then be used.

The skeleton is a way to vizualize results of the wavelet transform by local
maxima or minima of the wavelet surface at each time moment. In other words,
the skeleton is the plane .t; s/ (or .t; fs/) containing only the peaks of the wavelet
energy distribution. This form of information representation is clearer than the
3D representation. For the considered sinusoidal signal, the skeleton gives the



48 2 Brief Tour of Wavelet Theory

time dependence of the instantaneous frequency shown in Fig. 2.14c. Thus, using
the approach described above, one can move from consideration of initial signals
to study of the instantaneous frequencies (or time scales) and the instantaneous
amplitudes of rhythmic processes, and we shall show in the following chapters that
this facilitates analysis of neurophysiological signals.

Note also that the ordinate axis (s or fs D 1=s) is usually shown on a logarithmic
scale to represent the data over a wide range of time scales or frequencies.

Since the simple example considered here does not allow us to demonstrate
conclusively all the advantages of wavelet analysis, we shall consider in the next
few sections several examples of nonstationary signals which are characterized by
features that are typical of real neurophysiological signals.

2.3.4.1 Signals with Frequency Switchings

Analysis of oscillations with a frequency of about 0.01 Hz is important when
studying the complex dynamics of many physiological processes in living systems.
Many rhythms in biology and medicine correspond to the range 10�2–10�1 Hz, and
special methods allowing the detailed analysis of signal structure are important,
especially for diagnosing the state from experimental data. As mentioned in
Sect. 2.2, classical spectral analysis based on the Fourier transform allows us to
detect the presence of different rhythms. However, it is impossible to track the
time evolution of instantaneous characteristics of these rhythmic processes. Wavelet
analysis provides various ways to examine the local properties of signals, including
the case of fast changes in the instantaneous frequencies of rhythmic processes. This
kind of behavior is typical, e.g., for electroencephalograms, which are characterized
by the fast occurrence/disappearance of different rhythms.

A model signal for which the frequency of oscillations changes suddenly is
shown in Fig. 2.15. Note that the amplitude of the harmonic function is equal to
unity, both before and after switching. Wavelet analysis with the Morlet mother
function allows us (with good enough accuracy) to localize time moments when the
signal structure is altered. Figure 2.15c, d illustrate the instantaneous distributions
of the wavelet energy, both before and after the frequency switches. The maximum
of the wavelet power spectrum is shifted after the signal frequency has changed.

Figure 2.15c, d differ only in the type of normalization. The “classical” wavelet
transform (Fig. 2.15c) fixes the energy E.fs/ D jW.fs; t D tfix/j2, whereas the
normalization used in Fig. 2.15d ensures the equivalence of the amplitudes in the
wavelet power spectrum jW.fs; t D tfix/j2=s if the harmonics are characterized by
equal amplitudes. For a detailed discussion of this aspect see the previous section
and Fig. 2.11.

Wavelet analysis allows us to correctly localize the moments of switching for
series with rather fast frequency variation. Figure 2.16 shows the case when the
frequency changes twice during one period of oscillation.
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Fig. 2.15 Analysis of a signal with frequency switchings. (a) Projection of the wavelet spectrum
obtained using the Morlet mother wavelet. (b) Skeleton (time dependence of the instantaneous
frequency). (c) and (d) Instantaneous distributions of the wavelet power spectrum (compare with
Fig. 2.11) for time moments shown by the arrows A and B, for a normalization that fixes the energy
E.fs/ D jW.fs; t D tfix/j2 and a normalization ensuring equivalence of the amplitudes in the
wavelet power spectrum jW.fs; t D tfix/j2=s, respectively
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Fig. 2.16 Analysis of a signal with fast evolution of the frequency of the harmonic signal.
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Fig. 2.17 Analysis of chirps. (a) Two parallel chirps. (b) A chirp whose frequency is approxi-
mately doubled during one period of oscillation. Only the skeletons of the wavelet surfaces are
shown

2.3.4.2 Signals with Varying Frequency (Chirps)

When we consider neurophysiological signals, frequency variations are typically
smooth (in contrast to the sudden frequency switchings of Sect. 2.3.4.1). As a model
example, let us consider a chirp signal, i.e., a signal whose frequency changes
linearly or, more generally, monotonically in time. Figure 2.17a illustrates the results
of the wavelet transform (with the Morlet mother wavelet) of the signal consisting
of two “parallel” chirps, viz.,

x.t/ D sin
�
2�.f1 C�f1t=2/t

�C sin
�
2�.f2 C�f2t=2/t

�
;

where f1 D f2=2 D 0:02, �f1 D �f2 D 1:33 � 10�4. For clarity, only the
signal x.t/ and the corresponding skeleton of the wavelet surface are shown. As
one can see, the variations of the instantaneous frequencies described by the linear
dependence can easily be identified using the wavelet transform. Thus, wavelet
analysis can obtain information concerning the structure of the given signal. This
analysis reveals the presence of two chirps in this example.

Although the complex wavelet basis makes it possible to perform local spectral
analysis, all characteristics are evaluated within a certain time range corresponding
to the wavelet function  s;t0 .t/. This means that these characteristics are not found
absolutely locally, but are obtained as a result of some averaging. Indeed, the
averaging procedure leads to decreased accuracy in the estimated instantaneous
characteristics, and this accuracy will be less for fast frequency variations. Never-
theless, even for fast variation of the signal properties, the wavelet analysis provides
correct results. To illustrate this aspect, a chirp whose frequency is approximately
doubled during one period of oscillation is considered in Fig. 2.17b. As one can see,
the wavelet analysis with the Morlet wavelet resolves this extremal case with good
precision.
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Fig. 2.18 Analysis of signals with complex spectral structure. Model of a sawtooth signal. Wavelet
surface and its skeleton for the signal with constant main frequency f D 10GHz (a) and main
frequency varying from 10 to 5GHz (b)
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Fig. 2.19 Fourier spectrum of the sawtooth signal shown in Fig. 2.18. One can clearly see the
harmonics nf (where n D 2; 3; 4; : : : ) of the main frequency f D 1=T D 10Hz

2.3.4.3 Processes with Complex Spectral Structure

Wavelet analysis is also a powerful tool for studying complex multiple-frequency
signals [16]. To illustrate this aspect of the wavelet transform, we consider a signal
representing a multiple-frequency process. Results of the wavelet transform (with
the Morlet wavelet) for such a (sawtooth) signal are shown in Fig. 2.18a. The period
of the impulses is T D 0:1 s. The spectrum of this signal is characterized by higher
harmonics of the main frequency, as can be seen from Fig. 2.19.
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The wavelet transform nicely reveals the higher harmonics of the main frequency.
Indeed, the wavelet spectrum has several stripes corresponding to the frequencies
10, 20, 30 Hz, etc. The skeleton can represent the structure of the signal in a more
obvious way, since only the first harmonics can be clearly seen by considering the
wavelet surface. Starting from a certain number n, one cannot distinguish higher
harmonics of the signals that are caused by their decreasing magnitudes. This
example perfectly illustrates differences in the frequency resolution between the
Fourier and wavelet analysis. As one can see, Fourier analysis is a more sensitive
tool than wavelet analysis for frequencies with small amplitudes.

Note also the growth in the magnitude of the wavelet surface in the region of
higher frequencies at times when the initial signal is changing quickly. This kind
of behavior is typical and so can be used to localize and select different artifacts
of the experimental data. The application of this feature of wavelet analysis to
neurophysiological data will be discussed in detail in the following chapters.

Figure 2.18b illustrates the application of the wavelet analysis to a more
complicated case where the period of the sawtooth signal grows with time. As one
can see from the skeleton estimated for this case, the dynamics of both the main
frequency and its higher harmonics can also be precisely estimated. As the main
frequency of the sawtooth signal decreases, the skeleton lines come closer together
with time. Alternatively, if the main frequency increases, the skeleton lines diverge.
These particularities of the wavelet spectra must be taken into account when
experimental data are examined.

2.3.5 Phase of the Wavelet Transform

In Sect. 2.3.4, attention was focused on the amplitude and power characteristics of
the wavelet spectra. At the same time, if complex wavelets are used, the wavelet
surface is also complex, and the quantity W.s; t/ is therefore characterized by both
the amplitude and the phase

'.s; t/ D arg


W.s; t/

�
: (2.68)

Typically, the phase of the wavelet surface is eliminated from consideration and
only the amplitude jW.s; t/j is taken into account, in the same way as was done
in Sect. 2.3.4. Nevertheless, the phase contains important information about the
signal and, roughly speaking, the phase dynamics involves approximately half the
information contained in the signal, with phase information being different from
information about the amplitude part of the wavelet spectrum.

Indeed, it is more customary to use the amplitude and it is more convenient to
deal with, allowing a simple and clear interpretation. Moreover, for many tasks,
analysis of amplitudes is quite sufficient to solve research problems. At the same
time, this does not mean that the phase does not play an important role, i.e.,
that it does not deserve attention. There are a broad range of problems in which
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phase dynamics is extremely important, e.g., problems involving synchronization
phenomena. In this section, we consider the phase and discuss problems where
phase analysis can prove useful. We begin our considerations with the phase of
the Fourier transform (2.3), in the same way as when the wavelet transform was
introduced in Sect. 2.2.

2.3.5.1 Phase of the Fourier Transform

Let us imagine, that the signal under study f .t/ is shifted along the time axis by
some time interval f1.t/ D f .t C 	/. In this case the result of the Fourier transform
of new signal f1.t/ is

S1.!/ D
C1Z

�1
f1.t/e

�i!tdt D
C1Z

�1
f .t C 	/e�i!tdt

D ei!	

C1Z

�1
f .�/e�i!�d� D S.!/ei�.!/; (2.69)

where S.!/ is the Fourier transform (2.3) of the initial signal f .t/ and �.!/ D !	 .
One can see that the same signal in other reference systems is characterized by
Fourier images that are related to each other by (2.69). The amplitudes of these
Fourier images are identical, i.e., jS.!/j � jS1.!/j, but the phases are different:

'1.!/ D '.!/C !	 ; (2.70)

where '.!/ D argS.!/, '1.!/ D argS1.!/. Thus, the phase of the signal contains
information about the positioning of the signal relative to the time axis, while
information about the presence of a certain harmonic and its intensity is completely
included in the amplitude part of the Fourier spectrum.

Since the characteristics of the signal are the main subject of interest (but not its
position on the time axis), the amplitude part of the Fourier spectrum is used for this
kind of task. On the other hand, the question of the position of the signal relative to
the coordinate origin of the time axis is very specific and seldom arises in practice.

The situation changes radically when one begins to consider interactions between
systems. Since in this case the states of the systems should be considered relative to
each other (but not relative to the coordinate origin), the phase difference �'.!/ of
the Fourier spectra must be used rather than the phases:

�'.!/ D '1.!/ � '2.!/ : (2.71)
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Consideration of the phase difference has been proposed to study synchronization
of chaotic oscillators [37–40]. The phase difference between spectral components
can be found either directly (see, e.g., [37]) or using the cross-spectrum [41].

2.3.5.2 Phase Synchronization

The wavelet transform with a complex mother function becomes a more useful and
effective tool for studying the phase dynamics of the given systems. Besides giving
access to the spectral composition of the signal, this approach allows one to track
the phase evolution with time. Note that the phase of the oscillations can be obtained
without the wavelet transform. For periodic oscillations, the definition of the phase
is quite obvious (see, e.g., [42]). But for chaotic oscillations, the definition of the
phase becomes more complicated. The concept of chaotic phase synchronization
involves consideration of the phases of chaotic interacting systems and we shall
discuss it here, since it is closely related to the analysis of phases introduced using
wavelet analysis and will be considered below.

Oscillating chaotic systems are widespread in nature [43, 44], but they are
characterized by complicated irregular behavior that makes it difficult to study them.
Neurophysiological systems are also characterized by intricate dynamics whose
characteristics often coincide with, or at least resemble, the characteristics of chaotic
systems. Although it is impossible in general to prove that neurophysiological
systems are deterministic with chaotic dynamics (moreover stochastic or random
behavior must be taken into account), the prospects for studying them from the
standpoint of dynamical chaos look quite promising. A wide range of phenomena
typical of chaotic oscillators are observed in neurophysiological systems.

One of the most widespread phenomena is the synchronous dynamics of
interacting systems. When the systems under study are chaotic, this type of behavior
is called chaotic synchronization. The concept of the chaotic synchronization
is fundamental and deals with different types of synchronous behavior. Several
types of chaotic synchronization are known: complete synchronization [45], lag
synchronization [46], generalized synchronization [47], noise induced synchro-
nization [48–50], phase synchronization [42], time scale synchronization [51–54],
synchronization of spectral components [40], etc.

One of the most important and commonly occurring types of synchronous
dynamics is phase synchronization. As pointed above, phase synchronization is
based on the concept of the instantaneous phase '.t/ of a chaotic signal [42,55–57].
In addition, the instantaneous phase is also used to detect the coupling direction
of interacting oscillators, which is useful for neurophysiological systems. Note,
however, that there is no universal method for defining the phase of a chaotic signal
which would be correct for every dynamical system.

The concept of the attractor plays an important role in the phase definition.
Typically, the oscillating behavior of the system under study is presented in the form
of a time series when the observable quantity is shown as a time function. There is
another way to represent the oscillating dynamics when the variables characterizing
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Fig. 2.20 Projections of phase coherent (a) and phase incoherent (b) attractors on the plane .x; y/.
The dynamics of the chaotic Rössler system is shown

the system state are plotted as coordinates along axes in a certain space called the
phase space,9 while the time is not shown at all. Although this type of representation
of the system dynamics is unusual in biological studies, it is quite useful for solving
certain tasks. Each point in the phase space corresponds to a specific state of the
system under study and vice versa, with a one-to-one correspondence between the
system state and the point in the phase space. The point corresponding to the current
state of the system is referred to as the representation point and the curve along
which the representation point moves is called the phase trajectory. A set attracting
the representation points as time goes to infinity is an attractor of the dynamical
system. When the system dynamics is represented in the plane, one speaks of the
projection of the phase space (the phase trajectory, attractor) on the corresponding
plane.10 Examples of the projections of chaotic attractors are shown in Fig. 2.20.

There are various ways of defining the phase of a chaotic signal. All these ways
can be effectively used when the chaotic attractor of the system has simple topology.
Such systems are called systems with well-defined phase or systems with phase
coherent attractor. The chaotic attractor for these systems is characterized by the
topology when the projection of the phase trajectory on a certain plane of states,
e.g., .x; y/, winds around the coordinate origin but does not cross and envelop it
(see Fig. 2.20a). In this case the phase '.t/ of the chaotic signal may be defined as
the angle in the polar coordinate system .x; y/ [46, 58], whence

tan'.t/ D y.t/

x.t/
: (2.72)

9The dimension of the phase space is equal to the number of quantities required to fully characterize
the state of the system under study.
10Of course, if one deals with a system dimension of 3 or higher.
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Since the projection of the phase trajectory does not cross and envelop the
coordinate origin, the mean frequency ˝ of the chaotic signal, defined as the mean
frequency of the phase variation

˝ D lim
t!1

'.t/

t
D h P'.t/i ; (2.73)

coincides with the main frequency of the Fourier spectrum S.f / of the system
oscillations. If the projection of the phase trajectory envelops or crosses the
coordinate origin at certain times, the origin of the coordinate plane is smeared by
pieces of the phase trajectory. This kind of chaotic attractor is said to be phase
incoherent and the system is referred to as a system with ill-defined phase (see
Fig. 2.20b).

Another way to define the phase of a chaotic signal is to construct the analytical
signal [42, 55]


.t/ D x.t/C i Qx.t/ D A.t/ei�.t/ ; (2.74)

where the function Qx.t/ is the Hilbert transform of x.t/, viz.,

Qx.t/ D 1

�
PV

C1Z

�1

x.	/

t � 	 d	 ; (2.75)

and PV indicates that the integral is taken in the sense of the Cauchy principal value.
The instantaneous phase �.t/ is defined from (2.74) and (2.75).

The third way to define the instantaneous phase of a chaotic signal is the Poincaré
secant surface [42, 55]

�.t/ D 2�
t � tn
tnC1 � tn C 2�n ; tn � t � tnC1 ; (2.76)

where tn is the time of the nth crossing of the secant surface by the trajectory.
Finally, the phase of a chaotic time series can be introduced by means of

the continuous wavelet transform [59], but an appropriate wavelet function and
parameters must be chosen [60].

The regime of phase synchronization of two coupled chaotic oscillators means
that the difference between the instantaneous phases �.t/ of chaotic signals x1;2.t/
is bounded by some constant, i.e.,

j�1.t/ � �2.t/j < const : (2.77)

As mentioned above, it is possible to define a mean frequency (2.73), which should
be the same for both coupled chaotic systems, i.e., phase locking leads to frequency
entrainment. Indeed, according to (2.77) and (2.73), the main frequencies of the
synchronized chaotic oscillators must coincide with each other.
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Note that, independently of the method used to define it, the phase of a chaotic
signal may be located in both the region ' 2 .�1;1/ and a band of width 2� ,
e.g., ' 2 Œ��; �/ or ' 2 Œ0; 2�/. To examine the phase-locking condition (2.77),
the values '.�1;1/ 2 .�1;1/ are more useful. However, in certain circumstances,
the bounded phases, e.g., 'Œ0;2�/ 2 Œ0; 2�/, can be used. The two cases are related by

'Œ0;2�/ D '.�1;1/ ; mod 2� : (2.78)

All these approaches provide correct and similar results for “good” systems with
well-defined phase [58]. Indeed, the behavior of the instantaneous phase for the
methods (2.72) and (2.76) is very similar within any time range that is less than the
characteristic recurrence time. Furthermore, the instantaneous phase defined using
the Hilbert transform (2.75) is known to behave for the phase coherent attractor in
just the same way as the phases introduced by (2.72) and (2.76) (see, e.g., [58]).
These methods involve certain restrictions [61], in particular, for oscillators with
ill–defined phase (see, e.g., [61, 62]).11

Obviously, if the examined system is characterized by a well-defined main
frequency in the Fourier spectrum and by low background noise, the phase of the
signal introduced using one of the above methods will be close to the phase of the
corresponding harmonic signal. This is the case when good results can be achieved
using the approach of chaotic phase synchronization. If the spectral composition of
the signal becomes more complicated, e.g., there are several spectral components
with similar amplitudes, the dynamics of the system cannot be correctly described
by means of only one phase. In such cases, an approach based on continuous wavelet
analysis and the associated concept of time-scale synchronization [52,53,65] can be
used.

2.3.5.3 Phase of the Wavelet Transform

Since the wavelet surface is complex (if a complex mother wavelet is used), so that

W.s; t0/ D jW.s; t0/jei'.s;t0/ ; (2.79)

and since it characterizes the system behavior at each time scale s at the arbitrary
time t0, the instantaneous phase of the wavelet transform is also automatically
defined at each time scale s by

'.s; t/ D arg W.s; t/ : (2.80)

11Nevertheless, the phase synchronization of such systems can usually be detected by means of
indirect indications [58, 63] and measurements [64].



58 2 Brief Tour of Wavelet Theory

1 2 3 4

1

2

0

|W|

s 1 2 3 4

1

2

0

|W|

s

a b s1
s2

s*

00

Fig. 2.21 Modulus of the wavelet spectrum for each component of the signal (2.82), showing them
separately (a) and for the whole signal (b). The wavelet spectrum of the harmonic function with
frequency !1 D � is shown in (a) by the dashed line, and the function with frequency !2 D 2�

by the dotted line

In other words, the behavior of each time scale s can be described by means of
its own phase �.s; t/, this being a continuous function of the time scale s and the
time t . Thus, a set of phases �.s; t/ characterizes the dynamics of the system and
can be used to study its behavior.

As in the case of a chaotic signal, the phase defined through the wavelet transform
can also be presented in both the range ' 2 .�1;1/ and a band of width 2� , viz.,
' 2 Œ��; �/ or ' 2 Œ0; 2�/. When (2.80) is used, the phase takes values in the 2�
band, but there is no problem representing the phase in the infinite range of values.

We begin our considerations of the wavelet phase with a simple signal of the
form f .t/ D sin.!t C �/ and transforming it using the Morlet wavelet. In this case
the wavelet surface is given by

W.s; t/ D p
2�s�1=4 sin.!t C � � i!!0s/e

�.s2!2C!20/=2

� �1=4
r
s

2
e�.!s�!0/2=2ei.!tC���=2/ ; (2.81)

where '.s; t/ D !tC���=2. As one can see from (2.81), the phase of the wavelet
transform does not depend on the time scale and repeats the phase of the initial
harmonic signal ('sin D !t C �) with time lag ��=2. Note that, in the case of a
harmonic signal, the evolution of the phase '.s; t/ is the same for all time scales.
As for the Fourier spectrum, shifting the signal relative to the time reference point
changes the phase '.s; t/.

Consider now a signal consisting of two harmonic functions

f .t/ D sin!1t C sin!2t ; (2.82)

where !1 is assumed to be � and !2 D 2� (see Fig. 2.21). Due to the linearity of
the wavelet transform, the wavelet spectrum of the signal (2.82) is defined by
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Fig. 2.22 Time dependence of the phase '.s; t/ of the wavelet surface W.s; t/ for different time
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W.s; t/ D p
2�s�1=4 sin.!1t � i!1!0s/e

�.s2!21C!20/=2

Cp
2�s�1=4 sin.!2t � i!2!0s/e

�.s2!22C!20/=2 (2.83)

� �1=4
r
s

2

h
e�.!1s�!0/2=2ei.!1t��=2/ C e�.!2s�!0/2=2ei.!2t��=2/

i
;

and this spectrum is obviously more complicated.
Figure 2.21a shows the absolute value of the wavelet spectrum of each com-

ponent of the signal (2.82) separately, while Fig. 2.21b shows the modulus of
the wavelet surface of the whole signal (2.82). One can see that each frequency
component is characterized by its own maximum of the wavelet surface jW.s; t/j,
and that the amplitudes of these maxima are different due to the factors discussed in
Sect. 2.3.3.5, despite the equivalence of the amplitudes of the sinusoidal functions.

It is intuitively clear that the presence of several spectral components results in
the time dependence of the phase dynamics on the time scale of the observation. This
statement is illustrated by Fig. 2.22, where the time dependence of the phase '.s; t/
of the wavelet surface W.s; t/ is shown for different time scales s. Figure 2.22a
illustrates the time dependence of the phase '.s; t/ for the time scale s1 D 2:0 (see
also Fig. 2.21b) corresponding to the lower frequency !1 D � . Similar dynamics
(but with different frequency) is observed for the second time scale s2 D 1:0,
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corresponding to the second frequency !2 (Fig. 2.22d). Obviously, for intermediate
time scales from the range s 2 .s2; s1/, a transition from the behavior shown in
Fig. 2.22d to the dynamics shown in Fig. 2.22a should be observed.

This transition is shown in Fig. 2.22b, c. One can see that the amplitude of
the wavelet surface decreases with decreasing time scale, namely, in the transition
from the time scale s1 corresponding to the main frequency !1 to the time scale
s2 corresponding to the frequency !2. The time dependence of the phase exhibits
decreasing segments (Fig. 2.22b) due to the influence of the second harmonic of
the signal f .t/ (with frequency !2), but the harmonic with frequency !1 plays
the dominant role as before. The time scale s� separates regions where the phase
dynamics is determined by the harmonic with frequency !1 or !2, and as a
consequence, on this time scale s�, both harmonics provide equivalent contributions
to the phase dynamics (see Fig. 2.22c). Finally, in the range of time scales s 2
.s1; s�/, the phase dynamics is determined by the harmonic with frequency !1.

Thus, considering the phase of the wavelet transform, we have to keep in mind
the following:

• For each time scale s of the signal under study, the time-dependent instantaneous
phase (2.80) is naturally defined.

• For the selected time scale s0, the dynamics of the phase is defined not only
by the frequency component corresponding to this time scale, but also by other
harmonics located nearby in the spectrum of the signal and characterized by a
large enough amplitude. In other words, on the fixed time scale s0, the phase
dynamics can be determined by several components of the Fourier spectrum from
a certain frequency band.

It is important to note that one can detect the presence of several frequency
components by considering only the amplitude spectrum jW.s; t/j of the wavelet
transform, and then defining these frequencies as well (see Fig. 2.21b). However,
there are several cases where this cannot be done. Indeed, the wavelet spectrum of
the two-frequency signal

f .t/ D A1 sin!1t C A2 sin!2t ; (2.84)

where A1 D 0:5, !1 D 0:9� , A2 D 1:25, and !2 D � , is characterized by a
single maximum exactly in the case of a signal with a single frequency (Fig. 2.23a).
This form of the wavelet spectrum is caused by (i) the finite resolution of the
wavelet transform in the time space and (ii) the closeness of the coexisting frequency
components in the Fourier spectrum of the signal (2.84), as well as the difference
between their amplitudes.

Consideration of the phase dynamics allows rather easy detection of nonhar-
monic dynamics since, in the time scale ranges s < s� and s > s�, the phase
dynamics is different (see Fig. 2.23b). On the time scale s2 D 2, this phenomenon
is connected with the dominance of the spectral component with frequency !2
(dashed line in Fig. 2.23b) (the phase dynamics thus corresponds here to this
component), whereas on the time scale s1 D 3, the main role is played by the
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Fig. 2.23 (a) The moduli of the wavelet spectra for each component of the signal (2.84) are shown
separately (the wavelet spectrum of the sinusoidal function with frequency !1 D 0:9� is shown
by the dotted line, and that of the function with frequency !2 D � by the dashed line) and for the
whole signal (solid line). (b) Time dependencies of the phase '.s; t/ for the time scales s1 D 3

(dotted line) and s2 D 2 (dashed line)

spectral component with frequency !1 (which thus determines the behavior of the
phase in this case).

2.3.5.4 Time-Scale Synchronization

To end this section let us briefly discuss the concept of time scale synchronization
[51–54], based on the examination of the phase dynamics of interacting systems on
different time scales. An important feature of the concept of time-scale synchroniza-
tion is the unification of all types of synchronous behavior of chaotic systems, since
all known types of chaotic synchronization (phase synchronization, generalized
synchronization, lag synchronization, complete synchronization) can be considered
from a unified point of view.

Let us consider the dynamics of two coupled oscillators with complex dynamics.
If the time series x1;2.t/ generated by these systems contain the range sm � s � sb
of time scales s for which the condition of phase locking

j�.s1; t/ � �.s2; t/j < const: (2.85)

is satisfied, and if also a part of the wavelet spectrum energy within this range is not
equal to zero, viz.,

Esync D
sbZ

sm

hE.s/i ds > 0 ; (2.86)

we say that time-scale synchronization (TSS) takes place between the oscillators.
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It is obvious that the classical synchronization of coupled periodic oscillators
corresponds to TSS because all time scales in this case are synchronized according
to the time scale s, instantaneous phase �s.t/, and TSS definitions. The case of
chaotic oscillations is more complicated. Nevertheless, if two chaotic oscillators
demonstrate any type of synchronized behavior, the time series x1;2.t/ generated by
these systems contain time scales s which are correlated with each other for which
the phase-locking condition (2.85) and the energy condition (2.86) are satisfied.
Therefore, time-scale synchronization is also realized. In other words, complete
synchronization, lag synchronization, phase synchronization, and generalized syn-
chronization are particular cases of time-scale synchronization. To detect time-scale
synchronization, one can examine the conditions (2.85) and (2.86), both of which
should be satisfied for synchronized time scales.

Note that the phase-locking condition (2.85) may be generalized to the case of
m W n synchronization. To study this kind of regime, the more general relation

ˇ̌
m'1.sn1; t/ � n'2.sm2; t/

ˇ̌
< const: (2.87)

should be examined in different ranges of time scales sn1 2 I1 D Œs1l;� s1h� and
sm2 2 I2 D Œs2l;� s2h� instead of Eq. (2.85). For .m W n/ synchronization, the time
scale sm1 of the first system and correspondingly the time scale sn2 of the second
system must obey the relation sm2=sn1 D m=n. The energy condition (2.86) remains
unchanged, but different ranges of time scales I1 and I2 should be used.

Finally, synchronous dynamics may take place on a time scale changing with
time. In this case one, has to check for fulfillment of the condition

ˇ̌
'1.s.t/; t/ � '2.s.t/; t/

ˇ̌
< const: (2.88)

This problem is important when investigating systems whose main rhythm changes
with time. In particular, this kind of behavior is typical for physiological systems
(see, e.g., [31, 32] where the human cardiovascular system was considered).

A measure of synchronization can also be introduced. This measure �.t/ can be
defined as that part of the wavelet energy associated with the synchronized time
scales:

�.t/ D Esync.t/
Z C1

0

E.s; t/ ds

� 100 % ; (2.89)

where the numerator is the energy corresponding to the synchronous time scales
and the denominator is the total energy of the wavelet spectrum. The value of this
measure � D 100% corresponds to regimes of complete and lag synchronization,
while � D 0 is evidence of completely asynchronous dynamics. Intermediate values
of � are manifestations of phase synchronous dynamics in a certain range of time
scales, when the amplitudes of oscillations may remain uncorrelated. Increasing
� values attest to the expansion of ranges related to synchronous time scales.
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Thus, the synchronization measure � can be used, not only to distinguish between
synchronized and nonsynchronized oscillations, but also to characterize the degree
of TSS synchronization. Since the synchronization measure depends on time, it can
be used to analyze processes leading into or out of the synchronous state.

As a consequence, besides the amplitudes of the wavelet spectrum, the phases (on
different time scales) also inform us about the behavior of these complex systems.
However, detailed consideration of synchronization theory (in particular, time-scale
synchronization based on the continuous wavelet transform) is beyond the scope
of this book. The reader can find a detailed description of different aspects of
synchronization theory and its applications in [31, 32, 40, 51–54, 65–70].

2.4 Discrete Wavelet Transform

2.4.1 Comparison of the Discrete and Continuous Wavelet
Transforms

Section 2.3 focused on the continuous wavelet transform, which allows a clear visual
representation of the results of signal processing. In contrast to scientific research,
many technical applications deal mainly with the discrete wavelet transform.
Although it is inferior to the continuous wavelet transform from the viewpoint of
visualizing results, the discrete wavelet transform has considerable advantages, such
as computational speed, a simpler procedure for the inverse transform, etc. It is
important to keep in mind that the discrete wavelet transform is not the discretization
of the formula for the continuous wavelet transform (in contrast to the discrete
Fourier transform). Differences between the continuous and the discrete wavelet
transforms are sufficient to consider them as two different ways for analyzing signal
structure.

In the context of the continuous wavelet transform, infinitely differentiable
functions represented in analytical form are considered as mother wavelets.12 As
a consequence, these functions are characterized by exponential decay at infinity,
and the basis constructed from these wavelets is not orthonormal. Therefore, the
continuous wavelet transform provides excessive information, and the values of
the wavelet coefficients are correlated. Nevertheless, in several cases, this feature
plays a positive role, allowing one to obtain a clearer interpretation of the results,
e.g., in the form of skeletons or contour curves [13]. Information obtained from the
continuous wavelet transform are more easily analyzed than other ways of studying
non-stationary processes (see, e.g., [12, 72]).

12For practical purposes, mother wavelets can also be constructed from tabulated segments of time
series (see [30, 71]). This subject will be discussed in detail in Sect. 6.3.
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Using complex functions, the continuous wavelet transform can be used to study
the evolution of such characteristics as the instantaneous amplitude, frequency, and
phase of rhythmic processes identified in the signal structure. One may also consider
the set of phases corresponding to different spectral components of the signal [51–
53, 65]. For these reasons, the continuous wavelet transform is a promising tool for
solving many neurophysiological problems. Thus, the continuous wavelet transform
is useful in the case when analyzing the synchronous dynamics between neurons or
groups of neurons, or diagnosing the presence/absence of rhythmic components in
the activity of a neuron group [73].

Although the discrete wavelet transform can use non-orthogonal basis functions
(e.g., frames) [19], orthogonal (or almost orthogonal) bases are most commonly
used since this allows one to represent the signal more precisely and simplifies
the inverse transformation. In contrast to the continuous wavelet transform, the
wavelets used in the framework of the discrete wavelet transform have no analytical
expression, with the exception of the Haar wavelet (2.42) [18]. The wavelets are
specified in the form of matrix coefficients obtained by solving certain equations.
In practice, the concrete form of the wavelet function in the explicit form is not
considered, and only sets of coefficients are used to define the wavelet. This results
in a series of elementary operations that allow the realization of fast algorithms for
the discrete wavelet transform. The basis is created using an iterative algorithm that
varies the scale and shifts the single function. However, the detailed description of
the essential differences between the discrete and continuous wavelet transforms is
a mathematical problem that goes beyond the subject of our book, and is discussed,
e.g., in [74].

The absence of an analytical expression for wavelets used in the discrete wavelet
transform leads to a certain inconvenience with the discrete wavelet transformation.
However, this inconvenience is compensated by many useful properties of the
discrete wavelet transform. For example, it provides the possibility of using fast
algorithms (see, e.g., [75]), which is important for practical purposes, e.g., for
coding and transmitting information, or for compressing data. The discrete wavelet
transform is used, for instance, in the framework of the JPEG graphic format and the
MPEG4 video format, in computer graphics for editing three-dimensional images,
etc. The algorithms of the fast discrete transform are applied when processing
experimental data.

An important feature of the wavelet transform is shift invariance. This means that,
if the signal is shifted along the time axis, the wavelet coefficients are also shifted
and, after relabeling, one can find a relationship between the new coefficients and
those prior to the shift. This feature is easily illustrated for the continuous wavelet
transform, but the relationship between the coefficients on different time scales
is more complicated for the discrete wavelet transform. Estimating the wavelet
coefficients provides a way to solve the problem of image identification. More
efficient algorithms can also be created using a combination of wavelet analysis
and neural networks.

The majority of wavelet functions used in the framework of the discrete wavelet
transform are irregular. For practical purposes, such properties as the regularity,
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the number of zero moments, and the number of wavelet coefficients exceeding a
certain value are important when selecting the wavelet function. A large number
of zero moments makes it possible to realize effective data compression, since
wavelet coefficients at small scales tend to be zero at those points where the
function is rather smooth, and as a consequence, these coefficients may be neglected
without significant loss of information. In this case, however, the wavelet function
becomes broader and this results in a decreased speed of computing. Thus, the
choice of basis function is determined by specific features of the problem to be
solved. Typically, the discrete wavelet transform is used to solve technical problems
(signal coding, computer graphics, image recognition, etc.), whereas the continuous
wavelet transform is applied in scientific studies related to the analysis of complex
signals.

Wavelet analysis, as applied to neurodynamics and neurophysiology tasks, pro-
vides many possibilities for effective recognition (or identification) of signal shapes.
Additionally, wavelets are able to filter noise, artifacts, and random distortions from
experimental data. Indeed, neurophysiological data often contain artifacts such as
rapid changes in the amplitude and other local variations of the signal, which
may be caused by the neurophysiological processes themselves or by equipment
failures, external factors, etc. Filters based on the Fourier transform are useless for
eliminating artifacts, since information about them is contained in all coefficients of
the transform. Filtration with wavelets is more effective, since it is possible (perhaps
in automatic regime) to detect, localize, identify, and eliminate artifacts, having
analyzed the wavelet coefficients on small scales. Digital filtration based on wavelets
can be used to clear noisy signals from experimental data at the preprocessing
stage. Wavelets are also widely used to recognize signals with similar shapes in
the presence of noise. In neurophysiology, such problems arise in the tasks of
EEG pattern recognition, identification of impulse activity of single neurons from
extracellular recordings of electric potentials, etc. In other words, the reason for the
active use of wavelets in modern studies is that similar problems arise in the digital
processing of different signals.

2.4.2 General Properties

The continuous wavelet transform discussed in Sect. 2.3 deals with the expansion
of the signal f .t/ when the basis is obtained from a soliton-like function  .t/.
In this approach, the scale transformation is carried out for only one function
(the mother wavelet). The multi-scale analysis is based on a different concept.
It uses orthonormalized wavelet bases to characterize the ‘increment of information’
required for the transition from the rough description to the more detailed one
[18]. This approach was used for the first time in problems relating to image
analysis. It provides successive approximations of the given signal f .t/ at different
scales. In fact, the signal is approximated for certain intervals, and deviations
from the approximating functions are analyzed. The approximating functions are
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related to each other on different scales and orthogonal to each other with the shift
along the time axis. This means that only specific functions can be used for the
approximation. To explain the ideology of multi-scale analysis, we introduce the
necessary definitions using the Haar wavelet as the most simple example.

To analyze the successive approximations for the signal on different scales,
the approximating functions should be chosen to satisfy an additional requirement
imposed by the relationship between the approximating functions on different
scales. In the ideal case, it is better to use a single function '.t/ to approximate the
signal on both the large and small scales. Further, the detailed analysis of the signal
structure is carried out at the selected scale with the wavelet  .t/. The function
'.t/ is called the scaling function or father wavelet. For the scaling function, the
following property is fulfilled:

Z 1

�1
'.t/dt D 1 ; (2.90)

i.e., its mean value is not equal to zero as for the mother wavelet  .t/. The functions
'.t/ and  .t/ of the Haar wavelet are shown in Fig. 2.24. Scaling of the functions
'.t/ and  .t/ results in the equations

'.t/ D '.2t/C '.2t � 1/ ;
 .t/ D '.2t/ � '.2t � 1/ ; (2.91)

from which the difference between these functions is clear. When the signal is
analyzed, the functions '.t/ and  .t/ play the role of high-pass and low-pass filters,
respectively.

By analogy with the basis of the continuous wavelet transform, we introduce the
notation

'j;k.t/ D 1

2j=2
'

�
t

2j
� k

�
: (2.92)

For the given values of the scale and shift, characterized by the parameters j and k,
the approximation coefficients of the signal x.t/ are

sj;k D
Z 1

�1
x.t/'j;k.t/dt : (2.93)
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For the selected scale the resulting coefficients are referred to as the discrete
approximation of the signal on the scale j . Summing the scaling functions with
the corresponding coefficients provides the so-called continuous approximation of
the signal x.t/ at the selected scale [76]:

xj .t/ D
1X

kD�1
sj;k'j;k.t/ : (2.94)

On small scales, this continuous approximation is very close to the initial sig-
nal x.t/.

As an illustration, let us consider the approximation of one period of the
harmonic function shown in Fig. 2.25. Using the Haar scaling function means that on
different scales the signal is replaced by the averaged values. For large j , it results in
a very rough representation of the harmonic function, but for the maximum possible
resolution level j D 0 (determined by the discretization step), the continuous
approximation tends to the initial signal x.t/.

Using the Haar wavelet, we thus have a simple illustration of the main idea of
multi-scale analysis, namely the construction of a set of approximating function
spaces. In fact, we are dealing with the histogram approximation of the signal,
with the orthogonal complements adding more details on the smallest scales [76].
Figure 2.26 shows examples of the calculation of two successive approximations
and the complement to the second of these.
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j=2 j=3

Fig. 2.26 Approximations of a half period of the harmonic function on the scales j D 2 and
j D 3, together with the complement to the approximation on the scale j D 3, allowing one to
move to the next scale

Fig. 2.27 Scaling function (solid line) and the Daubechies wavelet D4 (dashed line)

Wavelets and the corresponding scaling functions used in practice are usually
characterized by a more complicated form (see, e.g., Fig. 2.27). However, all
equations written for Haar wavelets remain applicable with other bases. We thus
pursue our discussion of the simplest case, assuming that the results can be extended
to other wavelets.
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The concept of continuous approximation can reveal a trend in the analysed
process at the selected scale, with further detailed wavelet-based analysis of
fluctuations relative to this trend. On a certain arbitrary scale, any function x.t/ 2
L2.R/ can be expanded in a series

x.t/ D
X

k

sjn;k'jn;k.t/C
X

j�jn

X

k

dj;k j;k.t/ ; (2.95)

where

dj;k D
Z 1

�1
x.t/ j;k.t/dt (2.96)

are the wavelet coefficients. The first sum is the approximation of x.t/, whereas the
second sum provides the details of this function on different scales.

For the selected scale jn, one can write

x.t/ D xjn.t/C
X

j�jn
�j .t/ ; (2.97)

whereas the function

�j .t/ D
X

k

dj;k j;k.t/ (2.98)

characterizes the detailed structure of the signal on the scale j . According to (2.97),
one obtains

xj�1.t/ D xj .t/C �j .t/ ; (2.99)

i.e., if the detailing function �j .t/ of the signal is added to the approximation on the
selected scale j (this characterizes fluctuations relative to the approximated trend),
the approximation on the next, more precise level of resolution .j � 1/ is obtained.
This is the main idea of multi-scale analysis.

In general, the relationship between the functions '.t/ and  .t/ and their scaled
and shifted modifications can be written in the form

'.t/ D p
2

2M�1X

kD0
hk'.2t � k/ ;

 .t/ D p
2

2M�1X

kD0
gk'.2t � k/ ;

(2.100)
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where the factor
p
2 is connected with the traditional form of the fast algorithms

and normalization of the functions 'j;k.t/ and  j;k.t/, whereas the parameter M
determines the wavelet length, e.g., M D 1 for the Haar wavelet. Note also the
relationship between the coefficients hk and gk [76]:

gk D .�1/kh2M�k�1 : (2.101)

These coefficients are determined from general properties of the scaling functions
and wavelets.

As an example, let us consider calculation of the coefficients for the caseM D 2.
Since the relatively shifted scaling functions are orthogonal, we have

Z 1

�1
'.t/'.t � l/dt D ı0l : (2.102)

Using (2.100), a first restriction on the coefficients hk is obtained:

X

k

hkhkC2l D ı0l : (2.103)

The condition
Z 1

�1
tn .t/dt D 0 ; (2.104)

excluding slow nonstationarity (the polynomial trend) for n D 0; : : : ;M � 1 gives

X

k

kngk D
X

k

.�1/kknhk D 0 : (2.105)

Finally, from the normalization condition (2.90), one obtains

X

k

hk D p
2 : (2.106)

In the particular case (M D 2), the last three equations written in explicit form
result in the system

h0h2 C h1h3 D 0 ;

h0 � h1 C h2 � h3 D 0 ;

�h1 C 2h2 � 3h3 D 0 ;

h0 C h1 C h2 C h3 D p
2 :

9
>>=

>>;
(2.107)
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Fig. 2.28 Schematic
representation of the
pyramidal expansion
algorithm

Solution of these equations [74] gives the coefficients

h0 D 1

4
p
2
.1C p

3/ ;

h1 D 1

4
p
2
.3C p

3/ ;

h2 D 1

4
p
2
.3 � p

3/ ;

h3 D 1

4
p
2
.1 � p

3/ ;

(2.108)

which determine the Daubechies wavelet D4 (the upper index corresponds to the
number of coefficients hk). For wavelets of higher order, the coefficients hk can
be obtained only numerically, but with any required accuracy. The resulting set of
coefficients is typically represented in the form of a vector. As already mentioned,
in practice, the functions '.t/ and  .t/ are not considered in the explicit form.
With the pyramidal expansion algorithm and the vector hk , it is easy to estimate the
coefficients sj;k and dj;k .

The procedure of the pyramidal algorithm is shown in Fig. 2.28. In the case of the
Daubechies wavelet D4, the discrete wavelet transform with time series x.i/ may
be represented as multiplication of the vector of the analyzed data by the matrix
constructed from the vector hk by its translations, viz.,

2

66666
666666
666
4

h0 h1 h2 h3
h3 �h2 h1 �h0

h0 h1 h2 h3
h3 �h2 h1 �h0

:::
:::

: : :

h0 h1 h2 h3
h3 �h2 h1 �h0

h2 h3 h0 h1
h1 �h0 h3 �h2

3

77777
777777
777
5

; (2.109)

where empty matrix elements correspond to zero values.
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For the sequence x.i/ consisting of eight elements, the pyramidal expansion is
implemented as follows. First, after multiplying the vector

�
x1 x2 x3 x4 x5 x6 x7 x8

�T
(2.110)

corresponding to the scale j D 0 by the 8 � 8 matrix (2.109), the set of coefficients
s and d are obtained:

�
s11 d11 s12 d12 s13 d13 s14 d14

�T
: (2.111)

The coefficients dj;k are not used in the following transformations and they should
therefore be separated by reorganizing the vector elements

�
s11 s12 s13 s14 j d11 d12 d13 d14

�T
: (2.112)

Secondly, the 4� 4 matrix (2.109) multiplies the vector of s-coefficients to give the
vector

�
s21 d21 s22 d22 j d11 d12 d13 d14

�T
: (2.113)

Rearranging the coefficients, one obtains

�
s21 s22 j d21 d22 j d11 d12 d13 d14

�T
: (2.114)

Thus, the wavelet coefficients characterizing the signal at different scales are
separated. The resulting coefficients can be used for signal recognition, e.g., to
recognize the impulse activity of single neurons from the common activity of the
neuron ensemble which is considered in the next chapter.
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Chapter 3
Analysis of Single Neuron Recordings

Abstract In this chapter, we consider several practical problems where wavelets
provide information about the dynamics of neuronal systems that cannot be obtained
with ordinary frequency or time domain methods. We discuss the possibility of
studying intracellular dynamics and information encoding by individual neurons.
We characterize the dynamical stability of the neuronal response and propose an
approach to quantify wavelet coherence.

3.1 Introduction

The central nervous system (CNS) of living beings processes a large amount of
sensory information that is received through interaction with the external world.
A study of how this information is encoded, represented, and processed is one of
the most important problems in the natural sciences.

Optical, sonic, tactile, and other stimuli are encoded by the corresponding
receptors into sequences of electrical pulses (spikes) that are transferred to the
first neurons, i.e. to the areas of the CNS that carry out preprocessing. Sensory
information passes through several other processing stages before reaching the
cortex, where an internal representation (or image) of the external world is formed.

The complexity of experimental studies of the corresponding processes increases
significantly with each subsequent stage. Though the molecular and ionic mech-
anisms underlying encoding are rather well understood [1, 2], the properties of
spike trains as information carriers remain less clear: How do these trains reflect
the enormous complexity and variety of the external world? There are many open
questions regarding the principles of information encoding by individual neurons
and their networks, even at the initial information processing stage.

In Chap. 2 we provided a short introduction to the theory and practice of wavelet
analysis. Let us now apply this knowledge to several practical problems in which
wavelets can offer information about the dynamics of neuronal systems that would
be inaccessible to ordinary frequency or time domain methods.

A.E. Hramov et al., Wavelets in Neuroscience, Springer Series in Synergetics,
DOI 10.1007/978-3-662-43850-3__3, © Springer-Verlag Berlin Heidelberg 2015

77



78 3 Analysis of Single Neuron Recordings

In general, these problems can be separated into groups depending on the chosen
mathematical approach, i.e., either the continuous or the discrete wavelet transform.
However, as already mentioned, both approaches can provide useful information
about the object under study, although this information may differ. Therefore, a
better choice is to separate tasks according to the subject of research. In our case
it is reasonable to sort out problems according to the spatial scale and complexity
of the analyzed signals. In this chapter we shall deal with single neuron recordings,
i.e., signals recorded from one neuron, even if it is a part of a network. We shall
also consider different types of recording: in studies of intracellular dynamics we
work with continuous signals (data from interference microscopy), whereas for
the investigation of information processing we use spike trains (point processes)
extracted from extracellular single unit recordings.

3.2 Wavelet Analysis of Intracellular Dynamics

At the single neuron level, cell activity includes a large number of biochemical
processes that occur on different time scales in the membrane and in the cell cyto-
plasma. Traditional experimental approaches such as, e.g., fluorescent microscopy,
intracellular recordings of the membrane potential, and patch-clamping provide
ways to analyze features of biochemical, metabolic, and electrical processes. Often,
however, they are highly invasive and may have a significant impact on the
intracellular dynamics.

Since intracellular dynamics can be extremely rich and manifests itself on
different time scales, the wavelet approach proves very useful. It can provide
information about the interplay between different processes and help to achieve
a deeper understanding of intracellular regulatory mechanisms. In this section
we discuss a study of intracellular dynamics using interference microscopy and
wavelet-based techniques.

3.2.1 Interference Microscopy and Subcellular Dynamics

Interference microscopy measures the optical path difference between the beam
transmitted through an object and a reference beam [3, 4]. The resulting value is
normalized to the wavelength to estimate the so-called phase height of the object,
which is given by

˚ D �0 � �obj

2�

�

2
� ˚0 ; (3.1)
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20 mμ x

z
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a b

Fig. 3.1 Isolated pond snail neuron. (a) Optical photograph of the neuron. (b) Phase height
landscape of the same neuron obtained by interference microscopy (wavelength � D 532 nm).
Bars in the x and y directions correspond to 10�m, and the bar in the z direction corresponds to
a phase height of 200 nm (for details, see [5])

where �0 is the initial phase, �obj is the phase shift that occurs after the laser beam
is transmitted through the analyzed object, � is the laser wavelength, and ˚0 is a
constant shift of the phase height depending on the selected reference point.

For inhomogeneous objects characterized by a refractive index that varies along
the vertical direction z, the phase height is estimated as

˚.x; y/ D
Z Z

0

�
nobj.x; y; z/ � ns

�
dz � ˚0 ; (3.2)

where ns is the constant refractive index of the physiological saline and nobj.x; y; z/
is the refractive index of the cell at a point (x; y; z) placed at the distance z from the
mirror. The integration limit Z is selected to be above the whole object.

By scanning a cell in the horizontal .x; y/ plane, the interference microscope
measures the phase height landscape ˚.x; y/. Figure 3.1 shows side-by-side an
example of an optical photograph and a phase height landscape of an isolated pond
snail neuron. Movements of, e.g., organelles in the cell change nobj.x; y; z/, and
hence the phase height in the corresponding place. By scanning a cell many times
with constant time interval, we can obtain frames as in a movie. The resulting
dynamics of the phase height ˚.x; yI t / can then be used to monitor different
intracellular processes.

Here we consider results obtained from experiments performed with isolated
neurons from the buccal ganglia of the pond snail L. stagnalis. We measured the
phase height at a single point .x; y/ inside the cell. Figure 3.2a shows the power
spectrum of such a signal. It exhibits a number of characteristic frequencies near
0:1, 0:3, 0:6, 1:2, and 3:0Hz. These rhythms are caused by movements of protein
macromolecules, changes in ion concentration near the membrane, fluctuations in
the membrane potential, etc. Many of these intracellular processes interact with
one other.
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Fig. 3.2 Analysis of the phase height dynamics reflecting intracellular processes. (a) Energy
spectrum exhibiting several peaks. Frequency peaks correspond to different rhythmic components
in the intracellular dynamics. (b) Extracted ridges of the wavelet coefficients, obtained after the
wavelet transform of the phase height

3.2.2 Modulation of High Frequency Oscillation
by Low Frequency Processes

To reveal possible interactions between different rhythmic components, we applied
the continuous wavelet transform with the Morlet mother function to the phase
height signal. Then we identified instantaneous frequencies and amplitudes of
rhythmic contributions.

Figure 3.2b illustrates a typical example of the dynamics of instantaneous
frequencies. Rhythmic components in the range from 0.1 to 0.3 Hz have almost
constant frequency, while instantaneous frequencies of rhythms near 1 and 3 Hz
show slow oscillations [5, 6]. Thus, the processes characterized by long time scales
modulate high-frequency oscillations of the phase height. This type of modulation
is a well-known phenomenon in living systems. As an example, we can mention
the modulation of the heart rate by breathing. The duration of beat-to-beat intervals
varies at different stages of the breathing process.

There exist several types of low frequency modulation of a high-frequency
process. During modulation, the amplitude A.t/ and/or the frequency !.t/ of a fast
oscillation x.t/ can vary with the frequency of a slow process z.t/.

In the case of so-called amplitude modulation (AM), we can write

A.t/ D A0 C�Az.t/ ; (3.3)

where A0 is the base-line amplitude of the fast oscillation and �A is the maximal
deviation of the amplitude (for convenience, we assume that jz.t/j � 1). A single-
tone modulated signal (with single frequency !0) is given by

x.t/ D A.t/ cos.!0t C '0/ D A0
�
1Cmaz.t/

�
cos.!0t C '0/ ; (3.4)
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where ma D �A=A0 is called the amplitude modulation index or the modulation
depth, and '0 is the initial phase. The modulation depth is a bounded constant with
ma 2 Œ0; 1�. If ma D 0, then no modulation exists, whereas ma D 1 corresponds to
maximal modulation when the signal amplitude occasionally goes to zero.

Frequency modulation (FM) is another type of modulation. In this case the
instantaneous frequency of the signal x.t/ can be written as

!.t/ D !0 C�!z.t/ (3.5)

where !0 is the base frequency and �! is the maximal deviation of the frequency.
Then an FM signal can be written as

x.t/ D A0 cos
�
�.t/C '0

�
; �.t/ D

Z t

0

!.s/ds ; (3.6)

or using (3.5),

x.t/ D A0 cos

�
!0t C '0 C�!

Z t

0

z.s/ds

�
: (3.7)

In the case of a single-tone FM-signal z.t/ D cos.˝t C ˚0/ and therefore

x.t/ D A0 cos
�
!0t C '0 Cmf sin.˝t C ˚0/

�
; (3.8)

where mf D �!=˝ is the frequency modulation index, which characterizes the
depth of modulation of the FM signal, which can take values greater than 1.

In terms of modulation, the processes of slowly varying frequency ridges shown
in Fig. 3.2b can be classified as FM processes.

3.2.3 Double Wavelet Transform and Analysis of Modulation

The nonstationary dynamics which is frequently observed in living systems always
has multi-tone oscillations. Then the equations describing modulated processes
become complicated and the values used to compute modulation indexes become
time-dependent. To describe such phenomena and their structure, a double wavelet
transform has been proposed [7].

First, we apply an ordinary wavelet transform to the analyzed signal. Then
the second wavelet transform is applied to signals constructed from instantaneous
frequencies (or amplitudes) of modulated rhythmic processes. Again, as in the first
wavelet transform, CWT coefficients are estimated and the ridges of the wavelet
energy are identified. Since the wavelet transform is applied twice, this method has
been called the double-wavelet analysis [7]. A similar idea called the secondary
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Fig. 3.3 Double wavelet analysis of the phase height dynamics of single cells. (a) Frequency
modulation of 1 and 2–4 Hz rhythmic components by slow processes. Modulation depth vs
frequency of the slow process. (b) The same as in (a), but for amplitude modulation. (c) Typical
normalized spectra of the modulation processes

wavelet transform has been proposed independently by Addison and Watson [8].
This approach allows one to obtain a time series for such characteristics as the
amplitude (or frequency) deviation, time-varying modulation indexes, and local
spectra of modulation [9].

In addition to the FM process shown in Fig. 3.2b, analysis of the phase height
dynamics can reveal modulation of the amplitude of high-frequency oscillations
by slower dynamics. To obtain statistical information about features of AM and
FM phenomena in the dynamics of intracellular processes, we repeated the above
described experiments 200 times [5]. Then for each measurement we estimated
the modulation frequencies and modulation indexes (modulation depths) using the
double-wavelet technique.

Figures 3.3a and b illustrate the distributions of the modulation indexes for FM
and AM, respectively. In the FM case, there is clear difference between the two
rhythms. The modulation depth is higher for the 2–4 Hz oscillation. In the AM
case the 2–4 Hz rhythm generally has a higher modulation frequency. Figure 3.3c
shows a typical example of the power spectra of the modulation processes for



3.2 Wavelet Analysis of Intracellular Dynamics 83

each rhythm. Thus, the rhythmic components near 1 and 3 Hz are modulated by
different intracellular processes. The rhythm near 1 Hz is mainly modulated by a
process with ultralow frequency around 0.1 Hz, while the 3 Hz rhythm is modulated
by a higher-frequency dynamics.

In conclusion, the double wavelet analysis revealed the presence of an interaction
between slow and fast rhythmic intracellular processes. This interaction occurs
in the form of modulation. We associate low-frequency dynamics with processes
occurring in the plasma membrane, while high-frequency processes are associated
with cytoplasmic events. Evidence for such an assumption is discussed in [10].
Thus, low-frequency oscillations are significantly more pronounced in the mem-
brane region than in the centre of neurons, while the 20–25 Hz rhythms display the
opposite behaviour [6]. Moreover, independent experiments on the same type of
neurons demonstrated the existence of rhythmic dynamics. In particular, it has been
established [11] that frequencies in the range of 0.2–0.4 Hz depend on the activity
of Ca2C channels. It has also been found [12] that neurons in invertebrates possess
intrinsic electrical activity with frequencies 1 and 1.5–3 Hz. The suggestion about
the origin of high frequencies (20–25 Hz) from cytoplasm processes accords with
experimental data on vesicle movements in neurons (8–40 Hz) obtained by light-
scattering measurements [13].

We note that the double-wavelet approach allows a better understanding of
neuron functions and features of intracellular dynamics, both under normal condi-
tions and under different external influences. This approach provides quantitative
measures characterizing the interplay among intracellular processes and allows
one to diagnose changes in this interplay when there are external influences
(see, e.g., [6]).

3.2.4 Modulation of Spike Trains by Intrinsic Neuron
Dynamics

Neurons encode and exchange information in the form of spike trains. Figure 3.4a
shows a typical example of the extracellular potential recorded in the vicinity of a
projecting neuron in the gracilis nucleus. The trace has a number of spikes (short
pulses) that are clearly distinguishable over the background activity. In Chap. 4, we
shall discuss the problem of spike identification and sorting in more detail. Here
we just cross-check that all spikes belong to the same cell. This can be done by
superposing spikes (Fig. 3.4b). We can verify that all of them have a similar shape
and hence can be classified as emitted by only one neuron.

The first part of the recording corresponds to spontaneous neuron dynamics (no
external stimulation), while the second represents the neuron response to stimuli
(a slight pricking of the rat foreleg with frequency of 1 Hz). We observe that the
stimulation drastically changes the firing rate of the neuron. Moreover, the structure
of neural firing shows some signs of modulation. The analysis of modulation
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Fig. 3.4 Experimental recording of spiking activity in a single neuron. (a) Extracellular potential
with spikes generated by only one projecting neuron in the gracilis nucleus of a rat. The arrow
marks the beginning of external (tactile) stimulus. (b) Superposed spikes exhibit the same shape,
which confirms that they belong to the same neuron

phenomena discussed in Sect. 3.2.3 can also be applied to this spike train. In general,
this approach can lead to a deeper understanding of the information encoding used
by neurons.

The structure of interspike intervals without external stimulation is quite irregu-
lar, whereas under stimulation a well pronounced rhythm appears at the frequency
of the external stimulation (Fig. 3.5a, b). To reveal the time dynamics of different
rhythms in the spike train, we apply the wavelet transform (with the Morlet mother
wavelet) to interspike intervals. The spontaneous neuron dynamics exhibits several
rhythms. The two most powerful of these correspond to 8 and 20 s interspike
intervals (Fig. 3.5a, c, peaks at 0.05 and 0.125 Hz). Under stimulation, a clear peak
appears in the power spectrum at the driving frequency of 1 Hz and the ultralow
frequency (0.05 Hz) disappears. However, the low-frequency dynamics observed
under spontaneous conditions remains in the spectrum (Fig. 3.5b).

Figure 3.5c, d show the time–frequency spectrograms. Under control conditions
(spontaneous firing), there are several rhythms whose frequencies “float” around
certain mean values. The sensory stimulus excites a new oscillation at 1 Hz, which
again shows some oscillations. Thus, the neuron has some intrinsic dynamics even
under stimulation. This provides evidence for a nonlinear interaction between the
rhythmic components in neuron dynamics and raises an open question: Is it possible
to describe the process of information encoding in terms of frequency modulation?

Indeed, one possible interpretation of the oscillation observed in the main 1 Hz
rhythm (Fig. 3.5d) can be given in terms of frequency modulation. The idea is that
the intrinsic slow dynamics of the neuron modulates the stimulus driven frequency.
Therefore, information encoding by this neuron is not trivial, but includes additional
features describing the neuronal state, feedbacks, and even some temporal history of
oscillations. On the basis of this hypothesis, modulation features such as the central
frequency, depth index, etc., can be estimated using the double-wavelet technique
(Sect. 3.2.3).
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Fig. 3.5 Analysis of interspike intervals in the neuronal spike train shown in Fig. 3.4. (a) and
(b) Power spectra under spontaneous conditions and under stimulation, respectively. (c) and (d)
Time–frequency dynamics of wavelet ridges under spontaneous conditions and under stimulation,
respectively
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Fig. 3.6 Rhythmic components taking part in the frequency modulation of the neuron response to
the 1 Hz stimulus

The instantaneous frequency around 1 Hz is considered as a new signal for the
CWT. As a result, all rhythms occurring in the modulation will be revealed and
the depth of modulation can be estimated separately for each rhythm. Figure 3.6
shows that the structure of low-frequency modulating signals is quite similar to
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the spontaneous dynamics of the neuron. This indirectly confirms the hypothesis.
However, physiological interpretation of the observed phenomena and direct ways
of testing the hypothesis require more detailed analysis.

3.3 Information Encoding by Individual Neurons

In Sect. 3.2.4, we saw that neurons can encode sensory stimuli in a rather complex
way. Besides extrinsic stimuli, some intrinsic neuronal dynamics enters the output
spike train transmitted to further relay stations of the central nervous system. Let us
now consider information encoding in more detail.

3.3.1 Vibrissae Somatosensory Pathway

The rodent vibrissae system is one of the most widely used experimental models for
the study of sensory information handling. The rat perceives the main information
by means of the vibrissal pad or “whiskers” (Fig. 3.7a). This is a highly specialized
and sensitive piece of apparatus that conveys tactile signals via the trigeminal system
to the animal’s brain (Fig. 3.7b) [14].

The four longest vibrissae, called straddlers, are labeled by the letters ˛, ˇ, � , and
ı. The other vibrissae are placed on the upper lip in five rows labeled by the letters
A, B , C , D, and E. In each row, the vibrissae are numbered, e.g., A1, A2, etc. The
length of the vibrissae varies from 30–50 to 4–5 mm, thus providing simultaneous
contact of their tips with a tangible surface of an object during whisker movements.
The different lengths and widths of wibrissae provide them with different oscillatory
features. This allows them to cover the wide range of frequencies required for
effective perception of objects with different tactile characteristics.

Rats actively use their whiskers to detect and localize objects, and also to
discriminate surface textures. By sweeping the whiskers at rates between 5–20 Hz,
they can localize and identify objects within a few whisking cycles or even with
a single vibrissa [15]. Thus relatively short temporal, but not spatial mechanical
information, dominates in the object detection.

Mechanical encoding of different textures is attributed to the whisker resonance.
The vibration amplitude across the whisker array codifies the texture (see, e.g., [16]).
It occurs also in awake rats and shapes natural whisker vibration. However, it seems
that textures are not encoded by the differential resonance. Instead, slip–stick events
contribute to a kinetic signature for texture in the whisker system, which suggests
the presence of temporal structure in neural spike trains under these experimental
conditions [17]. Thus the efficacy of the sensory information transmission and
processing in the time domain resides in the possibility for multiple cells to generate
coherent responses to a stimulus, which constitutes the neural code.
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Fig. 3.7 Rat vibrissae system. (a) Illustration of vibrissae and their labeling. (b) Sketch of the
main steps in the pathway of tactile information processing

Although there has been much discussion about what type of neural code
is employed by each individual neuron or neuron group, growing experimental
evidence shows that the same neuron may use different coding schemes (see reviews
in [18, 19]). The temporal correlation of multiple cell discharges has also been
found important for information transmission to the cortex and its modulation by
corticofugal feedback (see, e.g., [20–22]).

Somatosensory information from the whiskers arrives at the trigeminal complex,
organized into one motor and three sensory nuclei, including the principal nucleus
or principalis (Pr5), the spinal nucleus (Sp5), and the mesencephalic nucleus
(Fig. 3.7b). In turn, Sp5 consists of three subnuclei called oralis (Sp5o), interpolaris
(Sp5i), and caudalis (Sp5c). Information from Pr5 and Sp5 goes to the contralateral
thalamus (VPm) and then to the primary somatosensory (SI) cortex. There is also
a feedback monosynaptic projection with an extremely precise somatotopy from SI
to the trigeminal nuclei.

Over the whole pathway, primary afferents and neurons form spatial structures
called barrelettes, berreloids, and barrels in the trigeminal complex, VPm, and SI,
respectively. These spatial structures replicate the patterned arrangement of the
whisker follicles on the snout (for details see, e.g., [23–26]).



88 3 Analysis of Single Neuron Recordings

30

20

10

0 50 100 150

40

30

20

10

time, (ms)
0 50 100 150

time, (ms)

sp
ik

es

sp
ik

es

ba

dc

Fig. 3.8 Classification of neurons into phasic and tonic types, according to their response to a long
stimulus. (a) Typical response of a phasic neuron to a single stimulus. The extracellular potential
recorded in the trigeminal nucleus is shown. The upper horizontal bar corresponds to the duration
of the stimulus. (c) Peristimulus histogram of a phasic neuron made over 50 identical stimuli (2 ms
bin). (b) and (d) The same as in (a) and (c), but for a tonic neuron

3.3.2 Classification of Neurons by Firing Patterns

In electrophysiological studies, the classification of neurons according to their
firing patterns for spontaneous activity and under stimulation is widely accepted.
Neurons can be divided into three groups according to their mean firing rate (MFR)
under spontaneous conditions: silent neurons (SN) with MFR < 0:1 spikes/s, low-
frequency (LF) neurons with 0:1 < MFR < 1:5 spikes/s, and high-frequency (HF)
neurons with MFR > 1:5 spikes/s.

For tactile whisker stimulation, short air puffs directed toward a single vibrissa
are usually used. This kind of stimulation produces vibrations of the individual
whisker similar to real behavioral conditions. In experiments, the duration of air
puffs can be varied. We used three values: short 10 ms, intermediate 50 ms, and long
100 ms pulses. Trigeminal neurons fired from 1 to 8 spikes in response to each onset
of tactile stimulation of 10 and 50 ms duration. For the long (100 ms) stimulus, some
of the neurons produced from 20 to 40 spikes.

Taking into account the neural responses to the 100 ms stimuli, we can classify
all neurons into tonic and phasic [27]. Figure 3.8 shows an example of each neuronal
type. Phasic neurons (PhN) generate a few spikes under a change of stimulus phase,
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Fig. 3.9 Statistical properties of neurons in Pr5, Sp5i, and Sp5o trigeminal nuclei. (a) Distribution
of neurons according to spontaneous activity: SN silent, LF low frequency, and HF high-frequency
neurons. (b) Mean spiking frequencies of SN, LF, and HF cells. (c) Distribution of neurons
according to the type of response to whisker stimulation: TN tonic and PhN phasic neurons. (d)
Mean spiking frequencies for entire population, phasic, and tonic neurons

i.e., at the beginning and/or the end of the stimulus (Fig. 3.8a, c). Tonic neurons (TN)
produce large spike trains lasting for the whole stimulation period (Fig. 3.8b, d).

According to the standard electrophysiological analysis, the three nuclei have a
quite different percentage of SN, LF, and HF cells (Fig. 3.9a). There is also some
deviation in the mean firing frequencies among the nuclei (Fig. 3.9b). Thus there is
a difference in the spontaneous neural activity among the nuclei.

The three nuclei have similar percentages of tonic and phasic cells (Fig. 3.9c),
and hence no conclusions about dissimilarities among them can be drawn solely on
the basis of the type of response to stimulation.

Nevertheless, the Sp5i nucleus appears to be different from the Pr5 and Sp5o,
which in turn have some degree of similarity. Indeed, analysis of the firing rate
reveals:

• Similarly low spiking frequency among neurons from Pr5 and Sp5o compared
with Sp5i neurons for all (SN, LF, and HF) groups (Fig. 3.9b).

• PhN cells from Pr5 and Sp5o nuclei have 2–3 times lower frequency than those
from Sp5i (Fig. 3.9d). The opposite behavior is observed for T-neurons.

3.3.3 Drawbacks of the Traditional Approach to Information
Processing

In Fig. 1.1, we already gave an example of the firing dynamics of a Pr5 neuron under
periodic stimulation of a vibrissa in its receptive field. Even under the condition
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of a completely repeatable stimulus, the neuronal response is far from being
constant. During the first few seconds, the neuron exhibits a maximal firing rate
(about 27 spikes/s), but the rate then quickly falls to about 10 spikes/s, and further
fluctuates for more than 20 s. The neuron behavior is thus essentially nonstationary.
However, most traditional approaches, such as peristimulus histograms, ignore this
observation.

Traditional analysis of neural spike trains has often been performed assuming
that segments of the experimental time series are approximately stationary and that
such segments can be studied by means of statistical techniques such as correlation
measures or Fourier analysis (see, e.g., [28–30]). This approach is obviously
useful if the nonstationarity has a time scale longer than the rhythms of interest.
However, this is not always the case. Instantaneous frequencies of various rhythmic
components can exhibit complex irregular fluctuations, that is, the nonstationarity
may be associated with higher frequencies as well. Previous results [20] have shown
that Fourier analysis is hardly applicable in such conditions. An alternative is to use
the wavelet technique, which can be successfully applied to analyze the temporal
structure of neuronal spiking over a wide range of time scales [9, 20].

3.3.4 Wavelet Transform of Spike Trains

For information processing it is reasonable to assume that neurons produce and
exchange stereotypical events or spikes. Thus, only the timings of the spike
occurrences carry a message. Consequently, before applying any analysis, spikes
in experimental data should be identified and sorted among different neurons. This
procedure will be discussed in detail in Chap. 4. Here we assume that this problem
has already been solved.

Figure 3.10a illustrates a typical example of a high-pass filtered extracellular
recording (fcut D 300Hz) made in a Pr5 nucleus. Four spikes coming from a
single cell can be seen by the naked eye. However, in more complex situations,
advanced spike sorting techniques must be used, including those based on the
wavelet transform. The results of data preprocessing given in this section are based
on the wavelet shape-accounting classifier (WSAC) (see Sect. 4.4).

Once spikes of a single cell have been identified, they can be represented as a
series of ı-functions,viz.,

n.t/ D
X

ı.t � ti / ; (3.9)

where ftig is a set of time instants corresponding to spike firing (Fig. 3.10a). Then
we can apply the continuous wavelet transform to the signal (3.9).

Let us consider the CWT with the Morlet function. The timescale s plays the
role of the period of the rhythmic component. Given a characteristic timescale
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Fig. 3.10 Wavelet analysis of a spike train. (a) Conversion of extracellular recording into a spike
train n.t/. (b) Energy density E.f; t/ of the spike train (color from blue to red corresponds to the
spectrum magnitude). The dashed black curve defines the cone of influence where edge effects
cannot be neglected. (c) Time evolution of spectral “ridges” Fk.t/. The thick curve corresponds to
the main (most prominent and stable) ridge, whose central frequency oscillates in time at around
20 Hz

(e.g., the period) s, the resolution of the wavelet in the time and frequency domains
is given by

δt D ck0s ; δ! D c

k0s
; (3.10)

where c is a constant of the order of unity. There is a trade-off between the frequency
and time resolutions: small values of k0 provide better time resolution, whereas large
values of k0 improve frequency resolution. The commonly adopted value is k0 D 1

and the limit k0 ! 1 corresponds to the Fourier transform. Sometimes, especially
for the analysis of spike trains, k0 D 2 can be more suitable.
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Equation (3.9) allows us to estimate the wavelet coefficients analytically:

W.s; t0/ D 1p
s

X

i

e�i2�.ti�t0/=se�.ti�t0/2=2k20 s2 : (3.11)

Using the wavelet transform (3.11), we can perform the time–frequency analysis
of rhythmic components hidden in the spike train. The wavelet coefficients can be
considered as a parameterized function Wp.t0/, where t0 plays the role of time. It is
convenient to introduce the following normalization of the energy density:

E.s; t0/ D 1p
�rk0s

jW.s; t0/j2 ; (3.12)

where r is the mean firing rate (the normalization of the energy spectrum per
spike simplifies comparison of neurons with different firing rates). For biophysical
convenience, instead of (3.12), its frequency counterpartE.f; t/ is often considered.
This is obtained by substituting s D 1=f (k0 D 1).
E.f; t/ represents a surface in 3D space whose sections at fixed times provide

information about the local energy spectra. Figure 3.10b is a 2D plot of the
energy density of the spike train shown in Fig. 3.10a. Each spike produces a
broad frequency spectrum. The existence of rhythms in the spike train leads to
the appearance of “ridges” in the 3D energy surface, associated with the rhythmic
contributions. These ridges, oriented along the time axis, identify the spectral
content of the spike train at any given time moment.

Thus, the dynamics of rhythmic components hidden in a spike train is reflected
in the time evolution of spectral ridges. To construct spectral ridges, a search for
local maxima of the energy spectrum E.f; t0/ at time t 0 is performed (Fig. 3.10b),
thus obtaining a set of 2D functions of time Fk.t/, where the subindex corresponds
to the number of the ridge (Fig. 3.10c).

Spectral ridges can appear and disappear in time, and they can also oscillate
(Fig. 3.10c). Oscillations indicate the presence of a given rhythm in the spiking
dynamics of a neuron and its modulation by other rhythms (e.g., due to a high
frequency jitter in the spike timings). If a neuron generates a stereotypic response
to periodic stimulation (i.e., the same pattern for each stimulus event), then its
instantaneous frequency associated with the stimulus rhythm remains constant. We
thus obtain a “perfect” (continuous and straight) spectral ridge at the stimulus
frequency.

Deviation from the stereotypic response associated with “missing” or “extra”
spikes, or with changes in the interspike intervals, causes temporal variations in
the instantaneous frequency and even disappearance of the ridge, as happens in
Fig. 3.10c. Moreover, the greater the fluctuation of the instantaneous frequency, the
more significant the differences in the neuronal response. Thus, following the time
evolution of the instantaneous frequency of spectral peaks (i.e., the spectral ridge)
enables one to study the stability and stationarity of neuronal responses to a tonic
stimulus.
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To quantify the stability of the neuronal response, the following measure can be
considered:

St D 1

�0
; (3.13)

where �0 is the standard deviation of the time evolution of the main spectral ridge
F0.t/ found in the vicinity of the stimulus frequency.

To evaluate St for a spike train, its energy density (3.12) is estimated. Then for
a fixed time t 0 (changed with a 5 ms time bin), we search for the energy maximum
in the frequency range fstim ˙ 5%. The resulting frequency is assigned as F0.t0/.
Finally, the standard deviation of F0 yields St.

3.3.5 Dynamical Stability of the Neuronal Response

In this section we test the methodology proposed in Sect. 3.3.4 on simulated
neuronal responses to external stimuli. To do so, we consider three neurons
embedded in a network and receiving the same periodic (1 Hz) sequence of 50
stimuli. Depending on the current network state and its dynamics, the neuronal
responses may have different variability, i.e., the firing patterns provoked by each
stimulus event may have different degrees of repeatability.

We simulated neuronal responses under three different conditions:

• N1: Constant in time strong variability. The neuron responds to each stimulus
by generating 3–5 phasic spikes (3:9 ˙ 1:2 std) with fluctuating spike timings
(8 ms std).

• N2: Changing (small) variability. The neuron generates a spike train similar to
N1, but the firing rate decays linearly (from 5 spikes per stimulus at the beginning
to about 2:5 at the end).

• N3: Increasing (intermediate) variability. The spike train is similar to N2, but the
fluctuation in spike timings increases from 0 at the beginning to about 40 ms std
at the end.

The response pattern of the first neuron has a stationary distribution, whereas
those of the second and third neurons are similar to the experimentally observed
adaptability to the stimulus (Fig. 1.1). Their firing rates decay in time. The difference
between the neurons N2 and N3 is in the variability of the spike timings. The neuron
N2 has constant fluctuations, whereas the magnitude of the fluctuations for N3
increases with time.

Figure 3.11a shows a 5 s epoch of the stimulus and spike trains of the three
neurons. Applying the traditional peristimulus time interval analysis, we obtain
roughly the same peristimulus time histograms (PSTHs). All histograms have three
peaks at latencies 20, 50, and 90 ms, corresponding to the neuronal phasic response
to the stimulus, and are hardly distinguishable. Thus, PSTH fails to quantify the
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Fig. 3.11 Quantification of the dynamical stability of the stimulus response patterns for three
neurons. (a) Stimulus and spike trains of three neurons (only 5 s epoch is shown). The three neurons
have almost the same PSTHs, but their firing dynamics is significantly different (see the main text).
(b) Wavelet energy spectra of the spike trains in the stimulus frequency band (color from blue to
red corresponds to the spectrum magnitude)

differences in behavior exhibited by the neurons, as expected. Not much additional
information is provided by the raster plot (not shown).

The wavelet energy spectrum of the first spike train differs significantly from
the spectra of N2 and N3, which are very similar (Fig. 3.11b). Fluctuations in the
spectral magnitude of the 1 Hz rhythm reflect changes in the strength of the neuronal
response at that frequency. Loosely speaking, it is proportional to the number of
spikes generated per stimulus. The spectral magnitude of the train N1 fluctuates
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Fig. 3.12 Quantification of the dynamical stability of the stimulus response patterns for three
neurons. (a) Time evolution of the main spectral ridges for the three spike trains. Shaded areas
correspond to the envelopes of F0.t/ (obtained by the Hilbert transform). (b) Different response
stability measures. Left: Reciprocal of the standard deviation of the number of spikes. Center:
Reciprocal of the standard deviation of the magnitude of the energy density at 1 Hz. Right:
Dynamical stability factor S. The latter characteristic reveals distinctions in the stimulus responses
of the neurons

around the mean value, which agrees with the stationary nature of the firing patterns
of this neuron. The energy magnitude of N2 and N3 decays in time, again as
expected from the decaying firing rate of these neurons.

Figure 3.12a shows the time evolution of the main spectral ridges F0.t/

(corresponding to fstim D 1Hz) for the three neurons. This provides information
about the phase (temporal) relationships between spikes in the firing patterns and
reveals differences in the three cases. The instantaneous frequency of N1 displays
large stationary deviations from 1 Hz due to the constant variability of spike timings
and “missing” spikes. The ridge of N2 has smaller deviations, especially in the
first half of the recording, where the neuronal response was more consistent (in
the number of generated spikes). N3 shows the smallest ridge variability (close to
zero by construction) at the beginning of the stimulation, but growing progressively
toward the end. The difference with N2 is explained by the overtime increasing
variability of the N3 spike timings.

It is noteworthy that the time evolution of the spectral magnitude (Fig. 3.11b)
and the ridge dynamics (Fig. 3.12a) provides complementary information about the
firing patterns. Indeed, a strong neuronal response with a similar number of spikes
produces a quite stable, high magnitude spectral ridge. If the variability of spike
timings is much lower than the reciprocal of the ridge frequency (interstimulus
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intervals), then it makes little contribution to the ridge height. However, this high-
frequency dynamics will affect the instantaneous ridge frequency and, consequently,
will be visible in the F0.t/ plot.

Let us now check the different measures of the response stability of the neurons
N1–N3 that can be derived from the spike trains and their wavelet analysis.
First, the standard deviations of the number of spikes elicited by each stimulus
were calculated. Similar characteristics have been used for quantification of the
frequency-dependent response in VPm and SI neurons [31]. Figure 3.12b (left
inset) shows that the reciprocal of the standard deviation (i.e., 1/std number of
spikes) is the same for all neurons, hence this measure cannot distinguish dynamical
differences in their responses.

Figure 3.12b (middle inset) shows the reciprocal of the standard deviation of
the magnitude of the energy density (corresponding to Fig. 3.11b) at the stimulus
frequency. This measure differentiates the responses of N1 from those of N2 and N3.
The lower value for N2 and N3 is mostly due to the trend in the energy magnitude
in these cases. Detrending the energy density functions raises the measure to 74 for
N2 and N3 and does not affect its value for N1. Thus, the energy magnitude-based
measure can be a good predictor of a neural rate code, but it cannot pick up the
variability in the spike timings.

Finally, Fig. 3.12b (right inset) shows the dynamical stability measure (3.13)
evaluated for the three neurons. This measure correctly quantifies the differences
in stability of the firing patterns among all three neurons.

3.3.6 Stimulus Responses of Trigeminal Neurons

The examples described in this section are based on experiments performed on
anesthetized (urethane, 1.5 g/kg) Wistar rats of either sex weighing 200–250 g.
The experimental procedure is similar to that described in the work by Moreno
et al. [32]. Animals were placed in a stereotaxic device that allowed easy access
to the vibrissae. Recordings were obtained using tungsten microelectrodes directed
vertically into the Pr5, Sp5i, and Sp5o nuclei.

Once an electrode had been put in place, the vibrissae were manually stimulated
by means of a thin brush to determine their receptive fields. The vibrissa maximally
activating a neuron near the electrode was further used for mechanical stimulation.
Free whisker movements were generated by air puffs directed at one vibrissa only
and signals were not recorded when other vibrissae exhibited any vibration. Air
pulses were generated by a pneumatic pressure pump (Picospritzer III, Parker Inst.
TX) and delivered via a silicon tube of diameter 0.5 mm, positioned at 10–12 mm
perpendicularly to the vibrissa:

• Stimulus protocol S1: Three separate sequences of 50 air puffs lasting 10, 50, or
100 ms each with 1 s interpuff intervals were delivered at the neuron’s receptive
fields.
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Fig. 3.13 Population analysis of the dynamical stability of the neuronal response patterns under
variation of the air puff duration (stimulus protocol S1). (a) Percentage of cells showing maximal
stability for 10, 50, or 100 ms stimuli. Neurons from Pr5 and Sp5i “prefer” 50 ms, whereas Sp5o
shows better stability for shorter (10 ms) stimuli. (b) Percentage of neurons showing an increase
(left) or decrease (right) in the response stability under increasing stimulus duration

• Stimulus protocol S2: Air puffs of fixed duration (10 ms), but with different
stimulation frequency, ranging from 1 to 30 Hz, were delivered at the neuron’s
receptive fields. During the course of individual experiments, the frequency was
randomly changed. The whole duration of stimulation at a given frequency was
50 s.

The extracellular potential was amplified, sampled at 20 kHz, passed through the
band-pass filter (0.3–3.0 kHz), and then analyzed using the special software Spike 2
and custom packages written in Matlab. For the wavelet analysis, we selected only
those neurons whose extracellularly recorded spikes were well isolated from the
activity of the other neurons.

3.3.6.1 Effect of Stimulus Duration (Protocol S1)

The stability parameter St was calculated for all selected neurons and the three
stimulus durations. In addition, we determined the stimulus duration (10, 50, or
100 ms) that provides the maximally stable response pattern for each neuron. To
describe quantitative changes in the stability parameter when the stimulus duration
increases (10 ! 50 ! 100 ms), the neurons satisfying the conditions St50 > St10
and St50 < St100 were counted. Figure 3.13 and Table 3.1 summarize the results.

In the case of Pr5 neurons, the stability parameter St is likely to be maximal
for the middle stimulus duration (50 ms, Fig. 3.13a). The most stable response is
observed for 53 % of all cells with the 50 ms stimulus. The remaining 27 and 20 %
of cells respond stably to 100 and 10 ms stimuli, respectively.
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Table 3.1 Comparative analysis of the stability of neural response patterns evoked by tactile
whisker stimulation by air puffs of different duration (10, 50, and 100 ms) for neurons from Pr5,
Sp5i, and Sp5o nuclei

Maximal S (%) Increase in S (%)
(S50 > S10)

Decrease in S (%)
(S50 > S100)10 ms 50 ms 100 ms

Pr5 20 53 27 73 73
Sp5i 8 67 25 92 75
Sp5o 50 17 33 33 67

Quite similar behavior occurs for Sp5i neurons. Here even more cells (67 %)
“prefer” stimuli of intermediate duration. This is achieved mostly by decreasing the
cell population showing a better response to the shortest 10 ms stimuli (8 %).

Sp5o neurons typically behave differently. The maximally stable response pattern
for 50 ms stimulation was observed for only 17 % of the cells. Meanwhile, half of the
neurons showed better stability for the shortest stimulation (10 ms). The proportion
of the cells with better response to the 100 ms stimuli was about 33 %, a little bit
higher than for Pr5 and Sp5i neurons.

Figure 3.13b shows differential stability characteristics. For 73 % of Pr5 neurons,
responses to 50 ms stimulation are more stable than those to air puffs of 10 ms
duration. In the case of Sp5i neurons, the value of St increases at the transition
10 ! 50ms for about 92 % of cells. Thus, Pr5 and Sp5i neurons are characterized
by a rather similar type of reaction to variation of the stimulus duration. However,
different behavior is observed for Sp5o neurons. Only for 33 % of cells did St
increase with the stimulus duration (from 10 to 50 ms). If the stimulus duration
increases further (50 ! 100ms), about 70 % of neurons from all nuclei display a
decrease in their response stability.

Thus the protocol S1 allowed us to conclude that:

• The stability of response patterns depends on the stimulus duration, that is,
neurons process stimuli of different duration in different ways.

• There exist significant changes in the types of responses for Pr5, Sp5i, and Sp5o
neurons. The most reliable responses are achieved in Pr5 and Sp5i for 50 ms
stimulus and in Sp5o for 10 ms.

3.3.6.2 Effect of Stimulus Frequency (Protocol S2)

Let us now discuss effects of the stimulation frequency (protocol S2). It has been
found that all trigeminal neurons can be subdivided into three groups by their type
of response to the frequency content of the stimulus. Figure 3.14 shows the stability
measure as a function of the stimulus frequency St.fstim/ for three representative
cells. By analogy with the filter terminology, we will refer to the three basic types
of neuronal response as low-pass, band-pass, and no dependence.
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Fig. 3.14 Three main types of behavior of the dynamical stability of neuronal responses to the
frequency of a tonic stimulus St.fstim/: low-pass (left), band-pass (center), and no dependence
(right)

Fig. 3.15 Population analysis of the dynamical stability of neuronal responses under variation of
the stimulus frequency (stimulus protocol S2). (a) Percentage of cells showing different “filtering”
characteristics in Pr5, Sp5i, and Sp5o nuclei. (b) Mean central frequencies of band-pass neurons

In all nuclei, band-pass is the most frequent cell behavior. It occurs in 58, 59,
and 53 % of neurons in Pr5, Sp5i, and Sp5o, respectively (Fig. 3.15a). The low-
pass reaction is observed for 33, 31, and 35 % of neurons from Pr5, Sp5i, and
Sp5o, respectively. Finally, 9, 10, and 12 % of cells in the corresponding nuclei
are characterized by the no-dependence reaction. Thus, there are small population
distinctions in the frequency filtering properties of Pr5, Sp5i, and Sp5o nuclei.

For band-pass type responses, the mean central frequency was determined
(mean ˙ s.e.): 5:1 ˙ 0:9Hz (Pr5), 5:2 ˙ 0:8Hz (Sp5i), and 4:0 ˙ 1:3Hz (Sp5o)
(Fig. 3.15b). Thus, neurons in Pr5 and Sp5i nuclei have the same central frequency,
whereas cells in Sp5o typically show a smaller value of the stabilization frequency.
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3.3.6.3 Biophysical Interpretation

For effective stimulus perception, information specific to the object should be
invariant to the details of the whisking motion. Therefore, flexibility and adaptability
in the processing of the whisker vibrations are required. Experiments in vitro
[33] demonstrated that neurons in the barrel cortex do indeed adapt their input–
output function, in such a way that the gain rescales, depending on the range of
the current stimulus distribution. In this section, it has been shown that in vivo
accommodation of firing patterns to stimulus characteristics can be quantified by the
stability measure St, which was used to study neuronal responses in the trigeminal
nuclei evoked by tactile whisker stimulation.

Analysis of the time evolution of frequency ridges in the wavelet space can
be used to identify the variable frequency content in a neural spike train under
essentially nonstationary conditions of sensory information processing. The method
allows an integral quantification of the variability in the number of phasic spikes
and in the spike timings. It takes into account changes at the stimulus time scale
and also at significantly shorter time scales. The validity of the method has been
cross-checked using simulated spike trains resembling properties of real recordings
(Fig. 3.11).

A fundamental issue in neural coding is the role of variation of spike timings
in information processing. Indirectly, this can be tested by an artificial jittering of
the spike timings and its influence on the derived measures (see, e.g., [34, 35]).
The stability measure St can be used to provide a direct answer to the question: how
stable or repeatable are the firing patterns produced by a neuron for each stimulation.
If the stability measure is high, then the spike patterns are highly repeatable during
the whole recording, and consequently, such a neuron is likely to be using a kind
of temporal code. Conversely, low stability suggests high variability in the spike
patterns and points to a rate code or the presence of a complex dynamics, for
example, involving local and global feedback and fast adaptation.

Recent results [34] demonstrate that the trigeminal ganglion neurons use tem-
poral code. Here, using the dynamical stability measure, it has been shown that
neurons in Pr5, Sp5i, and Sp5o nuclei can vary their response stability according
to the stimulus characteristics, for example, the stimulus duration (Fig. 3.13). Thus
the trigeminal neurons adapt their coding scheme to the stimulus characteristics,
and there is a continuous oscillation between the two extremes, the temporal
and rate codes. This conclusion is indirectly supported by the presence of an
extensive network locally connecting neurons in the trigeminal nuclei and the
global corticofugal projections, so that the global network dynamics can modify
the stimulus-evoked patterns of each individual neuron.

It is known that the frequency of whisker movements plays an important role
in effective perception (see, e.g., [36, 37]). Previous results showed the presence of
resonance properties in the firing of thalamic and cortical neurons (see the review
in [16]). Indeed, the stimulation of a vibrissa at a given frequency can be related to
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its vibration during perception. Then the surface discrimination requires fine-tuning
of the system and a series of impulses deflecting the vibrissa can be considered
as a single entity. Therefore, we expect an effective band-pass amplification (or
filtration) of the stimuli in a given frequency band by some cells. It was found that
more than half (about 57 %) of neurons in the trigeminal nuclei have this property.
Finally, the remaining 10 % of cells have no pronounced dependence on the stimulus
frequency, and these neurons probably perform a different task, not directly linked
to stimulus codification and transmission. Besides, their stability factors are usually
extremely low (e.g., in Fig. 3.14, Stlow � 500, Stband � 150, whereas Stno dep � 18),
which also suggests that stimulus processing is not their primary role.

The percentage of neurons showing low-pass, band-pass, and no-dependence
behavior is quite similar across different nuclei (Fig. 3.15a). This suggests that the
number of neurons specializing in different tasks (e.g., border or texture detection)
is also similar in Pr5, Sp5i, and Sp5o nuclei. The mean “optimal” stimulation
frequencies of the band-pass neurons is about 5 Hz for Pr5 and Sp5i and about 4 Hz
in Sp5o. These frequencies are close to the lower end of the frequency scale for
whisker movements in active exploration (4–12 Hz) [38]. These results correlate
with studies of the amplitude of averaged neuronal responses in the somatosensory
cortex, where similar filtration properties have been found [31]. Thus, we can
suppose that at least some of the filtration properties observed for neurons in
the somatosensory cortex can be influenced by analogous responses generated by
neurons in the trigeminal complex.

3.4 Wavelet Coherence for Spike Trains: A Way to Quantify
Functional Connectivity

A very common method to track temporal coupling or functional association
between stimulus and neural response is the peristimulus time histogram, which
characterizes the cross-correlation between two point processes, i.e., stimulus events
and the neural spike train [28]. On the one hand, the PSTH examines temporal
changes in the amount of generated spikes triggered by the stimulus. On the other,
analyses in the frequency domain can provide a more concise description of the
temporal correlation of the oscillatory patterns in spike trains.

In the frequency domain, spectral coherence is a well-established standard
tool to analyze the linear relationship between two (usually continuous) signals
by determining the correlation between their spectra. A high spectral coherence
suggests the presence of a functional association between, e.g., the stimulus and the
neural response in the corresponding frequency band. Starting from this concept,
several modifications of the coherence measure have been suggested (see e.g., [39–
41]).

Although the above-mentioned measures have been shown to be very useful for
different problems in neuroscience, they suffer from the assumption of stationarity
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of the neural response and do not account for dynamical changes in associations
(coupling) between stimulus and neural response. Indeed, any analysis based
entirely on time averaging (PSTH) or on the Fourier transform (spectral coherence)
ignores all temporal variations in the functional coupling between tactile stimulation
and neural response. An additional temporal resolution is essential and demands
replacement of the classical Fourier (spectral) coherence by other methods. There
have been successful attempts to adapt Fourier-based methods to short time signals,
for example, by means of orthonormal sliding windows [42–44], which are similar
to the classical Gabor transform [45].

Wavelet analysis is a significantly more powerful tool that offers a reasonable
compromise between temporal and frequency resolutions. The wavelet transform
has been used to analyze brain signals from the very beginning in neuroscience.
Most of its applications have been to electroencephalographic recordings (see, e.g.,
[46–53]).

The first studies of wavelet coherence go back to the beginning of this century
[54–57]. In a similar way to spectral coherence, wavelet coherence informs about
the functional coupling between, e.g., the stimulus and neural response, but it also
provides the temporal structure of the coupling. The use of the wavelet transform for
analysis of neural spike trains recorded in the trigeminal nuclei under tactile whisker
stimulation is illustrated in [9, 58].

In this section, we quantify the wavelet coherence (i.e., functional association)
of the gracile neural response to tactile stimulation, and show that activation of
the SI cortex leads to a dynamical (i.e., time-varying) alteration of the neuronal
response characteristics mediated by the corticofugal pathway. For this purpose,
we shall consider how wavelet coherence can be used to investigate the dynamical
properties of neural spike trains and to evaluate dynamical changes in the neural
response to tactile stimulation in the gracilis nucleus provoked by activation of the
corticofugal feedback from the SI cortex.

3.4.1 Wavelet Coherence of Two Point Processes

PSTH and ordinary spectral coherence usually provide little information about the
time–frequency contents of a spike train. Some insight can be obtained by the
traditional dot-raster display. Although the raster display can capture important
temporal characteristics of the neural stimulus response, it is merely a visual
tool, i.e., no measure of stability of the neural response can be derived directly.
Moreover, a correct comparison of raster displays generated by several neurons with
essentially different firing rates is difficult, if not impossible. This leads eventually
to a problem in generalizing results over the neuronal population. Meanwhile, the
wavelet technique offers a natural way to study the temporal structure of neural
stimulus response coherence.

A spectral representation of a spike train can generally be obtained by the Fourier
transform. However, this transformation is known to have difficulties in dealing
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with point processes [29]. To overcome some of these difficulties, the multitaper
Fourier transform has been advocated in the literature [30]. Although the multitaper
transform usually provides a good estimate of the power spectrum, in the case of
excessively periodic spike trains (e.g., under experimental conditions of periodic
stimulation), it may fail to represent the spectral density consistently. The wavelet
transform can be used as an alternative way to perform spectral analysis.

As we saw in Sect. 3.3.4, a spike train can be represented as a sum of delta
functions (3.9). Then the wavelet power spectrum of the spike train can be defined
by (3.11) and (3.12). The global wavelet spectrum can be obtained from (3.12) by
time-averaging the local (time-dependent) spectrum:

EG.s/ D 1

T

Z T

0

E.s; t0/dt0 ; (3.14)

where T is the time length of the spike train. The global spectrum (3.14) provides
an unbiased and consistent estimate of the true power spectrum [59].

This approach ensures that the mean energy in a random spike train is homoge-
neously distributed over all interspike intervals EG.s/ D 1. This is similar to the
spectrum of white noise. Consequently, we quantify the power distribution in the
train under study in units of the power of the random spike train with the same mean
firing rate. Energy below (above) 1 means that the probability of spike patterns with
the given scale s is below (above) the probability of such a pattern in the random
spike train.

When dealing with two spike trainsN andM , by analogy with the Fourier cross-
spectrum, we can introduce the following wavelet cross-spectrum:

WNM.s; t0/ D WNW
�
M

k0
p
�rN rM

; (3.15)

where WN and WM are the wavelet transforms of the trains N and M , respectively.
Then a normalized measure of association between the two spike trains is the
wavelet coherence [54]

CNM.s; t0/ D
ˇ̌
ˇS
�
WNM.s; t0/=s

�ˇ̌
ˇ
2

S
�
EN .s; t0/=s

�
S
�
EM.s; t0/=s

� ; (3.16)

where S is a smoothing operator (for details see [54, 60]). The coherence def-
inition (3.16) may give artificially high values for the coherence in the case of
infinitesimally small values of the power spectrum of either signal or both signals,
i.e., when E.s�; t�0 / � 0. To avoid this problem in numerical calculations, a
thresholding procedure can be used, setting the coherence to zero when either of
the power values is below a certain threshold.
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3.4.2 Measure of Functional Coupling Between Stimulus
and Neuronal Response

3.4.2.1 Coherence in the Stimulus Frequency Band

To study the functional coupling between the stimulus and the neuronal response
we can use (3.16) with N the train of stimulus events and M the neuronal spike
train. Because we are interested in studying the functional coupling with stimulus
events, which are periodic, we will focus on the frequency band corresponding to
the stimulus frequency, i.e., on f D 1Hz, which is associated with the scale sD 1 s.
To successfully resolve the stimulus-induced frequency contents in the neural
response with minimal loss in time resolution, we set k0 D 2. Then from (3.10),
δ! � 1=2 and δt � 2. Although the wavelet transform uses the time scale (period)
s as a parameter, to address the frequency contents, we shall use the frequency as
the parameter, defined formally by f D 1=s.

To quantify the variation of the functional coupling among stimuli and neural
response, we average the neural stimulus coherence over scales in a narrow band
around the stimulus frequency. An estimate of the band limits can be obtained from
(3.10), viz., f 2 �.1�c=2�k0/; .1Cc=2�k0/

�
, which gives 0.83–1.16 Hz for c D 2.

We shall refer to this frequency band as the stimulus frequency band. Obtained this
way, the coherence is a function of time

C.t/ D 1

s2 � s1
Z s2

s1

CNM.s; t/ds ; (3.17)

which is then used to evaluate the power spectrum by the conventional Fourier
transform.

3.4.2.2 Statistical Significance

Two linearly independent spike trains have insignificant coherence CNM.s; t0/ � 0,
whereas CNM.s; t0/ D 1 indicates a perfect linear relationship between the spike
trains at the scale s and localization t0.

Although a large coherence amplitude usually indicates the presence of a
consistent phase relationship (coupling) between two spike trains in a given time
interval, it is also possible that this is a random variation in the spike trains. One
should therefore cross-check the statistical significance of the observed coherence.

The statistical significance of the wavelet coherence can be assessed relative to
the null hypotheses that the two spike trains generated by independent stationary
processes with given distributions of interspike intervals (ISIs) are not coherent. To
evaluate the significance level, we use a surrogate data test [61, 62] with Monte
Carlo simulation to establish a 95 % confidence interval. The surrogate spike trains
are obtained from the original one by randomizing phase relations, keeping other
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first-order characteristics intact. We shuffle the ISIs and evaluate coherence among
the surrogate spike trains. To conclude positively about the connectivity between the
stimulus train and the neuronal response, their coherence should be higher than the
resulting significance level.

3.4.2.3 Mean Characteristics Describing Effects of Cortical Stimulation

To examine the effect of cortical stimulation on the coherence of neural response
to stimulus, we average the local coherences over time and the stimulus frequency
band

Cm
cntr D ˝

Ccntr.t/
˛
t
; Cm

AESC D ˝
CAESC.t/

˛
t
; (3.18)

whereCcntr.t/ andCAESC.t/ are the coherences in the stimulus frequency band in the
control and after the SI cortex stimulation conditions, respectively. For convenience
we also introduce the overall mean coherence Cm D .Cm

AESC C Cm
cntr/=2. First, we

recall that Ccntr.t/ and CAESC.t/ are bounded functions of time and thus the maximal
increment δCm D Cm

AESC �Cm
cntr depends on the overall mean coherence and cannot

exceed the value 2.1�Cm/. Thus the higher the overall mean coherence, the lower
the coherence increment can be. Then we guess a linear model

jδCmj D ˛.1 � Cm/ ; (3.19)

where ˛ is a constant to be identified from the data.
Then for a given value of the wavelet coherence, by using (3.19) we can evaluate

the expectation of the absolute value of the coherence increment. If the observed
increment is much smaller than the expectation, we can question its significance
(i.e., no effect). To decide positively on the presence of an effect on the stimulus
coherence provoked by the SI cortex stimulation, we require the experimentally
observed increment δCm to be at least 50 % of the expectation value, i.e., jδCmj 	
0:5˛.1 � Cm/. Then we have a coherence increase or I-effect for positive δCm and
a decrease or D-effect for negative values.

3.4.3 Functional Connectivity of Gracilis Neurons to Tactile
Stimulus

The analyzed data set consisted of 29 extracellular recordings (spike trains) of
unitary neuronal activity from the gracilis nucleus measured at three different
epochs:

• Spontaneous firing.
• Responses to periodic stimulation (1 Hz rate) of the neuronal receptive field

(control conditions).
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• Responses to periodic stimulation (1 Hz rate) of the neuronal receptive field after
electrical stimulation of the SI cortex (AESC conditions).

All neurons were identified as projecting to the thalamus [20]. The analyzed neurons
showed a low spontaneous activity with mean firing rate 1:1 ˙ 0:4 spikes/s (range
0–10 spikes/s) whose pattern coincided with the firing characteristics of projecting
neurons described previously [63, 64].

3.4.3.1 Example of Wavelet Analysis

First, let us illustrate the wavelet analysis of a representative neural spike train.
Figure 3.16a shows the spike train during three different experimental epochs
(for illustration purposes, we selected a neuron with a considerable spontaneous
activity). Under spontaneous conditions, the neuron exhibits an irregular spiking
pattern with a slight peak at 70 ms, manifested in the autocorrelation histogram
(ACH, Fig. 3.16b, left). Mechanical stimulation under the control conditions elicited
a well-pronounced neuron response with 25 ms peak latency, followed by a weakly
rhythmic firing with 120 ms period (Fig. 3.16b, middle). Electrical stimulation of the
SI cortex facilitated the neural response to the tactile stimulation. The response in
the PSTH became more prominent (Fig. 3.16b, right). However, neither the response
latency nor the mean firing rate (21.1 vs. 23.7 spike/s) varied much relative to the
control conditions. Furthermore, the weak oscillatory behavior observed in the tail
of the PSTH under control conditions disappeared.

The wavelet power spectrum (Fig. 3.16c, left) confirms the irregularity of spon-
taneous firing observed in the ACH. There are many oscillatory rhythms localized
in both the time and frequency domains with essentially erratic distribution. Thus
spiking activity has no well-defined dominant periodic activity (although there is
a feeble and not-persistent-in-time power peak at 14 Hz). The distribution of the
power under control conditions (Fig. 3.16c, middle) shows a consistent peak in the
stimulus frequency band (from 0.83 to 1.16 Hz, between the two dotted horizontal
lines). This peak indicates the presence of the stimulus-evoked rhythm in the neural
firing. We also note that the peak amplitude (power) is not persistent in time,
but instead exhibits a low-frequency oscillation (<0:3Hz). This oscillation of the
spectral power suggests that the neural response to the same tactile stimulation
is not stable (identical) throughout time, but instead has some variability, i.e., the
neuron fires essentially different numbers of spikes with different ISIs in response
to the same stimulus events during the stimulation epoch. We also observe some
increase in the spectral power around 8 Hz, consistent with the oscillations (120 ms
period) observed in the corresponding PSTH (Fig. 3.16b, middle). In accordance
with the stimulus response facilitation observed in the PSTH after electrical cortex
stimulation, the power peak at the stimulus frequency band became even more
pronounced (Fig. 3.16c, right). Now we have a continuous practically black island
going through the whole stimulation epoch in the stimulus frequency band. Notice,
however, that the ultralow-frequency oscillation of the power is weaker, but still
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Fig. 3.16 Wavelet spectral and coherence analysis of experimental spike trains. (a) Stimulus
events and neural spike trains during three experimental epochs: spontaneous activity, control
32 s tactile stimulation delivered to the neuron receptive field at 1 Hz rate, and the same
tactile stimulation repeated after electrical stimulation of the somatosensory (SI) cortex (AESC).
(b) Autocorrelation (ACH) and peristimulus time histograms (PSTHs) for the corresponding
epochs. (c) Wavelet power spectra of the neural spike train for the corresponding epochs. The
x-axis corresponds to the localization z (time), whereas the oscillation frequency from 0.5 to
15 Hz is plotted along the y-axis on a logarithmic scale. Gray intensity is equivalent to wavelet
spectral power. Dashed lines define the cone of influence and horizontal dotted lines delimit
the stimulus frequency band 0.83–1.16 Hz. (d) Level of statistical significance for the wavelet
coherence obtained by the surrogate data test. Coherence above the curve is deemed significant.
The gray region is the frequency band of interest (around the stimulus frequency). (e) Wavelet
coherence of the neural spike train to tactile stimulation events for the control epoch and after SI
cortex stimulation. Solid black lines delimit islands of statistically significant coherence (the stripe
between two dotted lines is of interest). Gray intensity corresponds to the strength of the stimulus
coherence of the neural response

exists. Besides, there is a significant increase in the power of harmonics of the 1 Hz
rhythm and, on average, a greater presence of oscillations in the domain of higher
frequencies.

To quantify how coherent (reliable) the neural response to the stimulus events is,
we evaluated the wavelet coherence of the neural spike train and stimulus events.
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To decide on the statistical significance of the observed coherence level, i.e., on
the presence of functional associations (coupling) between the stimulus and neural
response, we performed a surrogate data test by randomizing phase relationships
between two signals. Figure 3.16d shows a statistical significance curve .P D 0:05/

for the frequency range observed in the neural spike train. Coherence above the
curve is deemed statistically significant, although if the area of the significant islands
is small enough (5 %), then the conclusion regarding the coherent response should
be made carefully.

Figure 3.16e illustrates the wavelet coherence of the tactile stimulus events and
evoked neural response. Because the tactile stimulation is periodic (i.e., has only one
frequency), we shall refer to the stimulus frequency band only (delimited by dotted
lines in Fig. 3.16e) when speaking about the response coherence. During the control
stimulation epoch, we observe three islands of significant coherence in the stimulus
frequency band (Fig. 3.16e, left). This provides evidence for the presence of the
stimulus–response association previously observed in the corresponding PSTH.
However, we also find that the association or stimulus response coupling is not
constant, but an oscillatory function of time. Notice also that the neural power
spectrum in the corresponding frequency band was not very strong (Fig. 3.16c,
middle). However, the coherence clearly reveals the functional coupling between
the neural firing dynamics and stimulus events. The stimulus coherence of the neural
response becomes stronger after electrical stimulation of the somatosensory cortex
(Fig. 3.16e, right). As we observed earlier in the wavelet power spectra (Fig. 3.16c,
middle and right), the stimulus coherence also suffers from ultralow-frequency
oscillations.

Thus for a given neuron we observed two phenomena:

• The strength of the functional stimulus–neural response coupling is amplified by
the electrical stimulation of the SI cortex.

• The coupling strength is a dynamical quantity, slowly oscillating in time, that can
temporarily fall below the significant level.

The latter implies that the stimulus–response association may be temporarily lost
for a single neuron.

3.4.3.2 Pitfalls of Fourier Spectrum and Wavelet Spectral Analysis

To illustrate possible pitfalls in the interpretation of the Fourier power spectrum, we
first evaluated the power spectrum through the multitaper Fourier transform of the
neural spike train shown in Fig. 3.16a. In accordance with the irregularity of firings
under spontaneous conditions, the Fourier spectrum (Fig. 3.17a) is essentially flat
with a peak at 14 Hz corresponding to the periodicity observed earlier in the ACH
(Fig. 3.16b, left). However, for the control stimulation epoch, the overall spectral
distribution is quite similar to that of the spontaneous spectrum, and it lacks a
peak at 1 Hz corresponding to the neuron response at the stimulus frequency. In
contrast, due to the excessive periodicity of the neural response, after the electrical



3.4 Wavelet Coherence for Spike Trains: A Way to Quantify Functional. . . 109

Fig. 3.17 Spectral analysis
of spike train (corresponding
to Fig. 3.16a) for three
different epochs: spontaneous
activity (dotted line), control
tactile stimulation (solid line),
and tactile stimulation
preceded by electrical
stimulation of the SI cortex
(dashed line, AESC). Gray
regions delimit the alpha
frequency band ranging from
5 to 15 Hz, and the stimulus
frequency band 0.83–1.16 Hz.
(a) Power spectra obtained by
the multitaper Fourier
transform. (b) Global wavelet
power spectra for the same
epochs

stimulation of the SI cortex, we observed an unreasonably wide peak around 1 Hz,
followed by many strong harmonics contaminating the high-frequency range. Thus
the Fourier transform of a spike train may fail to consistently represent its spectral
density.

We then used the wavelet transform as an alternative way to perform spectral
analysis. Figure 3.17b shows the global wavelet power spectra of the neuron-firing
counterpart to the Fourier spectra. The wavelet spectra are much more consistent
with the oscillatory rhythms suggested by the previous analysis of spike trains by
the ACH and PSTHs. According to the normalization used in (3.12), the unit power
density corresponds to the power spectrum of a spike train with randomly distributed
ISIs, which we refer to briefly as a random spike train. Then a spectral power above
(or below) unity indicates the presence (or absence) of the corresponding rhythm in
the spike train with statistical power higher than just a random ratio.

During spontaneous activity, the power spectrum of the neuron firing only
slightly deviates from the spectrum of the random train across all frequency bands
(Fig. 3.17b, dotted line). In agreement with the weak rhythm observed in the ACH
(Fig. 3.16b, left), the global wavelet spectrum also has a small peak at 14 Hz. We
also detected peaks at about 0.7 and 1.9 Hz. Going back to the complete wavelet
spectrum (Fig. 3.16c, left), we find that the latter peaks are due to strong episodic
events localized between 4 and 7 s and between 10 and 16 s from the beginning,
respectively. Thus spontaneous firing can be characterized as random, showing
no strong persistent specific frequencies. Under the control tactile stimulation, we
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Fig. 3.18 Spectral characteristics of gracile projecting neurons in the stimulus and alpha fre-
quency bands. (a) Mean power of the global wavelet spectrum and its SE in the stimulus frequency
band for spontaneous conditions and during response to tactile stimulation under control conditions
and after electrical stimulation of the SI cortex (AESC). (b) Same as (a), but for the alpha frequency
band. (c) Statistics of the types of spectral effect of the electrical stimulation of the SI cortex
for 2 frequency bands. I, No, and D stand for increase, no effect, and decrease in the spectral
power, respectively. Black and gray bars correspond to the stimulus and alpha frequency bands,
respectively

observed a strong peak in the stimulus frequency band (Fig. 3.17b, solid line). Note
that the peak is quite narrow and has a harmonic at 2 Hz. Stimulation of the SI cortex
boosts the amplitude of the power peak in the stimulus frequency band, and we also
observed an important enhancement of the power in the band ranging from about 5
to 15 Hz. For higher frequencies (>15Hz), there is no significant deviation of the
power density from 1, whereas for the range <5Hz, the harmonics of the stimulus
frequency rhythm are manifested in the power spectrum. Accordingly, we define
the second frequency band of interest (5–15 Hz), which we shall refer to briefly as
the alpha frequency band. Thus, at the single-neuron level used in this study, we
found that the frequency band corresponding to the evoked neural spiking activity
is localized in the stimulus and alpha frequency bands.

3.4.3.3 Population Properties of Spectral Power

To assess statistical properties of the observed changes in the spectral power of the
neuronal firing, we compared the global wavelet power spectra under spontaneous
conditions and under tactile stimulation in the control and after the SI cortex
stimulation conditions. Figure 3.18 summarizes the results.

The overall mean power under spontaneous conditions corresponds to the power
of the random spike train, in both the stimulus and the alpha frequency bands
(Fig. 3.18a, b, spontaneous). This confirms that the firing pattern of projecting
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neurons in the gracilis nucleus is essentially random. Stimulation of the neuron
receptive fields boosts the mean power concentrated in both the alpha and the
stimulus frequency bands (Fig. 3.18a, b, control), although the increase in the
stimulus band is much stronger (7 vs. 2.5 times). Electrical stimulation of the
SI cortex raises the power concentrated in these frequency bands even higher
(Fig. 3.18a, b, AESC). However, on average, the latter enhancement is not so drastic.
The effect of electrical stimulation lasted between 15 and 30 min, after which the
neurons recovered their activity.

A balanced one-way ANOVA ensures that the mean spectral powers in three
different epochs are significantly different with P values 2.5e�5 for the stimulus
frequency band and 2.7e�5 for the alpha band. A multiple-comparison test shows
that the values of the power during tactile stimulation under control conditions
and after SI cortex stimulation conditions differ significantly from the power
of spontaneous firing in both frequency bands, and that they are statistically
indistinguishable from each other.

Although the mean spectral power across both frequency bands does not
differ significantly between tactile stimulations under control conditions and after
electrical stimulation of the SI cortex (Fig. 3.18a, b), in the majority of experiments
we observed an increase in the power provoked by cortex stimulation. This result
agrees with the previously reported facilitation of the stimulus response provoked
by SI cortex stimulation [65–68]. To quantify the percentage of neurons exhibiting
different types of effects of stimulation of the SI cortex, we evaluated the number of
increases in the spectral power (I-effects), the number of cases when the difference
was negligible (no-effects), and the number of decreases (D-effects). To decide on
the type of the effect we used the relative increment of the power in the given
frequency band, viz.,

�E D EAESC �Ecntr

.EAESC CEcntr/=2
; (3.20)

where Ecntr and EAESC are the spectral power under control conditions and after
SI cortex stimulation conditions. If the absolute increment was <5%, we assigned
no-effect, otherwise, according to the sign of the increment, we decided on an I- or
D-effect.

Figure 3.18c shows that, after stimulation of the SI cortex, in the majority of
cases (66 and 69 % for the stimulus and alpha frequency bands, respectively), the
power of firing does indeed increase in both frequency bands, i.e., we have an I-
effect of cortex stimulation. In 17 % of cases for the stimulus band and 14 % for
the alpha band, cortex stimulation had no effect on the spectral characteristics of
the neural response. Finally, in 17 % of cases, for both bands, the spectral effect of
cortex stimulation was negative, i.e., the power diminished.

Thus tactile stimulation leads to a significant enhancement of the power of neuron
firing, in both the alpha and the stimulus frequency bands. In addition, electrical
stimulation of the SI cortex amplifies the spectral power in these bands for about two
thirds of the neurons in the gracilis nucleus. We also conclude that facilitation of the
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neural response by the corticofugal pathway occurs not only through an increase in
the number of spikes elicited by the stimulus, but also through the ordering of the
response pattern.

3.4.3.4 Effect of Cortex Stimulation on Response Coherence

Let us recall that coherence is a normalized measure of the cross-spectrum of two
signals. It thus has meaning in the frequency bands presented in both the neural
spike train and the stimulus. The latter has the fixed frequency of 1 Hz (up to
negligible variations due to the experimental setup). Accordingly, we study the
wavelet coherence of the neural response to tactile stimulation in the stimulus
frequency band only, whose limits were set to 0.83–1.16 Hz.

To study the effect of cortex stimulation on the neural response coherence in
the gracilis nucleus, we evaluate the mean stimulus coherences in the control Cm

cntr
and after electrical stimulation of the SI cortex Cm

AESC. Figure 3.19a shows the
absolute value of the coherence increment jδCmj D jCm

AESC �Cm
cntrj as a function of

the mean overall coherence Cm D .Cm
AESC C Cm

cntr/=2 for the experimental data
set. Not surprisingly, the plot shows a strong linear tendency of the coherence
increment to be smaller for higher values of the overall mean coherence. By fitting
the model (3.19) to the data in the least-squares sense, we obtain ˛ D 0:41 (solid
straight line in Fig. 3.19a). Thus for a given value of the wavelet coherence, by
using (3.19), we can evaluate the expectation of the absolute value of the coherence
increment and define the effect (No, I, or D) provoked by cortical stimulation
(Fig. 3.19a).

Figure 3.19b shows the percentage of different types of effects of electrical
stimulation of the SI cortex on the tactile stimulus coherence of neuron firing in
gracile projecting neurons. In the majority of cases (59 %), electrical stimulation
of the SI cortex facilitates a more reliable (higher coherence) neural response to
the tactile stimulus. In 24 and 17 % of cases, we had no effect or a decrease in
coherence, respectively. The observed relative increment of the coherence value for
I- and D-effects was about the same, namely, 13 and 15 %, respectively (Fig. 3.19c).

We note that the positive increment in the coherence (reliability of the neuron
response to tactile stimulation) was observed in a slightly lower number of cases
than the increment of power in the stimulus frequency band (59 % in Fig. 3.19b vs.
66 % in Fig. 3.18c), which confirms the statement made earlier that an increase in
the spectral power is not necessarily accompanied by an increase in the coherence.
Moreover, this suggests possible subtle changes occurring in the stimulus response
pattern due to the corticofugal pathway, instead of a simple increase in the firing
rate.

To cross-check whether the increment in the wavelet stimulus coherence corre-
lates with conventional characteristics of neural activity, we plotted an increment in
the mean firing rate δFR D FRAESC � FRcntr and an increment in the amplitude
of the response peak in the PSTH �APSTH D AAESC � Acntr versus δCm

(Fig. 3.20). In these plots, a data point belonging to quadrant I or quadrant III
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Fig. 3.19 Effect of the electrical activation of the SI cortex on the wavelet coherence (reliability)
of the response of projecting neurons in the gracilis nucleus to tactile stimulation of their receptive
fields (RFs). (a) The absolute value of the coherence increment δCm as a function of the mean
overall coherence Cm shows a strong linear tendency. The solid straight line is the best fit of
the data to the model (3.19). The gray region delimits the no-effect region (data points shown by
triangles), where the experimentally observed value of the coherence increment is <50% of the
expectation. Circles and squares correspond to I (increase) and D (decrease) effects of electrical
cortex stimulation on the stimulus response coherence. (b) Percentage of neurons exhibiting I, No,
and D types of effect. (c) Relative changes (increase or decrease) in the coherence for I and D
effects

corresponds to a positive correlation between the corresponding measures, i.e., an
increase or decrease in coherence is associated with an analogous effect in the
other characteristic, whereas quadrants II and IV establish the contrary effect or
anticorrelation. According to the above-described findings, we expected that an
enhancement of the reliability of the neural response to tactile stimulation (i.e.,
δCm > 0) would not necessarily be reflected in the neuron firing rate, but it seems
reasonable to expect a better peaking of the PSTH and consequently �APSTH > 0.

Indeed, Fig. 3.20a shows that the data points in the case of the mean firing rate are
distributed quite arbitrarily over the plane—the linear fit of the data confirms this.
The straight line and its 95 % confidence interval are essentially horizontal, showing
no significant correlation between the measures. A different picture is observed for
the increment in the amplitude of the PSTH peak (Fig. 3.20b). The best-fit line and
its 95 % confidence interval have a notably positive slope. Thus, as expected, we



114 3 Analysis of Single Neuron Recordings

Fig. 3.20 Increment in the mean neural firing rate (a) and the amplitude of the PSTH peak
(b) vs. the increment in the neural stimulus response coherence. Quadrants I and III correspond
to positive correlation between two characteristics (i.e., increase or decrease of one characteristic
is accompanied by the same effect in the other), whereas quadrants II and IV correspond to negative
or anticorrelation (i.e., when the effect in one characteristic is contrary to the effect in the other).
Dashed straight lines and gray regions containing them show the best linear fits of the data and
their 95 % confidence limits. The direction and position of the fits imply the absence of correlation
between the firing rate and coherence measures, and a positive correlation of the amplitude of the
PSTH peak and coherence measures. However, note the presence of cases where changes in the
PSTH amplitude do not correspond to changes in the coherence

have a positive correlation for the changes provoked by electrical stimulation of the
SI cortex between the coherence and the amplitude of the PSTH peak. However,
we note that an enhancement (or reduction) of the stimulus coherence is not always
accompanied by an increase (or decrease) in the PSTH amplitude. This means that,
for a considerable number of experiments the PSTH measure fails to predict the
effect of changes in the coherence of the neural response to the tactile stimulus.

3.4.3.5 Variable Functional Coupling to Stimulus

In Fig. 3.16e, we observed qualitatively that tactile stimulus coherence oscillates
slowly in time, both for the control experimental conditions and after electrical
stimulation of the SI cortex. Let us now quantify these oscillations and study their
possible functional role.

Figure 3.21a shows two strips cut out of the corresponding coherence functions
in the stimulus frequency band that is shown in Fig. 3.16e between two horizontal
dotted lines. To examine the mean coherence and its modulation in time, we average
the local coherence over the stimulus frequency band. The resulting time series for
the control Ccntr.t/ and after SI cortex stimulation CAESC.t/ give a measure of the
reliability of the neuron response to stimulation events throughout the corresponding
stimulation epoch (Fig. 3.21a, bottom). At the beginning of the stimulation epochs
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Fig. 3.21 Oscillatory behavior of the wavelet coherence of the neural response to tactile stim-
ulation events in the stimulus frequency band. (a) Top strips show coherences evaluated in
the stimulus frequency band 0.83–1.16 Hz (corresponding to those shown in Fig. 3.16e between
horizontal dotted lines) for the control and after electrical stimulation of the SI cortex (AESC)
for the representative neuron. Gray intensity corresponds to the local coherence value. Zero
on the time axis corresponds to the beginning of each epoch. Bottom: Thick curves show the
integral (averaged over the stimulus frequency band) wavelet stimulus coherence of the neuron
response throughout the stimulation epochs. The thin dash-dotted horizontal line defines the level
of statistical significance for coherence under control stimulation conditions. According to the
statistical significance, we define time windows of significant (gray boxes) and nonsignificant
(white boxes) coherence. (b) PSTHs of the neural response under control conditions, evaluated
over time windows with coherence above (left) and below (right) the significance level. In the
windows of coherent response, the neuron shows a pronounced peak, whereas it loses the stimulus
correlation outside the coherence windows. (c) Fourier power spectra of the oscillation of the
wavelet coherences under control conditions and after SI cortex stimulation (AESC)
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(up to �20 s), the stimulus response coherence is higher after electrical cortex
stimulation than under the control conditions. The two characteristics then both
exhibit some decay (i.e., the neuron firing becomes less stimulus coherent) and
no substantial difference between the coherence values is observed. Over all the
stimulation epochs, we observed a slow oscillation of relatively large amplitude.
We note that the period of slow oscillation is much longer than the wavelet
temporal resolution (about 10–15 vs. 2 s), which ensures correct identification of
the coherence oscillatory behavior.

The observed oscillation may have a functional role. Indeed, for the control
stimulation epoch the coherence falls temporarily below the significance level
(Fig. 3.16e, left and Fig. 3.21a, bottom). We can thus define time windows (seg-
ments) with coherence above or below the level of statistical significance. In
Fig. 3.21a, these windows are shown by white and gray boxes, so that the total length
of the significant and nonsignificant segments is the same. Obviously, in windows
with high coherence, the neuron should exhibit a strong functional stimulus–
response relationship. However, when the stimulus coherence is not significant, this
functional association may be lost. The “raw” PSTH (Fig. 3.16b, middle) does not
provide evidence for this phenomenon. However, by splitting the spike train into
two parts according to the significance of the observed coherence, we do indeed
observe an essential difference in the PSTHs (Fig. 3.21b). In regions with significant
coherence, the neuron exhibits a well-pronounced stimulus response (Fig. 3.21b,
left), whereas its firing becomes practically uncorrelated with the stimulus in the
time windows of nonsignificant coherence (Fig. 3.21b, right). We can interpret this
behavior as a temporal loss of functional connectivity between the tactile stimulus
and the neuron. We also note that electrical stimulation of the SI cortex increases the
stimulus–response coherence and that it stays above the level of significance during
practically the whole stimulation epoch. Only after about 27 s does the coherence
become nonsignificant. In such an “alerted” state, the neuron maintains functional
coupling to the sensory stimulus, sending coherent spikes to the thalamus.

Figure 3.21c shows Fourier power spectral densities for the ultralow-frequency
oscillation of the stimulus coherence in the control and after cortex stimulation. In
the first case, the spectrum has a peak at 0.09 Hz, whereas after SI cortex stimulation,
the peak shifts to a lower frequency (0.06 Hz) and becomes smaller.

Figure 3.22 shows the mean frequency and power of the coherence oscillations
averaged over the neuron population during tactile stimulation under control
conditions and after electrical cortex stimulation. The mean frequency under control
conditions was 0.065 Hz, which is slightly lower than the oscillation frequency
of 0.068 Hz after cortex stimulation. However, there is no statistically confirmed
significant difference between the two means. Similarly, the mean oscillation power
is slightly (but not significantly) higher in the case of tactile stimulation preceded
by electrical stimulation of the SI cortex. The mean frequency and amplitude of the
ultralow-frequency oscillations averaged over the neural population are not affected
by the electrical stimulation of the SI cortex.

Thus, the possibility of studying the temporal structure of the stimulus–response
coherence allowed us to describe ultraslow fluctuations in the tactile responses of
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Fig. 3.22 Statistical properties of the ultraslow oscillations of the stimulus response coherence of
projecting neurons in the gracilis nucleus under control conditions and after electrical stimulation
of the SI cortex (AESC). (a) Mean oscillation frequency. (b) Mean oscillation power

single projecting neurons. We note that such oscillations are not directly observable
either in the Fourier spectrum or in the PSTH of the neural response. Instead, they
represent slow modulation of the coherence (or reliability) of the neural response
to the tactile stimulation over a long timescale, i.e., the neuron fires essentially a
different number of spikes with different ISIs for the same stimulus events during
the stimulation epoch. Besides observing a facilitation of the tactile stimulus–neural
response functional coupling by the electrical stimulation of the SI cortex, we have
provided evidence that the functional coupling between the sensory stimulus input
and neural response oscillates slowly in time. During this oscillation, the stimulus
coherence can temporarily fall below the significant level. This means that the
stimulus–response association may be temporarily lost for a single neuron. This
phenomenon suggests that information processing in the gracilis nucleus occurs on
the network level, which may be “energetically” beneficial for the system. The mean
frequency of the observed coherence oscillation was about 0.07 Hz. Oscillations
in the same frequency band (0.02–0.2 Hz) have been reported in studies of human
EEG [69]. The authors showed that large-scale ultraslow oscillations in widespread
cortical regions may represent a cyclic modulation of cortical gross excitability. This
ultraslow oscillation of cortical activity might be transferred to the gracilis nucleus
through the corticofugal projections, thus modulating tactile responses.
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Chapter 4
Classification of Neuronal Spikes
from Extracellular Recordings

Abstract In this chapter, we consider the problem of spike separation from
extracellularly recorded action potentials, which is important when studying the
dynamics of small groups of neurons. We discuss general principles of spike sorting
and propose several wavelet-based techniques to improve the quality of spike
separation, including an approach for optimal sorting with wavelets and filtering
techniques. Finally, we consider the application of artificial neural networks to solve
this problem.

4.1 Introduction

Most of the neurons in the brain communicate by sending and receiving short-
lasting electrical pulses, so-called action potentials or spikes. When analyzing the
cooperative behavior of a neuronal ensemble or studying the neural code, spikes are
thought to be stereotypical events. Hence it is not the shape of each spike waveform
but the precise timing of spike firing that matters for this analysis. Then we can
speak about spike trains generated by neurons as of a multivariate point process.
Many contemporary studies of neuronal activity rely on the analysis of spike trains.
One may seek different correlations among neurons or behavioral correlates, spatial
and temporal patterns, firing synchronization phenomena, etc. For example, this is
especially relevant for the analysis of neuronal responses in the first relay stations of
the brain to external tactile stimuli, i.e., the way neurons process different external
inputs and the temporal sequences of spikes they generate [1,2]. In particular, it has
been shown that spiking of single neurons in the gracilis nucleus in response to a
stimulus may not always be faithful, while the neuronal group does reliably transmit
the stimulus to the next neural nuclei.

Spiking activity can be recorded by a single microelectrode or microelectrode
array immersed in a nervous tissue. The vast majority of in vivo electrophysiological
experiments use so-called extracellular recordings, i.e., an electrode (inside the
nervous tissue) detects electrical activity of neurons from a distance. Then several
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neurons near the electrode tip can produce spikes of different amplitude and
shape (for more detail see, e.g., [3]). Consequently, one experimental recording
(extracellular electric potential) may contain a mixture of spikes generated by
different neurons. Then the experimentalist must identify and sort or separate spikes
due to different neurons. Ideally all spikes produced by a single neuron should
be assigned to one group or cluster. Errors occur when spikes belonging to other
neurons are grouped together with the spikes of the target neuron (so-called false
positives) or when some spikes emitted by that neuron are not included in its group
(false negatives).

Finally, the quality and reliability of any subsequent analysis of spike trains,
cooperative neuronal behavior, or single neuron activity depends on the quality of
solution of the spike sorting problem. It has been shown that the quality of spike
sorting by a human operator is significantly below the estimated optimum [4].
Besides, the amount of data generated by modern experimental setups is truly
enormous and continues to grow. In a typical experiment one can easily get more
than 104 spikes recorded by a single electrode tip. Modern multielectrode arrays can
have hundreds of tips, which multiplies the amount of information to be processed.
For all these reasons, there is a growing demand to develop automatic techniques
for spike sorting.

It is typically assumed that each neuron generates spikes of the same shape
and amplitude, while signals from different cells have some individual peculiarities
(even though their signatures may be quite similar). Although this assumption may
be significantly compromised (e.g., in a burst, each subsequent spike is usually
smaller than the previous one), it is reasonably reliable for many practical cases
and we shall accept it throughout this chapter.

Nowadays, there exist a number of numerical tools for spike sorting (see, e.g.,
[3, 5, 6, 8–14], and references therein). In this chapter we shall provide a brief
overview, while paying attention to methods involving the wavelet transform and
comparing them to the standard techniques most widely used in experimental
labs. Although existing methods show good performance on preselected data sets
[15–22], the best procedure for spike feature extraction is still a challenging issue.

4.2 General Principles of Spike Sorting

Figure 4.1a sketches a typical setup with a linear multi-electrode lowered to the rat
hippocampus along the main axis of the pyramidal neurons. The electrode spans
several hippocampal subfields, including CA1 and CA3 regions. As we mentioned
above, in vivo electrophysiological experiments usually provide recordings of the
extracellular field potential that contains multi-unitary activity coming from nearby
neurons. This activity, besides spikes, contains low-frequency oscillations (<1 kHz),
so-called local field potentials (LFPs) produced by synaptic currents in principal
cells (Fig. 4.1b). LFPs can have significantly higher amplitude than the spikes.
These oscillations can be considered as a noise from the standpoint of spike sorting.
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a b

c

Fig. 4.1 Example of extracellular recordings in the CA1–CA3 regions of the rat hippocampus.
(a) Sketch of the recording setup. A linear micro-electrode with 16 tips is lowered into the
hippocampus along the main cell axis. (b) Epoch of electrical potentials recorded by the electrode
(16 traces). (c) Zoomed trace from the electrode tip #14. Several neuronal spikes can be observed
with the naked eye (arrows)

However, LFPs have great importance when studying information processing (see,
e.g., [23,24] and references therein). Figure 4.1c shows a short epoch of a recording
where we see low-frequency oscillations and fast spikes. LFPs generally have a
broad-band spectrum, which significantly overlaps with the spectrum of a typical
spike. However, even with the naked eye, we can distinguish at least high amplitude
spikes and conclude that they may not be produced by the same neuron.

Although details of different spike sorting techniques may differ significantly,
the vast majority of known methods go through a number of common steps. These
steps can be independent, or some of them can be included in a single procedure
for improving the quality of spike sorting. Some methods can also skip some steps.
However, to obtain a good understanding of the problem of spike sorting, it is useful
to separate it into four steps (Fig. 4.2).

Steps I and III are the most challenging. In Sect. 4.10, these two problems will be
solved together. Concerning step III, there are two types of method: empirical and
model-based. In step IV, the researcher should determine the number of different
groups (neurons) and the membership of the spikes in these groups.

There are also many clustering algorithms (see, e.g., [25, 26]) showing different
performances on different data sets. As a matter of fact, the final performance
of spike sorting is largely defined by the quality of the extracted spike features.
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Delimitation of clusters of spikes in the feature space 
  and their association with different neurons

Fig. 4.2 Common steps in spike sorting

Currently available methods for feature extraction may be divided into groups,
including:

• Naive, threshold based.
• Principal component analysis (PCA).
• Wavelet transform (WT).

The first two methods are the most widely used now, but the third technique has
been shown to be superior and is becoming more popular [10–12].

4.3 Spike Detection over a Broadband Frequency Activity

In the spike sorting procedure mentioned above (Fig. 4.2), step I (filtering the
extracellular potential) is usually intended to suppress noise and facilitate step II
(detection of spiking events). A straightforward way to identify spikes is then to
apply a high-pass filter (HPF) to the raw recording. However, this may significantly
distort spike waveforms and create additional difficulties for the ensuing spike
sorting. Besides, the operator must set the cutoff frequency, which is not always
obvious (we shall discuss this problem in detail in Sects. 4.9 and 4.10). Figure 4.3a–
c shows an example application of HPF with different cutoff frequencies to a
recording containing high amplitude low frequency activity. Obviously, filtering
reduces the noise: the more aggressive the filter, the lower the noise. However, the
spike amplitude is also reduced, so we may even decrease the signal-to-noise ratio
(Fig. 4.3c). More importantly, the spike shape may be significantly distorted.

A better choice in the case of linear multi-electrode recordings (Fig. 4.1) may be
the so-called current source density (CSD) analysis. This is based on modeling the
field potential using Maxwell’s equations [27]. In its simplest form, the CSD can be
written as

J.t; x/ D ��r2V .t; x/ ; (4.1)
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a b

c d

Fig. 4.3 Attenuation of low-frequency oscillations in extracellular recordings. (a) Original electric
potential with strong low-frequency oscillation (red dashed curve). (b) High-pass filtering with
cutoff frequency Fcut D 300Hz. Spiking activity stands out above the noise. However, spike
amplitudes decrease and spike shapes are distorted. (c) Same as in (b), but with more aggressive
filtering, Fcut D 800Hz. (d) CSD-based method emphasizing local currents corresponding to
spikes without disturbing their shapes

where V.t; x/ is the extracellular (recorded) potential, � is the (ohmic) conductivity
of the extracellular space, and J.t; x/ is the CSD. Since spikes are local events,
while LFPs usually have large spatial extent, evaluation of the CSD from experi-
mental data can spotlight spikes over LFPs.

For practical reasons we can approximate the second spatial derivative in (4.1)
at the j th electrode by finite differences (this is especially useful in laminar brain
structures like the hippocampus):

QJj .t/ D �VjC1.t/C 2Vj .t/ � Vj�1.t/ ; (4.2)

where Vj .t/ is the voltage recorded at the j th electrode (without loss of generality,
we assumed � D 1 in (4.2)). Then QJj can be used for spike detection and sorting.
Figure 4.3d shows the currents produced by spiking activity. Note that we now avoid
the need to adjust any filter parameters and obtain the true shape of the spikes, but
in terms of the CSD.
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xth

Fig. 4.4 Detection of spikes by thresholding. Events that go through the threshold (red dashed
line) are marked as spikes (xth D �3�x). The detected spikes are then used for sorting

Let x.t/ be the preprocessed signal containing spikes (either high-pass filtered
V.t/ or CSD-like QJ .t/, Fig. 4.3). Once x.t/ has been obtained, we have to select
events corresponding to spikes. In other words, we aim to distinguish spikes from the
background activity. This is often done by amplitude thresholding. If x.t/ crosses
a threshold xth (in one selected direction), we mark this event as a spike. More
complex detection algorithms are sometimes applied. For example, power detection,
in contrast to x.t/, uses the quadratic quantity

y.t/ D
Z
H.t � 	/x2.	/ d	 ; (4.3)

where H is some smoothing kernel (in the simplest case H.t/ D ı.t/).
Changing the threshold level xth allows us to regulate the trend between missed

spikes (so-called false negatives, going undetected) and the number of events
occurring due to random fluctuations (false positives, which are non-existent
spikes). Ideally, the threshold should be selected in such a way as to minimize the
total error. As a rule of thumb xth � �3�x , where �x is the standard deviation of
x.t/ (Fig. 4.4).

Finally, we obtain a set of spikes:

˝ D
n

tj ; xj .t/

�ˇ̌
ˇ t 2 Œtj ; tj C T �

o
; (4.4)

where tj are the times of the spikes and T is a time window or duration of spikes
(usually T � 1–2 ms). For correct spike sorting, all spikes should be aligned in the
set ˝. This is usually done in such a way that the maxima (or minima) of all spike
waveforms are at the same distance from the beginning of the corresponding spike.

In experimental recordings, each spike waveform xj .t/ is discretized with the
time step �t D 1=Fs, where Fs is the sampling rate. For adequate spike sampling,
Fs should be sufficiently high. Fs D 20 kHz is usually acceptable. Then the
discretized spikes can be considered as vectors in an m-dimensional space:

xj D .xj1; : : : ; xjm/
T 2 R

m ; (4.5)
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wherem D T=�t is the length of the spikes. Finally, we can construct a data matrix

X D Œx1 x2 : : : xN � 2 Mm�N .R/ (4.6)

containing all spikes. Each column of X describes one spike waveform and the
column number corresponds to the number of the spike in the set ˝. Hence we can
work with the set

˝ D
n
X; ftj gNjD1

o
: (4.7)

4.4 Naive Spike Sorting

Once a set of events (spikes) ˝ (4.7) has been obtained, we must decide how
many classes (neurons) there are and separate spikes between them. Comparing
spike waveforms, one can resolve this problem with some degree of reliability.
However, in practice, spike sorting represents a complicated task due to the high
level of background noise, variability of spike waveforms, the fact that distinctions
between spikes of different neurons are frequently not well-pronounced, and so on.
For example, in Fig. 4.5, at least two groups of spikes are observable by the naked
eye, but a reliable inference needs more careful investigation.

Mathematically speaking, each spike is a point in an m-dimensional space (4.5).
Since m is quite big (usually m D 30–70), the curse of dimensionality is the major
obstacle for clustering spikes in such a multidimensional space. Hence some method
is required to reduce the dimension of the representation space. In this section,
we describe the simplest (but sometimes very useful) approach to the dimension
reduction problem.

Extracellularly recorded signals can be treated as a mixture of spikes produced by
several neurons and different sources of fluctuations or noise. Figure 4.6 illustrates
a model of this process. The recorded signal is then given by

V.t/ D
NX

nD1
vn.t/C

KX

kD1
�k.t/ : (4.8)

The simplest approach to the problem of spike sorting is amplitude thresholding.
The amplitude is one of the most important characteristics of spikes. It is assumed
a priori that each neuron generates signals of the same shape, and that this shape
does not change significantly over time. If the electrode is placed near one neuron,
then its spikes will be significantly higher than spikes of distant neural cells and
the background activity. In this case it becomes possible to identify at least one
type of spikes with amplitude thresholding (e.g., spikes B in Fig. 4.5). Spikes of
different heights can be separated by selecting different thresholds (spikes A and
B in Fig. 4.5). The advantage of this method is that it requires minimal equipment
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Fig. 4.5 A typical example of the extracellular potential recorded from the rodent hippocampus.
The simplest way to sort spikes (marked by arrows) is by amplitude thresholding (two dashed
lines)

∑
1

Fig. 4.6 An illustration of the spike sorting problem. The extracellularly recorded signal is a sum
of spikes generated by neurons 1–3 and fluctuations produced by noise sources �1; : : : ; �K .

and can be implemented on-line during recordings. In some cases this approach
provides quite precise information, adequate for the research at hand, and no
further improvements are required. One obvious disadvantage is that the amplitude
is not the only feature of a spike. Spikes of different neurons may have similar
amplitudes but, e.g., different widths. Then the quality of spike sorting by amplitude
thresholding decays drastically.

To test the quality of spike sorting one can use a superimposed plot of all spikes
belonging to a single cluster (Fig. 4.7). If the spikes belonging to one class have
basically the same form (up to small variations induced by noise), then we can
conclude that the sorting is good enough (Fig. 4.7a). The existence of a spike class
with clearly different spike shapes (Fig. 4.7b) means that the method is unable to
accurately resolve spikes and other techniques should be applied. However, this
method usually works when the number of spikes is relatively small. In the case
of big data sets (thousands of spikes), other methods based on electrophysiological
and anatomical criteria should be applied (for details see, e.g., [7]).
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a b

Fig. 4.7 Controlling the quality of spike sorting by spike superposition. (a) Good separation.
Spikes of only one class (shape) appear in the plot. (b) Bad separation. Spikes of two different
classes are merged

Fig. 4.8 Spike sorting errors due to spike overlap

Besides the background noise, which can be considered as a normally distributed
process (or sometimes a Poisson distribution), the amplitude can vary due to
possible overlapping if two different neurons fire simultaneously or within a small
time window. When the maximum of one spike coincides with the minimum (or,
more generally, with the negative phase) of another spike, then the resulting signal
may not reach the threshold (Fig. 4.8a). The number of such events can be estimated
approximately as follows:

Nmissed � �	� ; (4.9)
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where � is the mean firing rate of neurons and 	� is the mean duration of the
negative phase.

Another possible error occurs when two independent spikes with small ampli-
tudes add together and the threshold is crossed by the resulting signal (Fig. 4.8b).
Denoting the firing rates of spikes as �1 and �2, we can estimate the error rate in this
case as

Nwrong � �1�2	1	2 ; (4.10)

where 	1; 	2 are the spike durations.
These two types of error are typical for amplitude thresholding. Besides the

possibility of doubled spikes, one can also consider noisy events with high enough
amplitudes to affect the amplitude of spikes. The shape-accounting techniques
discussed in the remaining part of this chapter are more robust against these errors.
Nevertheless, false positive and false negative errors appear for any spike-sorting
technique, but their number is typically much lower than for amplitude thresholding.

In order to perform a more detailed description of spike features, besides
amplitude, additional characteristics such as duration, height of local extrema, etc.,
can also be used. Such an ad hoc approach based on the geometrical description of
spikes was widely used in spike-sorting techniques developed early on [28–30]. As a
rule, the more characteristics are employed for spike description, the better the spike
sorting that can be achieved. However, these techniques are subjective and usually
provide suboptimal spike sorting. In the following sections, we discuss spike-sorting
techniques based on an integral analysis of spike waveforms.

4.5 Principal Component Analysis as Spike-Feature
Extractor

Principal component analysis (PCA) is a simple but significantly more powerful
tool for spike sorting [31–35]. This approach can be considered as a particular
case of factor analysis [36]. It is widely used for image recognition [37], noise
reduction [38], reduction of dimensions in dynamical models without significant
loss of information, e.g., for mathematical description of turbulent flows [39], and
so on.

4.5.1 How It Works

PCA estimates a set of orthogonal vectors for the matrix (4.6), the so-called principal
components fcigNiD1. These are eigenvectors of the covariance matrix constructed
from the data ci D .ci1; : : : ; cim/

T 2 R
m. Then each spike xj can be represented as
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Fig. 4.9 Principal component analysis of spikes of three different classes. (a) Standard deviations
of the scores vs the number of the principal component. (b) Plane of the first two principal
components. Three clusters are easily distinguishable

a weighted sum of the principal component vectors with the corresponding weights
or scale factors, so called scores Sij, which are evaluated by the scalar product

Sij D .cT
i ; xj / �

X

k

cikxjk : (4.11)

Thus we decompose each spike into an orthogonal set of principal components:

xj D
NX

iD1
Sijci : (4.12)

Then the scores Sij can be considered as features describing the j th spike.
To illustrate the use of PCA for spike sorting, we generated an artificial set

of spikes that consisted of a series of three repeated waveforms extracted from
experimental data (with random order of the waveforms), corrupted by noise
with Poisson distribution. By analogy with Lewicki [3], we consider the standard
deviation of the scores in the direction of each principal component (Fig. 4.9). If
�1; �2; : : : are the variances in the directions of the principal components, we can
estimate the percentage of the data variation that is accounted for by the first k
components as 100.�1 C �2 C � � � C �k/=

P
i �i . Figure 4.9 illustrates the standard

deviation of scores versus the number of the principal component. The first three
components characterize the main changes in the spike shapes. They account for
about 80 % of the variance in the data. This suggests that, for reasonably faithful
description of spikes, one can use just the first few principal components.

There are different approaches for selecting the number of principal components
to retain, i.e., deciding which components are important and which can be excluded
without losing important information (see, e.g., [40, 41]). For instance, the method
proposed by Cattel [41] examines the explained variance (Fig. 4.9a) and searches for
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Fig. 4.10 Original spike waveforms used to generate two data sets (sets #1 and #2). We use three
clearly different waveforms (WFs 1–3) and two similar waveforms (WFs 4 and 5). The difference
between the similar WFs appears on short time scales for set #1 and on longer time scales for set #2

the point where the decrease in the standard deviation vs the number of the principal
component becomes the slowest (the so-called elbow criterion). Components to the
right of this point can be excluded without loss of important information.

In practice, using the first two (N D 2 in (4.12)) or sometimes three components
turns out to be optimal. These components have eigenvalues larger than the
background noise. Consequently, they account for the most important information
about the shapes of the action potentials, while higher components are usually very
noisy and provide no information about the shape of the spikes. Other components
provide either an insignificant improvement or even decrease the accuracy of spike
sorting. The score of the first two components typically enables acceptable spike
sorting with much better performance than the method of amplitude thresholding
(or at least equivalent). For instance, in the case shown in Fig. 4.9b, the performance
of the method is 100 %, i.e., all ‘recorded’ spikes are correctly assigned to three
neurons.

4.5.2 Possible Pitfalls

In contrast to the amplitude approach, disadvantages with the PCA-based method
are less obvious and can be revealed only in comparative analysis of different
techniques for spike sorting. For illustrative purposes, we generated two semi-
simulated data sets (Fig. 4.10), both consisting of 500 spikes of five different
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Fig. 4.11 Sorting of the data sets shown in Fig. 4.10 by PCA and wavelet techniques. (a) The
wavelet-based approach outperforms the spike separation by PCA for set #1. In the PCA feature
space, the spikes of WFs 1–3 are clearly clustered, but WFs 4 and 5 (open and solid circles,
respectively) are mixed together. The wavelet space provides five well separated clusters for all
spikes (WFs 1–5). (b) The PCA method provides better separation of set #2, than the WSC method.
The chosen suboptimal wavelet coefficients exhibit multi-modal distributions allowing separation
of clearly different spikes (WFs 1–3), but not similar WFs 4 and 5

waveforms. The original spike waveforms where selected from electrophysiological
recordings. The two sets have three clearly different waveforms (WFs 1–3) and
two similar ones (WFs 4, 5). Similar waveforms in set #1 exhibit differences
only on short time scales, while WFs 4 and 5 in set #2 show a more pronounced
difference on longer time scales. To simulate the noisy background, we mixed a
colored noise, band-pass (300 Hz–3.0 kHz) filtered Poisson process, with the noise-
free spike waveforms.

Spike sorting of set #1 by PCA reveals four different clusters (Fig. 4.11a). Three
clusters correspond to spikes of WFs 1–3, thereby confirming the potential of the
PCA approach. However, the fourth cluster contains a mixture of spikes of the two
similar waveforms (WFs 4 and 5). Analysis of the first principal components proves
that the difference between WFs 4 and 5 is not reflected by them. Thus a problem
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Fig. 4.12 An example where the wavelet-based approach outperforms the spike separation by the
PCA. (a) Original spike waveforms used for generation of the data set (set #3). We use three
clearly different waveforms (WF 1–3) and two similar waveforms (WF 4 and 5). The difference
between the two similar WFs appears on small time scales. (b) Feature space of the first two
principal components. A zoomed region corresponding to the fourth cluster is shown. Spikes of
two waveforms (open and solid circles for WFs 4 and 5, respectively) are mixed, and an acceptable
separation is impossible. (c) The “Wave”, i.e., the function chosen for wavelet analysis. (d) Zoomed
region corresponding to the fourth and fifth clusters (WFs 4 and 5) in the wavelet space. Two clearly
distinct clouds are formed, and separation is possible with high fidelity

with the PCA method may occur when, among different spike waveforms, there are
two types with similar shapes and clearly expressed distinctions appearing only on
small time scales (set #1 in Fig. 4.10). Such distinctions are not usually reflected in
the first principal components, and consequently the method fails to separate such
spikes.

In order to confirm this conclusion, we considered the other test data set, i.e., data
set #3, consisting of 500 spikes of five different waveforms (Fig. 4.12a) corrupted by
noise. Application of the PCA to this data set again reveals four different clusters.
First, three clusters correspond to spikes of the WFs 1–3, thereby demonstrating the
potential of the PCA approach. However, the fourth cluster contains a mixture of



4.6 Wavelet Transform as Spike-Feature Extractor 135

spikes of two similar waveforms: WFs 4 and 5 (Fig. 4.12b). Analysis of the principal
components confirms that the difference between WFs 4 and 5 is not reflected in
the first two of them. Thus, PCA-based methods may fail to separate spikes with
differences appearing on small scales.

4.6 Wavelet Transform as Spike-Feature Extractor

The wavelet approach [10–12] represents the spike waveform xj .t/ by coefficients
of the WT. In the case of the continuous wavelet transform [13, 14], the coefficients
are associated with selected values of the time localization t0 and the scale s. In its
most general form, the continuous WT of a spike waveform reads

Wj .s; t0/ D 1p
s

Z T

0

xj .t/ s;t0 .t/ dt ; (4.13)

where T is the spike duration (typically 1–2 ms), and

 s;t0 .t/ D  

�
t � t0
s

�

is a translated and scaled mother wavelet.
The main wavelet-based techniques for spike sorting (e.g., [10–12]) use the

discrete wavelet transform, since this provides a quick decomposition of a spike
with fewer coefficients. Let us consider, e.g., an approach proposed by Letelier and
Weber [10].

4.6.1 Wavelet Spike Classifier

The WT of a spike can be considered as a set of filters with different bandwidth.
Then the value of the energy found in a specific frequency band for each spike
is considered as its feature. This idea was first adopted in the framework of the
wavelet-based spike classifier (WSC) [10]. This approach is based on the standard
pyramidal expansion algorithm (see Fig. 2.28, Sect. 2.4). The coefficients of the
spike decomposition in the basis of Daubechies wavelets are used as features for
spike sorting.

For illustrative purposes, we can consider a more general case, namely, appli-
cation of both the continuous and the discrete wavelet transform, depending on the
researcher’s choice. We shall consider here the continuous WT, because it is simpler
and allows for a detailed representation of the results. In particular, it becomes
possible to discuss the problem of optimization of spike features in terms of a
surface of the wavelet coefficients, which is a more illustrative approach.
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With the tuning parameter s in (4.13), one can successfully resolve the multi-
scale structure of the data sets #1 (Fig. 4.10a) and #3 (Fig. 4.12a). Indeed, the WSC
technique finds all five clusters, including those corresponding to WFs 4 and 5
(Figs. 4.11a and 4.12d).

In the case where spike waveforms have a multi-scale structure with significant
characteristics appearing on small scales, as in the data sets #1 and #3 used in
Figs. 4.10a and 4.12a, the wavelets are able to resolve these features. Indeed,
application of the wavelet technique to the data set of Fig. 4.11a shows that this
approach finds all five clusters. Figure 4.12d also illustrates a good separation of
WFs 4 and 5 into two clusters, where the PCA had difficulties (Fig. 4.12b).

4.6.2 Potential Problems

Although the WT is potentially more powerful than PCA, there are a number of
inherent problems restricting its broader application for spike sorting. Here we
discuss the main ones among them: an arbitrary choice of mother wavelet and
selection of the best wavelet coefficients:

• Apparently, the results of the analysis, e.g., the wavelet coefficients, depend on
the mother wavelet  . Generally, there is no standard answer about how to
choose the mother wavelet in a particular case. Thus, the performance of the
method for a given mother wavelet may vary considerably from one data set to
another. For spike separation, different mother wavelets have been advocated:
Daubechies [10], Coiflet [11], and Haar [12]. Possible advantages of one or the
other depend on the particular spike waveforms of the analyzed data set, and no
a priori recommendation can be given about which mother wavelet will perform
better. Successful classification can be achieved by selecting a mother wavelet
similar in shape to the spike waveforms. For instance, in the example shown in
Fig. 4.12, to obtain a good separation, we used the Wave wavelet (Fig. 4.12c),
which is visually very similar to WFs 4 and 5 (Fig. 4.12a).

• Let us assume that the mother wavelet has been selected somehow. Then the
WT of spike waveforms is performed, thus obtaining a number of different
wavelet coefficients for each spike (usually 64 in the case of the DWT and even
more for the CWT). In contrast to PCA, these coefficients are not ordered, and
making the right choice among them for spike sorting is a challenging problem.
Different authors have suggested different procedures for coefficient selection.
Among others, we can list: large standard deviation, large mean values, and
multi-modal distribution [10]. There is also a more complicated, but at the same
time mathematically better justified method based on information theory [11].
However, there is no single universal approach for the choice of WT features
capable of providing the best classification in every case, and a counterexample
can always be found. Difficulties occur especially when the analyzed data
contains spiking activity of many neurons, and among them there are both clearly
different and rather similar types of spike waveforms.



4.6 Wavelet Transform as Spike-Feature Extractor 137

0.0 0.4 0.8
-0.4

0.4

1.2

-0.7 -0.3 0.1

-0.7

-0.3

0.1

WF4 WF5

WaveletPCA

a b

c d

Fig. 4.13 A case where the PCA provides better separation than the wavelet technique. As in
Fig. 4.12, we use a data set with spikes of three clearly different and two similar waveforms.
However, the difference between similar spikes is not so pronounced now, and is not on small
scales (set #4). (a) Principal components show a good separation of spikes of WF4 and WF5 (open
and solid circles, respectively). (b) Wavelet classification. The chosen wavelet coefficients exhibit
multi-modal distributions allowing separation of clearly different spikes. However, separation of
WF4 and 5 is not achieved. (c) and (d) Histogram of spike density along the first component
score (c) and one of the wavelet coefficients (d). The wavelet coefficient exhibits a multi-modal
distribution, but the number of peaks (four in (d)) corresponding to clusters is less than in the PCA
case (five in (c))

To illustrate the kind of problems that may be encountered, we again generated
test data sets #2 and #4 (Figs. 4.10b and 4.13a) with more pronounced differences
between the WFs 4 and 5 and with no clear distinctions on small scales. This
helps the PCA to separate all spike groups, including those of similar waveforms
(Figs. 4.11b and 4.13a). According to one of the wavelet coefficient selection
procedures [10], the features used for classification should show a multi-modal dis-
tribution. However, in many practical cases, a multi-modal distribution is obtained
for many different wavelet coefficients and there is no clue about how to perform an
automatic comparison in order to select the most informative ones. An example
of such a quasi-arbitrary (unsuccessful) choice of coefficients is illustrated in
Fig. 4.13b. Although the chosen wavelet coefficients have multi-modal distributions
(Fig. 4.13d), allowing separation of the first three clearly different spike waveforms,
the wavelet approach gives a worse classification of two similar waveforms than the
one provided by the PCA (Fig. 4.13a, c).
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4.7 Wavelet Shape-Accounting Classifier

With a view to improving the wavelet-based extraction of discriminative spike
features, let us consider a three-step approach based on a combination of the PCA
and wavelet techniques [13, 14]. This algorithm, which we shall refer to as the
wavelet shape-accounting classifier (WSAC), works as follows:

• Find representative waveforms (rWFs).
• Search for wavelet parameters (s, t0) maximizing the distances between the rWFs

in the wavelet space.
• Evaluate the wavelet coefficients for the resulting parameter sets for all neuronal

spikes Wi (s�, t�0 ).

To demonstrate the method we start with a typical situation frequently encountered
when processing real electrophysiological recordings. A conventional method of
spike feature extraction, e.g., PCA, gives two poorly separated overlapping clouds
(Fig. 4.14a). For the sake of simplicity, we suppose that these clouds consist of
spikes of two neurons (or spikes of one neuron and other possibly noisy spike-
like pulses). Our goal is to improve the separability of the two clouds and hence to
reduce the number of wrongly classified spikes.

First, we localize the cloud centers Sk (k D 1; 2), i.e., the positions of the
spike density maxima in the PCA space (step 1). Then we average the spike
waveforms over spikes falling in a small neighborhood of each cloud center (insets
in Fig. 4.14a):

xrWFk D xj2! ; ! D ˚
j 2 Œ1; N � W kSj � Skk < �



: (4.14)

The mean or representative waveforms (rWFs) thus obtained approximate noise-
free spike waveforms of the two neurons. Here we assume that each neuron emits
spikes of the same shape that are linearly mixed with noise at the electrode, so that
the noise impact near the cloud centers is minimal and gets canceled by averaging.

Second, we apply the WT to xrWF1, xrWF2 and search for a set of parameters
(s�, t�0 ) that maximizes the distance jWrWF1.s

�; t�0 / � WrWF2.s
�; t�0 /j (step 2).

Figure 4.14b shows the distance between rWFs in the wavelet space as a function of
the scale s for different values of t0. Frequently, crucial differences between spike
waveforms occur at the beginning and the end of firing. To better account for the
spike morphology, we search separately for the maximal distance in the first and
second halves of the spike time window. Circles in Fig. 4.14b mark two points (one
for each half window) where the distance between the representative waveforms is
maximal.

Third, we apply the WT for all spikes xj , using the parameter sets (s�; t�0 ) found
above (step 3). The resulting coefficients are the new spike features (Fig. 4.14c).
Visually, the clouds corresponding to two neurons are better delimited in the wavelet
plane than in the PCA space (compare Fig. 4.14a, c). Indeed, the histogram of
the distribution of spike features in the wavelet spaces (WSAC method) exhibits
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Fig. 4.14 Working principle of the WSAC method. (a) Two overlapping clouds correspond to
spikes of different types on the PCA plane. Insets show representative spike waveforms obtained
by averaging over neighborhoods of the cloud centers. (b) Difference between wavelet coefficients
for the representative spikes as a function of scale. Circles mark the coefficient pairs (s D 4:8,
t0 D 18 and s D 7:1, t0 D 32) that correspond to the most prominent distinctions between rWF1
and rWF2. (c) New spike feature space. The resulting coefficients are used. (d) Spike density along
the clouds. Peaks correspond to the centers of the clouds. The dashed line corresponds to the PCA
space and the solid line shows the results obtained in the wavelet space. The later distribution
shows better separated and more prominent peaks resulting in a better localization of spikes of
different waveforms in feature space (compare the clouds in (a) and (c))

significantly more pronounced peaks than the PCA method (Fig. 4.14d). This means
that one can now better delimit clouds and considerably reduce classification errors
arising from misclassification of spikes in the overlapping part of the clouds.

4.8 Performance of PCA vs WT for Feature Extraction

We tested the proposed approach on three different data sets (S1, S2, and S3). Each
data set is obtained in the following way. We take two experimental electrophys-
iological recordings. One of the recordings is selected in such a way that spikes
of one type can be easily separated from the rest by the conventional thresholding
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Fig. 4.15 Results of spike separation by different methods for the data set S1. (a) Projection of
the feature space for the PCA onto its first two components, and corresponding histograms of spike
densities. Black points correspond to spikes classified as belonging to the targeting cluster. (b) The
same as in (a), but for the WSC method. (c) The same as in (a), but for the WSAC method. (d)
Number of misclassified spikes for the different methods and for different spike feature subsets
used for classification

method (Sect. 4.4). These spikes are then mixed with another experimental record-
ing displaying complex spiking activity. On the one hand, this procedure allows one
to keep all characteristics essential to a real electrophysiological experiment (level
and type of noise, spike waveform variation, etc.), and on the other hand, we possess
a priori information about the membership of spikes for one target cluster formed
by the “additional” spikes. Hence, we can estimate the classification error for the
given cluster.

The generated data sets were used as an input to three feature extraction algo-
rithms discussed above: PCA, WSC, and WSAC. Then clustering was performed
using the superparamagnetic method [42], and the number of misclassified spikes
was estimated.

Figure 4.15 illustrates results obtained for the data set S1 consisting of 16,568
spike waveforms, including 3,069 “additional” spikes. The PCA gives two clusters
(Fig. 4.15a) shown in black and gray, corresponding to the additional (targeting) and
the original action potentials, respectively. Squares mark unclassified spikes that are



4.8 Performance of PCA vs WT for Feature Extraction 141

not related to either of the clusters. Classification of spikes by the three first PCs
gives 290 misclassified spikes: 24 false negative and 266 false positive, i.e., 0.8 and
8.6 % of the total number of spikes in this cluster. The histograms of spike densities
for each coordinate in the feature space show a bimodal distribution for the PC1,
and a unimodal distribution for the PC2. The former allows separation of different
waveforms into two clusters, while the latter does not actually provide additional
information for spike classification.

Figure 4.15b illustrates the results of spike sorting performed by the WSC
method [10]. Following the authors’ recommendations, we chose for classification
the wavelet coefficients showing the largest standard deviations, the largest values,
and the bimodal distributions. Note that, in contrast to the PCA, the histograms in
Fig. 4.15b are both bimodal, so they actually provide useful information for spike
sorting. However, for the considered example, we obtain a higher classification
error: 410 misclassified spikes (5.2 % of false negative and 8.1 % of false positive).
Thus a quasi-arbitrary choice of wavelet coefficients satisfying the given recommen-
dations did not lead to an improvement in spike sorting as compared with the PCA
method.

Figure 4.15c shows the results of the spike classification obtained using the
WSAC method. We found that three pairs of coefficients .s�; t�/, namely, (6.8, 31),
(8.6, 51), and (6.2, 20), maximize the difference between the characteristic spike
shapes. These sets were used for spike sorting, which provided the best results: 185
or 2.8 % of false negatives and 3.1 % of false positives.

Figure 4.15d shows the results of spike classification using the three methods for
different combinations of features used in each particular technique. For instance,
classification performed using the first two principal components gives 364 errors
(first bar in Fig. 4.15d), whereas the same done with PC1 and PC3 results in 296
errors. This means that, in this case, PC3 describes the variation in the data set
better than PC2. Using all three components slightly improves the classification,
resulting in 290 errors. Considering WSC, we note that each coefficient improves
the results of classifications, but the overall performance is the worst among all the
methods. On average, the WSAC approach gives the minimal classification error for
any combination of spike features.

Table 4.1 summarizes the results obtained for all data sets. We also include
classification errors obtained by the WMSPC method based on the approach
proposed by Quian Quiroga et al. [12]. This approach performs considerably better
for the set S2, while showing poor performance for S1 and S3.

Hence, regarding the question of when wavelet-based methods outperform the
PCA, we have shown that the main advantage of WT techniques reveals itself
when dealing with the detailed structure of experimental signals over a broad
range of scales. Considering the WT approach as a mathematical microscope, the
following interpretation can be given: wavelets can resolve fine details of a signal
structure, but we need to choose the focal point and resolution of this “microscope”
appropriately. From the mathematical viewpoint, this means that the selection of
wavelet parameters responsible for resolution and focusing is of crucial importance.
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Table 4.1 Classification error rates for all data sets and different methods (percentage of
misclassified spikes out of the total number of spikes in the cluster)

S1 S2 S3

FN FP Sum FN FP Sum FN FP Sum

PCA 0.8 8.6 9.5 41.6 11.8 53.4 0.1 2.6 2.7
WSC 5.2 8.1 13.3 34.2 13.8 48.0 6.7 2.9 9.6
WMSPC 7.5 8.9 16.4 28.7 0.8 29.5 9.5 4.4 13.9
WSAC 2.8 3.1 5.9 26.4 8.2 34.6 1.8 0.3 2.1

FN and FP denote false negative and false positive errors

If they are selected successfully, the “microscope” can elucidate the differences in
spike waveforms.

This is why the problem of selecting the optimal wavelet coefficients is an
important trend in the problem of spike separation. In contrast to PCA-based
methods, where the first principal component scores are used as spike features due
to their natural order, optimal selection of features within the framework of WT
techniques is a significantly more complicated procedure.

There are at least two cases where wavelet-based techniques are potentially
preferable to PCA:

• When there is small-scale structure in the waveforms that is not reflected in the
first principal components.

• When there is strong enough low-frequency noise, since this significantly
diminishes the performance of the PCA method, whereas noise statistics are less
critical for wavelets.

In other situations, the considered WT-based approaches give comparable results to
PCA.

4.9 Sensitivity of Spike Sorting to Noise

Sensitivity of spike sorting to noise statistics is an important problem for any
approach. Extracellular recordings of neural activity contain different kinds of noise,
from Johnson noise in the electrode and electronics, through the background activity
of distant neurons and electrode micromovement, to variation of action potentials
due to physiological processes in the cell dynamics.

Obviously, the quality of the spike separation is degraded by increasing noise
intensity, although robustness against the noise level may be different for different
methods. Another, more important question we address here is how the efficacy of
the method depends on the frequency band of the noise. Indeed, when the noise
frequency band lies far outside the frequency band of a spike spectrum (about 300–
3,000 Hz), the noise can be easily filtered out by applying high-pass and/or low-pass
filters, thus eliminating the impact of the noise on spike separation. However, when
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the noise frequency band overlaps with the spike spectrum, the use of filters becomes
worthless, and the advantages of one or another method can become significant.
This kind of overlap can happen, for example, when recording certain neurons from
a densely populated brain region and spikes from more distant neurons (far enough
away and consequently of low enough amplitude to be included as spikes for
separation, but close enough that their effect is noticeable) are confused with noise.

In this section, we study and compare the performance of the PCA and the
wavelet technique with regard to the noise statistics, assuming an overlap between
the spike spectrum and the noise frequency band. We discuss how the quality of
spike separation depends on the frequency band of the experimental noise.

4.9.1 Impact of High/Low Frequency Noise on PCA and WT

Quantities used as features for spike separation in the PCA and WT techniques are
often related to rather different time scales. This suggests that PCA and WT may
show different degrees of robustness against noise with different statistics.

The wavelet coefficients W.s; t0/ used for spike classification are typically
related to rather small values of the scale parameter s. Therefore we expect the
coefficients to be distorted mainly by fluctuations in the frequency band associated
with the scale parameter value. Relatively slower or faster fluctuations should not
have an essential influence (in the case of additive noise). The latter means that
separation of several types of spikes by the WT approach should have a maximal
classification error for noise with high-frequency dynamics.

Another situation is expected for PCA. This approach quantifies spike features
on large scales for entire waveforms. The low-frequency noise appearing on the
time scales of the first principal components disperses spikes in the PCA feature
space. The high-frequency noise mainly affects high principal components that are
not considered for spike separation. As a result, the PCA method should exhibit
a classification error that decreases with the frequency band of the presented
fluctuations.

To check these conjectures, we generated data sets consisting of 2,000 spikes of
two different types (two neurons). Then we mixed spike waveforms with colored
noise of a certain frequency band, and finally we performed spike sorting on the
resulting data sets.

The colored noise was obtained by band-pass filtering of a Poisson random
process. Choosing different values of the central frequency fnoise of the band-
pass filter, which defines the base noise frequency, and fixing the filter width
(�fnoise D 700Hz), we estimated the classification error for each spike-sorting
technique. Noise with base frequency lower than the main frequency of the spike
spectrum (about 1 kHz) was considered to be low frequency, while fluctuations with
fnoise > 1 kHz were considered to be the high-frequency noise. For wavelet sorting,
we used the WSC method [10], but other methods show qualitatively similar results.
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Fig. 4.16 PCA feature space of spike waveforms contaminated by noise. (a) Low-frequency noise,
fnoise D 500Hz. (b) High-frequency noise, fnoise D 2;500Hz

Fig. 4.17 WT feature space of spike waveforms contaminated by noise. (a) Low-frequency noise,
fnoise D 500Hz. (b) High-frequency noise, fnoise D 2;500Hz

Figure 4.16 shows that the presence of slow fluctuations is more critical for PCA
than the high-frequency dynamics. In the case of high-frequency noise, clusters are
well distinguished (fnoise D 2;500Hz, Fig. 4.16b), whereas they are less pronounced
for a slower random process (fnoise D 500Hz, Fig. 4.16a). In contrast, spike
sorting using the wavelet technique shows good performance in the case of low-
frequency noise (Fig. 4.17a, fnoise D 500Hz), but performance is diminished for
high-frequency noise (Fig. 4.17b, fnoise D 2;500Hz).

We repeated spike sorting for a different base noise frequency. Figure 4.18
summarizes our results. The error of spike sorting using PCA clearly decreases
with the base noise frequency (Fig. 4.18a). Spike separation using the wavelet
technique shows a bell-like resonance curve. The worst classification is achieved
for an intermediate noise frequency (around 2 kHz). Thus, the spike classification
error is sensitive to the noise statistics.
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Fig. 4.18 Classification error versus base noise frequency for PCA (a) and the WT technique (b)
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Fig. 4.19 Classification error versus cutoff frequency of a high-pass filter in the case of non-
overlapping (a) and overlapping (b) power spectra of noise and spikes. The noise intensity is higher
in (b)

4.9.2 Proper Noise Filtering May Improve Spike Sorting

The results shown in Fig. 4.18 provide a clue that the quality of spike sorting may
be increased by smart data preprocessing, i.e., noise filtering. In particular, when
the noise frequency band lies far outside the frequency band of the spike spectrum,
the noise can be easily filtered out by applying high- and/or low-pass filters, thereby
eliminating the noise impact on the spike separation. Figure 4.19a illustrates this
simple situation.

In order to choose an optimal value for the filter cutoff frequency, one must
estimate the power spectra of noise and spikes. But in order to provide a better
separation of action potentials, rather than the latter spectrum, it seems to be
even more useful to evaluate the spectrum of the difference between the typical
(averaged) spike waveforms. Choosing the cutoff frequency of the high-pass filter
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Fig. 4.20 (a) Classification error of the PCA and WT techniques versus the cutoff frequency of a
high-pass filter in the case of overlapping power spectra of noise and spikes (low noise intensity).
(b) The same, but for low-pass filtered spikes

higher than the range of fluctuations, we obtain clear spike sorting (Fig. 4.19a). Note
that the classification error remains the same here, even when the cutoff frequency
lies inside the spike spectrum: the filtering changes the waveform shapes, but these
changes are the same for each type of spike, so the waveforms can be well separated.
Similar results can be obtained if the frequency band of the noise is higher than the
frequency band of the spike dynamics. The noise intensity does not have a crucial
impact on the selection of the optimal cutoff frequency here.

In practice, however, a significantly more complicated situation is typically
encountered. Usually the noise spectrum overlaps significantly with the spike
spectrum and the choice of filter parameters becomes less obvious.

In order to seek for the best filtering strategy, we filtered waveforms using elliptic
IIR zero-phase filter. Figure 4.19b illustrates an example of how the classification
results depend on the cutoff frequency of a high-pass filter for overlapping power
spectra. In contrast to the previous case (Fig. 4.19a), we cannot take bigger values of
the cutoff frequency here due to the increasing classification error. An optimal value
of the given frequency probably depends on both the noise intensity and the strength
of spectrum overlap. In particular, this optimum may not be well expressed for rather
low noise intensity (Fig. 4.20a), while the choice of filter parameters becomes more
critical in the case of intense noise. According to Fig. 4.20b, a cutoff frequency
around 400 Hz provides the best spike separation here.

Let us now consider how the use of a low-pass filter influences the quality of
spike sorting. Figure 4.20b shows the dependence of the total classification error
on the cutoff frequency of the low-pass filter. Indeed, the classification error for
the WT technique has a minimum at frequencies around 2.2 kHz and then rapidly
increases. For the PCA, the error first decreases gradually to 2 kHz, then remains
almost constant. This suggests that low-pass filtering of spikes is worthless for PCA,
and is essential for the WT, where to be on the safe side we recommend a cutoff
frequency in the range 2.5–3 kHz.
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4.10 Optimal Sorting of Spikes with Wavelets and Adaptive
Filtering

In the vast majority of spike sorting methods, experimental noise is reduced by
a standard filtering prior to extraction of spike features. This procedure does not
account for the noise statistics, nor for the spike signatures. Standard techniques like
amplitude thresholding and PCA have a long history, and well established recipes
for optimal filtering. Their performance usually reaches a maximum for a high-
pass filter at 0.3–1 kHz. However, this may not be the case for the WT technique
(Fig. 4.20). Then a different filtering approach may be superior.

As we shall see in this section, the performance of the WT method can be
significantly improved by incorporating the filtering step into the problem of
selecting the optimal feature set. In other words, signal filtering and spike feature
extraction can be done in a single step. The parametric wavelet sorting with
advanced filtering (PWAF) approach was proposed to exploit this idea [43].

4.10.1 Noise Statistics and Spike Sorting

To illustrate how the noise statistics affects the spike-sorting performance, we
generated semi-artificial data sets. Each data set consisted of (1;000C1;000) spikes
of two different neurons. The original spike waveforms where selected from
electrophysiological recordings in the hippocampus. To simulate the effect of the
noisy background, we mixed colored noise (a band-pass filtered Poisson process) of
a certain frequency band with spike waveforms. We used these data sets for spike
sorting and then estimated the performance through the error rate, i.e., the ratio of
misclassified spikes to the total number of spikes.

Figure 4.21a shows the error rate as a function of the base noise frequency. In
accordance with previous results (Sect. 4.9), the PCA method gives a high error
rate for low-frequency noise and then progressively increases performance for high-
frequency noise.

As a representative approach for wavelet-based methods, we use the WSC
technique. This method exhibits significantly different behavior. The error rate has a
well-pronounced peak at an intermediate noise frequency (about 2 kHz). Compared
with PCA, the wavelet technique is a better option for sorting spikes contaminated
by low-frequency noise (fnoise < 800Hz).

In order to find the best filtering strategy, we filter waveforms, varying the cutoff
frequency of the LPF, and then perform spike classification on the filtered data. Here
we use white noise passed through the LPF with a varying cutoff frequency. Filtering
generally reduces the error rate. However, it affects the PCA and WT methods
differently (Fig. 4.21a). Indeed, the classification error for the WT technique has a
minimum at a filter frequency around 2.2 kHz and then increases rapidly. For PCA,
the error gradually decreases upto 2 kHz and then remains practically constant.
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Fig. 4.21 (a) Error rate of spike sorting versus base noise frequency. (b) Error rate after low-pass
filtering of spikes

This suggests that low-pass filtering of spikes is worthless for PCA, but it may
be essential for WT methods, where the cutoff frequency should be appropriately
selected.

4.10.2 Parametric Wavelet Sorting with Advanced Filtering

We now discuss the details of optimal spike sorting using the wavelet technique.

4.10.2.1 Derivation of PWAF Method

We start from a data set of N C M spikes of two different neurons, contaminated
by noise. Denoting the original noise-free spike waveforms by wA.t/ and wB.t/, the
recorded spikes can be written as

xj .t/ D �j .t/C
�

wA.t/ ; j D 1; 2; : : : ; N ;

wB.t/ ; j D N C 1; : : : ; N CM :
(4.15)
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where we have assumed without loss of generality that the spikes are ordered. Here,
f�j g are colored noise sources, mutually uncorrelated and with the same statistics
(i.e., spectrum).

Applying the WT (4.13) to the spike waveform xj .t/ for a selected parameter set
.s; t0/, we obtain

Wj .s; t0/ D �j C
�
WA ; j D 1; 2; : : : ; N ;

WB ; j D N C 1; : : : ; N CM ;
(4.16)

where we have put

�j .s; t0/ D 1p
s

Z T

0

�j s;t0 dt ; (4.17)

WA;B.s; t0/ D 1p
s

Z T

0

wA;B s;t0 dt : (4.18)

In (4.16), the �i .s; t0/ represent a kind of measurement noise and WA;B are the WT
coefficients of the corresponding noise-free spikes.

The coefficients Wj can now be used for sorting. The aim is to separate them
blindly into two clusters or groups with the lowest possible error rate. In our case, the
sorting is achieved by selecting a thresholdWth and assigning spikes withWj < Wth

to neuron A, and the others to neuron B (Fig. 4.22). This makes sense if the fWj g
have a bimodal distribution, otherwise when, e.g., the noise is too strong or the
parameters .s; t0/ are not optimal and no bimodal distribution exists, spike sorting
is meaningless.

Let us now assume that the measurement noise is approximately Gaussian with
standard deviation � . We denote the half distance between the noise-free spikes in
the wavelet space by

OW D WB �WA

2
D 1

2
p
s

Z T

0

.wB � wA/ s;t0 dt : (4.19)

Without loss of generality, we can shift the origin and set OW � WB D �WA. Then
the probability density distribution of fWj g reads

h.W / D Mp
2��

(

� exp

"

� .W C OW /2
2�2

#

C exp

"

� .W � OW /2
2�2

#)

; (4.20)

where � D N=M is the ratio of the numbers of spikes emitted by the neurons. Then
the minimum of the total number of misclassified spikes is attained for

Wth D �2

2 OW ln � : (4.21)
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Fig. 4.22 (a) Histogram of the distribution of the WT coefficients Wi describing noisy spikes of
two neurons. Dashed curves depict the histograms of single neurons. Classification errors appear
in the overlap region. (b) Minimal error rate given by (4.22) as a function of the discriminability
for several different values of �

Note that the optimal threshold value (� ¤ 1) does not generally correspond to the
position of the minimum in the histogram. Finally, the theoretical minimum of the
error rate is given by

Rmin D
� erfc

�
�C ln �

4�

�
C erfc

�
� � ln �

4�

�

2.1C �/
; (4.22)

where erfc is the complimentary error function, and

� D
OWp
2�

(4.23)

is the discriminability coefficient. Accordingly, the error rate is a two-parameter
function of � and � that decays with an increase in � (Fig. 4.22b). The ratio �
of the spike numbers is fixed by experiment, so the only remaining freedom is the
discriminability �.

Let us now explore ways to improve the discriminability. Selecting .s; t0/

appropriately, we can maximize the value of OW which, for constant � , increases �.
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However, as we shall show, the scaling parameter s has a nontrivial effect on the
standard deviation � of the noise, and consequently also on �.

The experimental noise �.t/ of a limited frequency band ˝noise can be repre-
sented by a sum of harmonics:

�j D
X

˝noise

A.!k/ cos.!kt C �kj/ ; (4.24)

where !k and �kj are the frequency and random phase of the corresponding
harmonic, and A.!/ defines the noise amplitude spectrum. Using the Haar wavelet
(advocated for spike sorting in [12]), we obtain the WT of the experimental noise
(4.24):

�j D � 4p
s

X

k

A.!k/

!k
sin�kj sin2

s!k

4
: (4.25)

Note that the statistical properties of � do not depend on the localization parameter
t0. Then the variance of the measurement noise reads:

�2.s;˝noise/ D 8

s

X

k

A2.!k/

!2k
sin4

s!k

4
: (4.26)

Thus the discriminability may depend nontrivially on the parameters (s; t0), the
spike waveforms, and the spectral characteristics of the experimental noise. A
natural way to change the noise spectrum is to filter the signal. Denoting the cutoff
frequency of the filter by fc, we finally reduce the problem of optimal spike sorting
to searching for the parameter set .s; t0; fc/ which maximizes the discriminability:

arg max
s;t0;fc

OWp
2�

: (4.27)

Note that our problem statement is more general than conventional methods relying
on a search for the best parameter set for the WT alone. By including spike filtering
in the problem of optimal spike sorting, we account for the specific noise of the
individual experiment and potentially provide the best possible spike classification.
Moreover, other methods of WT parameter selection are based on empirical analysis
of the experimental distribution of the WT coefficients, while the PWAF method is
parametric.

4.10.2.2 Implementation of the PWAF Method

Under experimental conditions, we have no a priori knowledge of the noise-free
spikes, nor the spectrum of the experimental noise. To estimate these and optimally
sort spikes, we propose the following algorithm:
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1. Estimate the noise-free spike waveforms. Applying a conventional algorithm,
e.g., PCA, we find peaks in the distribution of spike features and average spike
waveforms in the vicinity of each peak, thus estimating wA;B .

2. Estimate the spectrum of the experimental noiseP.!/. A good approximation
is the spectrum of the whole extracellular signal.

3. Find an optimal parameter set .s�; t�0 ; f �
c / maximizing the discriminability.

For a given .s; t0; fc/:

• Filter the signal representing the waveform difference .wB � wA/ and
evaluate OW .

• Evaluate

A2.!/ D P.!/H2.!/ ;

where H is the filter magnitude response, and then � .
• Evaluate the discriminability, OW =p2� .

Find the maximum

.s�; t�0 ; f �
c / D arg max

s;t0;fc

�.s; t0; fc/ :

4. Filter spikes with f �
c and calculate Wi.s

�; t�0 /.
5. Sort spikes according to the coefficients Wi .

Note that the proposed method can be very efficient for large data sets. Steps 1–3 do
not depend on the number of spikes and the WT of the whole data set is evaluated
only once. Moreover, the algorithm allows the use of more than one feature set for
sorting. At step 3, we can obtain more than one extremum, and then perform step
4 for all of them. In this way, we describe each spike with more than one feature
(wavelet coefficient) and can use them together for spike sorting in step 5.

4.10.2.3 Algorithm Performance

To test the algorithm, we employ simulated data sets differing by noise statistics
and spike waveforms. Figure 4.23 shows an application of the algorithm to the
data set #1. The discriminability has a strong peak at a surprisingly low frequency
fc D 100Hz (Fig. 4.23a). With such aggressive filtering, the difference OW between
the noise-free spikes in the wavelet space is small, but at the same time, we almost
completely filter out the noise, thereby gaining in performance.

Figure 4.23b shows histograms of the distribution of spike features (see also
Fig. 4.22a). The PCA method involves a significant overlap of the spikes of two
neurons and the resulting error rate is 5.5 %. To find the best possible classification
with the conventional WT, we search exhaustively through all pairs .s; t0/ for a set
minimizing the error rate. Note that this is not possible in any real situation without a
priori knowledge of the spike clusters. This procedure yields the absolute minimum
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Fig. 4.23 Sorting of data set #1. (a) Discriminability � vs cutoff frequency of an LPF. For
the maximal � D 2:39, the theoretical minimum of the error rate is 0.3 %. Inset: Superposed
experimental spike waveforms and noise free spikes (white). (b) Distributions of spike features for
different methods: PCA, exhaustive wavelet, and PWAF

of classification errors that can be achieved by any empirical WT-based method.
The exhaustive wavelet gives a bit better classification than PCA, achieving a 4.5 %
error (Fig. 4.23b).

The PWAF method is significantly superior, with an error rate of 0.7 %, which is
quite close to the theoretical minimum. This confirms the hypothesis that intelligent
filtering is essential for wavelet methods.
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Table 4.2 Error rate for spike sorting by different algorithms with simulated and experimental
data sets

Data set PCA (%) Exhaustive wavelet (%) PWAF (%)

Simulated #1 5.5 4.5 0.7
Simulated #2 28.0 5.5 1.7
Experiment #1 11.1 7.0 3.4
Experiment #2 12.2 7.3 6.8

We performed the same procedure for another data set (Table 4.2) that was
selected to exhibit differences between noise-free spikes at small time scales. This is
a case where the wavelet technique has an advantage over the PCA method. Indeed
exhaustive wavelet and PWAF yield a much better classification than PCA.

We now test the PWAF method on real measurements. Extracellular recordings
were made using tetrode electrodes. Their design permits recording of the same
neuron by two or more electrode tips (for details see [4]). In rare cases, two electrode
tips capture high-amplitude spikes generated by a single neuron in addition to
simultaneous multi-neuronal activity. Among many experimental recordings, we
selected two data sets where these conditions were satisfied. For these data sets
relating voltage traces of the two channels, we sort spikes manually with high
fidelity. Then using this information, we estimate the error rate of the automatic
methods. Table 4.2 summarizes the results, showing once again that the PWAF
method is superior.

4.11 Spike Sorting by Artificial Neural Networks

We now discuss applications of artificial neural networks [44–48] for spike sorting,
including combined approaches based on wavelets and neural networks.

4.11.1 General Approach

Here we use the wavelet multiscale decomposition of spikes as an input to a neural
network. For spike decomposition, the discrete wavelet transform is used as a tool
to characterize the structure of complex signals over a broad range of time scales.
Figure 4.24 depicts an example of a three-level DWT of a typical spike waveform
x.t/. The series of coefficients s1–s3 correspond to the approximation of x.t/ at
three levels, whereas d1–d3 represent details. Then the set Œs3; d1; d2; d3�, used as
input to a neural network, uniquely represents the original spike waveform x.t/ in
the wavelet space.

In general, DWT provides quite a large number of coefficient-features for each
spike (equal to the spike length, e.g., 64). Not all of them are relevant for spike
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Fig. 4.24 Multilevel decomposition of a typical spike waveform using the D4 wavelet

sorting, others may contain duplicated information. Thus for efficient spike sorting,
a dimension reduction is required, and for this purpose we use neural networks.

Let us assume that some multilayer feedforward neural network receives as
input spike waveform features extracted by the wavelet technique described above
(Fig. 4.25). The network should be trained in such a way that, at the output, we
can read out a few compound features best discriminating the spikes [44]. Then
the problem of spike sorting becomes trivial and simple clustering algorithms, e.g.,
k-means, can be used. We thus formulate the following algorithm for spike
sorting:

• Detect spikes that exceed the level of experimental noise by thresholding the
high-pass-filtered recorded potential (Fig. 4.5, fcut D 100–300Hz, Vth D
3
MAD (mean absolute deviation)).

• Apply DWT to the selected waveforms (Fig. 4.24). We assume that each wave-
form has 64 data points and use the D4 orthonormal Daubechies wavelet,
performing a pyramidal decomposition of the waveforms.

• Remove wavelet coefficients fluctuating around zero mean value, since these
coefficients are strongly influenced by noise.

• Process the remaining wavelet coefficients by a 3-layer feedforward neural
network.

After applying the algorithm, we expect to obtain several clusters grouping spikes
in the low-dimensional feature space (Fig. 4.25). The most challenging problem in
this algorithm is how to select an appropriate network and how to train it [45–48].

In general, training algorithms can be subdivided into two groups: supervised
and unsupervised learning. Supervised learning, i.e., with a “teacher”, usually gives
better results. However, within this framework, the learning procedure requires a
priori knowledge of all standard spikes, i.e., denoised typical spikes generated by
all neurons, which is hardly going to be available in a real experiment.
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Fig. 4.25 General scheme for spike sorting using the wavelet transform and neural networks.
Different spikes are wavelet transformed and the resulting coefficient features are fed into a
network which finally represents the spikes in a low-dimensional space. The network should be
trained in such a way that spikes of different neurons are grouped into clusters located far away
from each other

At the present time, there exist different algorithms for unsupervised learning
(without a “teacher”) [46, 47]. These algorithms have been shown to be successful
in image recognition, but their reliability depends significantly on the noise level
and the data set. Consequently, their use for spike sorting may not be effective. In
the present approach, we thus use a kind of supervised learning algorithm, which
we shall describe later.

Setting the network structure for a recognition problem is often simply a matter
of experience on the part of the researcher. The selected three-layer network in
Fig. 4.25 is just one among many. However, several circumstances should be taken
into account. The feedforward network representing a multilayer perceptron [49]
is one of the most studied in the literature. The choice of the number of layers
and units in each layer is a compromise between network stability and plasticity.
More complex networks possess better adaptation, but they may be unstable in the
recognition process. Concerning the number of units (neurons), we use 64, 32, and
2 units in the first, second, and third layers, respectively. The number of units in the
first layer is fixed by the number of data points available for each waveform, whereas
the output layer has only two units, corresponding to the lowest useful dimension
for clustering (clustering in 1D usually has much lower performance).

4.11.2 Artificial Neural Networks

Following on from the brief sketch given in Sect. 4.11.1, let us now discuss
approaches based on ANN in more detail. We continue to use a 3-layer perceptron
(Fig. 4.26). In the theory of ANNs, neuron nodes are typically described by the
McCulloch–Pitts equations [50]. The state of the neuron j in layer k, denoted by
yjk, is given by
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Fig. 4.26 Artificial neural network in the form of a 3-layer perceptron

yjk D F.�jk/ ; �jk D
MkX

iD1
!ijkyik�1 � �jk ; j 2 Œ1; Nk� ; (4.28)

where F.x/ is the activation function, and in fact, usually F.x/ D ˛ tanh.ˇx/,
while !ijk are the synaptic weights defining connections of the neuron with other
neurons in the previous layer, and �jk is the threshold for activation of the neuron.
Finally, Mk and Nk are the numbers of synapses and neurons, respectively, in
layer k.

The learning of such a multilayer structure assumes an appropriate tuning of the
thresholds f�jkg and synaptic coefficients f!inkg, in such a way that input vectors
xs would be mapped to predefined output vectors ys. As the learning technique,
we shall consider algorithms based on the backward propagation of errors. This
approach uses minimization of the error functional over the parameters !ijk and
�jk, viz.,

E D 1

2

NkX

jD1
.yjk � ys

j /
2 ; (4.29)

where yj3 represents the vector of output values obtained in the process of
recognition of the input vector xs using the neural network, and ys is the known
vector. The minimization procedure is based on the convex property of E. In
order to reach a minimum of the function, one can move against the gradient
of E. Let P D f: : : !ijk : : : I : : : �jk : : :g be the vector whose components are the
synaptic coefficients and threshold levels of the neural network. Then we have to
find arg minPE.P/. This can be done by the following iterative procedure:
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P.1/ D P.0/ � ej h
@E.P.0//

@P
.0/
j

; (4.30)

where h > 0 is a small constant known as the learning rate (the learning is performed
for one component at a time). Then the minimum of the scalar error function (4.29),
using all components f!ijkg, f�jkg, corresponds to

@E

@!ijk
D @E

@yjk

@yjk

@�jk

@�jk

@!ijk
D 0 ;

@E

@�jk
D @E

@yjk

@yjk

@�jk

@�jk

@�jk
D 0 ; (4.31)

yjk D ˛ tanh.ˇ�jk/ :

The coefficients of the neural network (Fig. 4.26) are corrected using (4.28), (4.29),
and (4.31):

@E

@!ij3
D yi2

ˇ

˛
.yj3 � ys

j /.˛ � yj3/.˛ C yj3/ ;

@E

@�j3
D .�1/ˇ

˛
.yj3 � ys

j /.˛ � yj3/.˛ C yj3/ ;

@E

@!ij2
D yi1

ˇ

˛
.˛ � yj2/.˛ C yj2/

N3X

nD1
!jn3

ˇ

˛
.yn3 � ys

n/.˛ � yn3/.˛ C yn3/ ;

(4.32)

@E

@�j2
D .�1/ˇ

˛
.˛ � yj2/.˛ C yj2/

N3X

nD1
!jn3

ˇ

˛
.yn3 � ys

n/.˛ � yn3/.˛ C yn3/ ;

@E

@!ij1
D xi

ˇ

˛
.˛ � yj1/.˛ C yj1/

�
N2X

mD1
!jm2

ˇ

˛
.˛2 � y2m2/

N3X

nD1
!mn3

ˇ

˛
.yn3 � ys

n/.˛
2 � y2n3/ ;

@E

@�j1
D .�1/ˇ

˛
.˛ � yj1/.˛ C yj1/

�
N2X

mD1
!jm2

ˇ

˛
.˛2 � y2m2/

N3X

nD1
!mn3

ˇ

˛
.yn3 � ys

n/.˛
2 � y2n3/ ;

!
.1/
ijk D !

.0/
ijk � hk @E

@!ijk

ˇ̌
ˇ
ˇ

.0/

; �
.1/
jk D �

.0/
jk � hk @E

@�jk

ˇ̌
ˇ
ˇ

.0/

:
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4.11.3 Training the Artificial Neural Network

Let us now describe the supervised network training. We denote the input and output
vectors by w and y, respectively. In our particular case w 2 R

64 represents a spike
waveform in the DWT space and y 2 R

2 is the reduced set of discriminating spike
features. We then construct a set of vector pairs (wj ; yj ), (j D 1; : : : ; n) for n
spikes, and say that the network is trained if, when presenting vector wj at the input,
we receive yj at the output for any j 2 Œ1; n�. To achieve this we have to adjust the
synaptic weights of the interneuron couplings.

4.11.3.1 Delta Rule

The simplest learning algorithm for a two-layer network consists in several steps
and uses iterative adjustment of weights for each neuron in the network. In the first
step all weights are randomly initialized. In the second step we present a vector wj
to the input of the network and receive some vector zj at the output. Then the error
of the network response is

ıj D yj � zj : (4.33)

In the third step the coupling weights are modified proportionally to the obtained
error. We employ the following delta-rule learning:

VtC1 D Vt C �wj ı
T
j ; (4.34)

where Vt is the weight vector at the learning step t and � > 0 is a small constant
defining the learning rate. The learning is performed until convergence is achieved.
The learning contains several epochs and is deemed finished if either (a) the weights
do not change, or (b) the full absolute error (a sum over all vectors) becomes less
than some fixed value.

4.11.3.2 Back Propagation of Errors

When training a multilayer network, the delta-rule described above is not applicable,
since the outputs of the internal layers are unknown. In this case the method of back
propagation of errors is usually used. This method allows one to obtain the errors
for the internal layers. In the learning process, information is passed from the input
layer to the output layer, while the error propagates in the opposite direction.

The method estimates the gradient of the error within the network and performs
a correction on the coupling weights. It consists of two stages. In the first stage,
forward propagation of the input signal is performed to estimate output activations.
Then, differences between output activations and the teacher output are estimated
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to obtain deltas for all neurons in the hidden layers. In the second stage, the gradient
for each weight is computed by multiplying its output delta and input activation.
Further, the weight is reduced by analogy with (4.34).

Details of the method are given in [44–48]. We shall illustrate this approach for
different examples of neural networks.

4.11.4 Algorithm for Spike Sorting Using Neural Networks

When sorting experimental spikes, the main problem is lack of information about
the number of clusters and about the noise-free standard spikes. Thus we cannot
apply the above algorithm for network training directly. To overcome this difficulty,
we use the algorithm for finding representative waveforms discussed in Sect. 4.7.
Finally, the spike-sorting algorithm is as follows (Fig. 4.27):

• Detect spikes that exceed the level of experimental noise.
• Obtain information about the noise statistics and perform preliminary spike

sorting using PCA or the wavelet transform.
• Select regions in the feature space with a high density of spikes and obtain the

mean spike shapes.
• Apply the wavelet transform to the mean spike waveforms.
• Train the neural network using the wavelet coefficients computed in the previous

step.
• Sort the experimental spikes with the resulting network parameters.

Thus for network training, we use spike waveforms corresponding to the centers of
the clusters obtained using preliminary spike clustering by a conventional method,
e.g., PCA or wavelet transform. As the standard output of the network, we use
vectors obtained in the feature space of the mean waveforms [51].

In order to test the spike-sorting abilities of this approach, we created a semi-
simulated data set. Two different but rather similar spike waveforms (Fig. 4.25,
spikes A and B) were selected from a real extracellular recording. We then
generated a series consisting of 946 spikes for each repeated waveform and added
colored noise to the data. The noise characteristics were similar to those observed
experimentally. As a result, we obtain a signal similar to a real extracellular
recording, but with a priori knowledge about the membership of each spike in one
or the other group.

The use of preselected standard spikes without experimental noise enables the
simplest supervised learning using the back propagation of errors algorithm. We
used 64 wavelet coefficients as the learning sequence wj for the first spike waveform
and the same number for the second spike waveform. As a result, the learning
algorithm contained 64 epochs. As mentioned above, the network should provide
the most effective spike clustering, so the standard output vectors yi associated with
the two waveforms should be markedly different. They can be appropriately chosen.
Here we used y1 D Œ0:1; 0:1� and y2 D Œ0:5; 0:5�. Once the learning procedure has
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Fig. 4.27 Block diagram for the proposed method of spike sorting

been finished, the network can be used to separate noisy data. DWTs of all spike
waveforms are used as input to the trained network, thus providing pairs .y1; y2/
for each spike. For the final data clustering, we used the k-means algorithm. Then
the clustering error is the number of wrongly classified spikes relative to the total
number of spikes.

Figure 4.28 illustrates the performance of the proposed approach for spike sorting
in the presence of color noise with a fixed bandwidth of 500 Hz and varying central
frequency. The classification error grows slightly from 0.7 % for low-frequency
noise (fc D 250Hz) to about 1.5 % for noise for the central frequency 1 kHz, and
then it remains constant.

We now test the approach with real electrophysiological recordings. Following
the proposed algorithm, we performed preliminary spike sorting using the wavelet
spike classifier. Figure 4.29a illustrates the clustering results in the wavelet space.
The data are organized into three partially overlapping clusters. For each cluster, we
selected 50 points located closest to the spike density peaks in the feature plane.
Averaging over 50 spikes provided the representative spike waveforms for three
neurons. Using these waveforms, we trained the neural network. Then the full set
of spikes was passed through the neural network. Figure 4.29b shows the network
output, i.e., the plane .y1; y2/. Again all spikes formed three clusters. However,
in the network output space, cluster overlapping was significantly reduced. This
facilitates clustering (e.g., using k-means), and presumably reduces the number of
misclassified spikes.

In conclusion, the considered approach combines the wavelet transform and
artificial neural networks. The wavelet analysis allows us to reveal characteristic
features in the shapes of spike waveforms. As we have shown in previous sections,
WT is potentially a more powerful technique than PCA. However, the selection
of the most informative features and rejection of noisy ones in WT approaches
is a challenging problem. The use of neural networks provides an automatic
solution to this problem (through training). The trained network automatically
selects appropriate combinations of the most discriminative features from the whole
set. It effectively projects wavelet coefficients into a low dimensional space (2D in
our case), significantly improving the separability of spikes generated by different
neurons.
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Fig. 4.28 Sorting of semi-simulated spikes. (a) .y1; y2/-planes representing spikes for different
central noise frequencies. (b) Classification error vs central noise frequency (noise band 500 Hz)

We tested the proposed approach with semi-simulated and real electrophysio-
logical data. We showed that the use of neural networks can significantly improve
the preliminary classification obtained using PCA scores or wavelet coefficients.
Reliability of the spike clustering also has been shown for the case of several clusters
in the feature space of wavelet coefficients. The considered examples demonstrate
the superior performance of the present approach over conventional PCA and
wavelet techniques.
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4.12 Artificial Wavelet Neural Networks for Spike Sorting

In Sect. 4.11, we showed that the approach based on a combination of the wavelet
transform and artificial neural networks can reduce errors in automatic spike sorting.
However, it also has some limitations.

On the one hand, this approach can outperform standard neural networks because
the integration of a time–frequency representation (using wavelets) into the structure
of the recognition algorithm allows an initial preprocessing of the data used as input
for the neural network. In this context, the wavelets used in the data preprocessing
stage provide a way to select characteristics that can be used by the neural network to
better distinguish signals of different types. On the other hand, this method assumes
no variation of wavelet parameters in the learning phase. For this reason, the efficacy
of the method depends on the initial selection of the parameters, i.e., the results of
the data preprocessing.

In the learning phase, there is a loss of connection with the selection of WT
parameters since, in the approach considered here, these parameters are not adjusted
in the course of the learning procedure. If these parameters are selected sub-
optimally, then the situation cannot be further improved. It has been shown that
this circumstance strongly influences the final result of image recognition (and
consequently of spike sorting), because the personal experience of a researcher
becomes one of the key factors. In order to reduce the influence of subjective factors,
one can extend the learning phase and include additional tuning of the wavelet
parameters, depending on the quality of recognition. This approach is used with
the so-called wavelet neural networks (WNN) (see, e.g., [52–56]).



164 4 Classification of Neuronal Spikes from Extracellular Recordings

4.12.1 Structure of Wavelet Neural Networks

The structure of a WNN and its analytic description is similar to standard neural
networks. A WNN can be treated as an extended perceptron that includes two parts:
a wavelet transform for revealing typical features of signals and an artificial neural
network for image recognition using the selected features.

The first part includes wavelet nodes where wavelet functions (e.g., the Morlet
function) are used instead of the classical logistic function. These wavelets reveal
features of signals on different independent scales. The procedure begins with
obtaining wavelet coefficients from raw data that reflect typical features of the
analyzed signal. These coefficients represent an input for the second part of the
algorithm when final recognition is performed. One feature of WNNs is the
possibility of selecting wavelet coefficients in the course of learning, besides
correcting the synaptic coefficients.

WNNs constitute one of the most promising approaches for recognition of spike
waveforms. We shall thus discuss this approach in more detail. Since WNN is an
extension of standard ANN (Fig. 4.26), we shall briefly discuss some aspects of
signal classification with different variants of WNNs (Figs. 4.30–4.32).

4.12.2 Wavelet Neural Networks

Figure 4.30 shows the simplest variant of WNN. It does not require one to include
the wavelet part of the WNN in the learning process. To obtain a mathematical
description of this WNN, we shall consider discretization of the CWT and the basic
functions WAVE and MHAT.

When computing the continuous wavelet transform of a signal x.t/, we shall use
the discrete values of the scale parameter s D 2j and the WAVE function as mother
wavelet, written in the form

 .�; q; t/ D .�t � q/ exp

�
� .�t � q/2

2

�
: (4.35)

The process of computing wavelet coefficients will be rewritten as follows:

CjkDW
�
1

2j
;
k

2j

�
� 2j=2�t

N�1X

nD0
x.n�t/ .�j n� qk/ ; �jD2j�t ; qkDk�j :

(4.36)

The signal decomposition over the wavelet basis can be treated as the formal
inclusion of an additional layer of NN nodes that will contain wavelet coefficients in
the synapses. Thresholds of such nodes are switched off, and the activation function
is a simple linear function. For the neuron l of the first wavelet layer, we obtain
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Fig. 4.30 First type of WNN

yl1 D ˛�l1 � ˇ ; �l1 D
N�1X

nD0
xnwnl1 ;

wnl1 D  .�j n � qk/ D .�j n � qk/ exp

�
� .�j n � qk/2

2

�
; (4.37)

for

1 � l � NNf ; j D
�
l

N

�
; k D

��
l

N

�
N

�
;

where yl1 is the reaction of neuron l from the first layer after receiving the vector
x, Nf corresponds to the maximal frequency in the power spectrum, and the integer
values j , k quantify the scale and translation parameters. In Eq. 4.37 square and
curly brackets denote the integer and fractional parts of the number, respectively.
According to (4.37), each neuron of the first layer is associated with the given
parameters of the wavelet transform. If the neural network (Fig. 4.26) is added to
this layer, one of the simplest variants of the WNN of the first type is obtained
(Fig. 4.30). This variant does not require differentiation of the wavelets, and its
practical realization is quite simple.

The second type of WNN (Fig. 4.31) assumes a more complex computing
algorithm within the framework of which the wavelet function is used in the synaptic
part of the first layer and should satisfy the differentiation condition for including
wavelet nodes in the learning algorithm. Coefficients of the wavelet transform
carry information about the relation between the input vector and a given type
of signal, and this is why an additional layer with wavelet functions integrated
into the synaptic part seems to be useful. According to the model neuron (4.28),
mathematical operations in the synaptic part are analogous to the discretized version
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Fig. 4.31 Second type of WNN

of the wavelet transform (4.36), but the decomposition is provided using another
basis of functions. If the wavelet function  is included in both the recognition
and the learning cycles, then a layer of “wavelet nodes” is obtained, where synaptic
coefficients are given by the translation and scale parameters of the corresponding
function  .

Let us show how the procedure of learning and recognition will be written
for the WNN shown in Fig. 4.31. The first layer includes a decomposition of the
input vector in the basis of wavelet functions. The following layers are organized
according to the standard scheme shown in Fig. 4.26. The additional layer of this
WNN is described by the following equations:

yj1D˛ tanh

"

ˇ

 
M1X

iD1
xiwij1 � �j1

!#

; wij1 D .�j i � qj / exp

�
� .�j i � qj /2

2

�
;

yj2D˛ tanh

"

ˇ

 
M2X

iD1
yi1!ij2 � �j2

!#

; yj3D˛ tanh

"

ˇ

 
M3X

iD1
yi2!ij3 � �j3

!#

:

(4.38)

Two variants can be considered for the functioning of the wavelet layer, namely, the
cases of linear and nonlinear activation function, where (4.38) corresponds to the
latter. The learning procedure for this WNN assumes correction of the following
parameters: the translation parameter �j and the scale parameter qj of the wavelet
function  .t/ in the first layer, the thresholds �j1 of formal neurons in the first layer,
the synaptic coefficients!ij2,!ij3, and the thresholds �j2, �j3 of the remaining neural
layers. The learning process follows the scheme
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:

The values of derivatives .@yj1=@�j1/.@�j1@�j / are estimated depending on the
selection of the activation function and the wavelet. Let us consider the WAVE and
MHAT wavelets as activation functions:

 .t/ D

8
ˆ̂̂
<

ˆ̂̂
:

t exp

�
� t

2

2

�
; WAVE ;

.1 � t 2/ exp

�
� t

2

2

�
; MHAT :

(4.40)
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Fig. 4.32 Third type of WNN

The general structure of the WNN constructed on the basis of the 3-layer neural
network with the WAVE wavelet in the first layer is shown in Fig. 4.31.

The third type of WNN (Fig. 4.32) includes the wavelet functions as activation
functions in the first layer. Let us consider a 3-layer neural network with the
activation function  .t/ in the first layer (Fig. 4.32). The coefficients of this WNN
are corrected according to the following equations:

@E
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D yi2

ˇ

˛
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j /.˛ � yj3/.˛ C yj3/ ;
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ˇ
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@E

@!ij1
D xi

@ .�j �j1 � qj /
@�j1

N2X

mD1
!jm2

ˇ

˛
.˛2�y2m2/

N3X

nD1
!mn3

ˇ

˛
.˛2�y2n3/.yn3�ys

n/ ;



4.12 Artificial Wavelet Neural Networks for Spike Sorting 169

@E

@�j1
D .�1/@ .�j �j1 � qj /

@�j1

N2X

mD1
!jm2

ˇ

˛
.˛2�y2m2/

N3X

nD1
!mn3

ˇ

˛
.˛2�y2n3/.yn3�ys

n/ ;

@E

@�j
D @ .�j �j1 � qj /

@�j

N2X

mD1
!jm2

ˇ

˛
.˛2 � y2m2/

N3X

nD1
!mn3

ˇ

˛
.˛2 � y2n3/.yn3 � ys

n/ ;

@E

@qj
D @ .�j �j1 � qj /

@qj

N2X

mD1
!jm2

ˇ

˛
.˛2 � y2m2/

N3X

nD1
!mn3

ˇ

˛
.˛2 � y2n3/.yn3 � ys

n/ ;

!
.1/
ijk D !

.0/
ijk � hk @E

@!ijk

ˇ̌
ˇ̌
.0/

; 1 � i � Mk ; 1 � j � Nk ; k D 1; 2; 3 ;

�
.1/
j D �

.0/
j � h1 @E

@�j

ˇ̌
ˇ̌
.0/

; �
.1/
jk D �

.0/
jk � hk @E

@�jk

ˇ̌
ˇ̌
.0/

; q
.1/
j D q

.0/
j � h1 @E

@qj

ˇ̌
ˇ̌
.0/

:

The learning rules for all considered WNNs (Figs. 4.30–4.32) are generalized as the
following computing algorithm:

• Select initial values of the synaptic coefficients and thresholds of the neural
network and wavelet coefficients.

• Recognition based on testing data sets that contain signals of several types is
provided for a random sequence of signals of different type. After recognition,
the error is estimated and the coefficients of NN and WNN are corrected.

• Recognition and correction are repeated in several stages (“epochs”). The number
of stages is chosen depending on the features of the recognized objects.

4.12.2.1 Performance of WNNs

To compare the efficacy of different types of WNNs and to analyze spike-sorting
errors, we used two types of waveforms produced by real neurons. Two different
waveforms were extracted from extracellular recordings of electrical activity of
neural ensembles. The quality of spike identification was controlled using tetrode
microelectrodes that allow registration of extracellular potentials in four closely
located points (about 30�m apart) thus providing multichannel recordings of neural
activity. A more detailed description of the experimental data can be found in
[14, 43]. Further, test signals were generated, including a random sequence of
impulses of both types with added noise. Figure 4.33 shows an example of the
corresponding test signal. A 3-layer perceptron (Fig. 4.26) contained a number of
parameters indicated in Table 4.3. Parameters of the WNNs are given in Table 4.4.
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Fig. 4.33 Fragment of a test
signal used to compare the
efficiency of different
recognition approaches

Table 4.3 Parameters of the neural network (Fig. 4.26)

# Parameter Description

1 Number of layers 3
2 Number of neurons in the 1st layer 16
3 Number of neurons in the 2nd layer 250
4 Number of neurons in the 3rd layer 2
5 Activation function F.x/ D ˛ tanh.ˇx/, ˛ D 6:0, ˇ D 0:45

6 Number of learning epochs 1,000
7 Number of types � spikes 2� 250

8 Learning step of neurons from layer i h1 D 0:0003, h2 D 0:0002, h3 D 0:0001

9 Initial values of coefficients Random values equally distributed in the range
[�0:001, 0.001]

10 Maximal � minimal value of the �6:0� 5:0

output vector

In the course of learning, the considered neural networks solved the problem
of signal identification in the presence of fluctuations within different frequency
bands. As the first test, a narrow-band noise (1/20 from the maximal frequency in
the power spectrum) was applied because, according to Sect. 4.4, the efficiency of
techniques strongly depends on the spectral properties of the presented fluctuations.
Experiments were performed using ANN (Fig. 4.26) by changing the frequency
band of the presented noise added to the signal (Fig. 4.33). The results are shown in
Fig. 4.34. According to this figure, the quality of recognition depends heavily on the
frequency band of the fluctuations. The error is maximal for the central frequency of
the noise, viz., 600–700 Hz. In general, the classification error takes larger values in
the low-frequency area compared with the central frequency of the analyzed signal
(about 1.0–1.5 kHz) and approaches zero in the high-frequency area. The test was
performed using a series of 3,610,000 generated spikes (each consisting of 32 data
points) with frequency band 250 Hz.
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Table 4.4 Parameters of the WNNs (Figs. 4.30–4.32)

# Parameter Description

1 Wavelet function  .t/ D te�t2=2,  .t/ D .1� t 2/e�t2=2

2 Type of WNN – WNN of the first type (not including
learning procedure for the wavelet layer)

– WNN of the second type (including
learning procedure for the wavelet layer)
with linear and nonlinear activation function

– WNN of the third type (including
wavelet function as activation function)

3 Number of layers used 3
for learning (in general case)

4 Number of neurons in the 1st layer 16
5 Number of neurons in the 2nd layer 250
6 Number of neurons in the 3rd layer 2
7 Activation function F.x/ D ˛ th.ˇx/
8 Number of epochs 1,000
9 Number of types � spikes 2 � 250
10 Learning step of neurons from hi 2 Œ0:000001; 0:005�

layer i
11 Initial values of coefficients Random values equally distributed in the range

[�0:001, 0.001]
12 Maximal � minimal value of the �6:0� 5:0

output vector

Another situation is observed for fluctuations in the middle and high frequency
range. The identification error is small and an increase in the noise intensity (at least,
up to the value 0.6 of the signal energy) does not lead to any remarkable increase
in the error. This allows us to conclude that the NN can be treated as a filter with
characteristics that are adjusted in the course of learning. According to Fig. 4.34a,
effective filtering and further recognition are possible only when fluctuations are
associated with the middle and higher frequencies as compared with the mean
frequency of the recognized signal. Figure 4.34b illustrates an increase in the mean
error (as a result of averaging over the whole range of fc). The mean error increases
for higher noise intensities, but the rate of this increase and absolute values of the
error depend on the type of NN used. Thus, application of WNNs typically improves
recognition accuracy.

Analogous test experiments were performed for WNNs of different types. All
variants of wavelet neural networks (Figs. 4.30–4.32) were analyzed using the
two basic functions WAVE and MHAT. Additionally, for WNN of the second
type (Fig. 4.31), both linear and nonlinear activation functions were considered
(Table 4.5). Testing was performed using the same data (Fig. 4.33) to compare the
errors of the various methods under identical conditions.

This investigation showed that results obtained with WNNs correspond to the
results obtained for the classical ANN (Fig. 4.26), but that wavelet nodes enable
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Fig. 4.34 Estimation of the identification error for a standard neural network (a and b) and WNN
of the second type (c and d) with the MHAT function and nonlinear activation function for different
values of the ratio of energies Enoise=Esignal: 0.1 (1), 0.2 (2), 0.3 (3), 0.4 (4), 0.5 (5), 0.6 (6).
Dependencies of the recognition error (a and c) on the central frequency of narrow-band noise and
of the mean error versus the relative intensity of fluctuations (b and d)

Table 4.5 Neural networks used for spike recognition

# Type of the used network

1 Standard NN
2 WNN of the first type with WAVE function
3 WNN of the first type with MHAT function
4 WNN of the second type with WAVE function and linear activation
5 WNN of the second type with WAVE function and nonlinear activation
6 WNN of the second type with MHAT function and linear activation
7 WNN of the second type with MHAT function and nonlinear activation
8 WNN of the third type with WAVE function
9 WNN of the third type with MHAT function

error reduction in the presence of noise. Let us consider the corresponding results
for the WNN of the second type. Application of the linear activation function within
this WNN simplifies computations and does not use thresholds, i.e., it provides a
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Fig. 4.35 Comparison of efficiency of spike recognition with the neural networks. Error is
normalized to the maximal value. Error for the case Enoise=Esignal D 0:6 is shown by gray color,
and coefficient of the increase of error is shown by black color

much quicker learning as compared with the nonlinear activation function. The more
nonlinear elements are included in the WNN, the more time is required for learning.

According to Fig. 4.34, application of WNNs reduces the maximal error by
about 5 % (for the case Enoise=Esignal D 0:6) and the mean error by about 1 %.
These results are obtained for the case of narrow-band noise. With an increased
frequency band of fluctuations, the quality of recognition with WNN may be
significantly improved, and the dependence of the error on the frequency band
changes. As another test, the case of noise with a broader frequency band (1 kHz)
was considered. This test was performed using a series of 3,040,000 generated
spikes (each consisting of 32 data points).

Instead of visual comparison between the graphics (similar to Fig. 4.34), we use
two numerical measures: error at fixed signal-to-noise ratio and the coefficient of
the increase in the mean error with the noise intensity. Nine NNs (see Table 4.5)
were compared using these measures (Fig. 4.35).

According to the results obtained, we can conclude that the most effective
recognition techniques are WNN of the second type with nonlinear activation
function (variants 5 and 7 in Table 4.5). Let us note that this conclusion is based
on the processing of a large number of experiments performed in vivo with the
trigeminal complex of rats. Less effective results are obtained for WNNs 6 and 9.
In the latter case, the accuracy is less than for the standard approach (variant 1).
Likewise, for WNNs 2, 3, 4, and 8, no essential improvement was revealed in the
results compared with the standard NN. This may be explained by the nonlinearity
of WNN, which requires appropriate adjustment using special techniques. The less
effective results for some WNNs (e.g., 6 and 9) confirm that the adjustment of
WNNs with linear activation functions requires special techniques or complicating
the NN structure.
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We considered in more detail the WNN of the second type, which is typically
not used in practical applications due to the more complicated learning procedure.
This WNN requires a learning process about seven times larger compared with
the standard NN. However, it provides better recognition in the presence of noise
(by about 16 % compared with the classical NN), which counterbalances the extra
computing time.
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Chapter 5
Wavelet Approach to the Study of Rhythmic
Neuronal Activity

Abstract This chapter considers the main definitions and principles of electroen-
cephalography that are needed to get a good grasp of Chaps. 6 and 7. We describe the
general physical and mathematical approaches to time–frequency analysis of rhyth-
mic EEG activity using the continuous wavelet transform. Besides that, we review
some recent achievements of wavelet-based studies of electrical brain activity,
including (i) time–frequency analysis of EEG structure, (ii) automatic detection of
oscillatory patterns in pre-recorded EEG, (iii) classification of oscillatory patterns,
(iv) real-time detection of oscillatory patterns in EEG, (v) detection of synchronous
states of electrical brain activity, (vi) artifact suppression/rejection in multichannel
EEG, (vii) the study of cognitive processes.

5.1 Introduction

Let us take the next step in the application of wavelet analysis to neurophysiology
and consider practical aspects of this mathematical tool for retrieving information
about rhythmic brain activity. From a physical viewpoint, the brain is an extremely
complex object, consisting of a huge number of elements (neurons) with their own
oscillatory dynamics, organized in networks with complex topologies [1–8]. The
traditional and highly effective method for studying electrical brain activity is based
on registration of electroencephalograms (EEG), which sum the average electrical
fields of synaptically interconnected neuronal ensembles located in the vicinity
of the recording electrode. In humans, EEG is usually recorded by small metal
disks (electrodes or sensors), placed on the scalp. In rats, EEG is usually recorded
by intracranial electrodes implanted at the cortical surface or in deep subcortical
structures, and this approach can procure more detailed information about electrical
activity in relatively small groups of neurons.

Chapters 6 and 7 will discuss different aspects of time–frequency characteristics
of EEG and the main results from continuous wavelet analysis of EEG as
regards automatic processing of EEG recordings, i.e., the development of new
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techniques to remove the need for routine visual inspection of EEG and diminish
subjective factors. Nowadays, advanced practical methods for automatic processing
of multi-channel EEG data are given a high priority in modern neuroscience.
For example, wavelet-based EEG analysis can be used to identify functional
relationships between various brain areas, to explore underlying mechanisms of
different types of rhythmic brain activity, and to better understand the fundamental
principles of brain function. Moreover, EEG comprises a wide variety of rhythms
and periodic oscillations, whose frequencies are important characteristics of the
functional activity of neuronal structures [3, 9–11]. The frequency content of
the EEG recorded in the local brain area depends on the functional activity of
this area and its interactions with other areas. New mathematical approaches
have important theoretical significance for the study of rhythmic brain activity,
underlying, for example, integrative (cognitive) functions of the brain. In addition to
that, these new approaches can be widely applied in practical work, for example, in
developing effective diagnostic tools and monitoring systems in clinics, in specific
brain–computer interfaces, etc. [12–18].

This chapter provides a brief introduction to wavelet analysis of EEG. It starts
with the basic definitions and principles of electroencephalography in order to give
the reader a better understanding of subsequent chapters. In general, this chapter
describes the physical and mathematical bases of the wavelet transform used to
investigate rhythmic brain activity.

5.2 Basic Principles of Electroencephalography

EEG is an acronym for electroencephalogram (electro D electrical signals,
encephalo D the brain, graph D a recording).

Electroencephalogram. Record of electrical activity of the brain taken by means of
electrodes placed on the surface of the head, unless otherwise specified [19].

Electroencephalogram. Electrical potentials recorded from the brain, directly or through
overlying tissues [20].

Electroneurophysiology has a history of more than 100 years [21]. In 1875,
a Liverpool physician and medical school lecturer Richard Caton first demonstrated
that electrical signals could be measured directly from the surface of the animal
brain. The father of clinical electroencephalography, the German psychiatrist Hans
Berger, recorded electrical activity from human brain and introduced the term
‘electroencephalogram’. The first published EEG data from humans appeared in
1929, when Hans Berger published a paper in which he presented 73 recordings
[22, 23].

Between Caton and Berger, Adolph Beck in 1890 [24] found that sensory stimuli
(flashes or sounds) induced slow changes in electrical brain activity (slow wave
response, evoked potentials). Fleischl von Marxow [25] made a similar observation.
A Russian scientist, Vasili Yakovlevich Danilevsky, in his doctoral thesis (1877),
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described electrical brain activity in dogs. Another Russian physiologist, Nikolai
Evgenjevich Wedensky, recorded electrical activity from peripheral nerves and
the central nervous system using a telephone (the results were published in his
master’s thesis in 1884). In 1913, Vladimir V. Pravdich-Neminsky published
photographic recordings of electrical brain activity in dogs and introduced the term
electrocerebrogram.

From that time, electroencephalographic investigations have led to major
advances in studying sleep and epilepsy. Electroencephalography is the most
popular method for the analysis of spontaneous brain oscillations and evoked
(event-related) potentials, and changes in electrical brain activity during anesthesia
and sleep, during sensory perception, and during voluntary activity, etc. Nowadays,
EEG investigation has become a necessary part of clinical practice for the diagnosis
and prognosis of various neural disorders, especially in epileptic patients.

Several spontaneous rhythms are encountered in EEGs of animals and humans
during different behavioral states, whereas peculiar (paroxysmal) patterns appear
in EEG during epileptic seizures. Mechanisms that underlie spontaneous rhythmic
activity in the brain were studied by V.Ya. Danilevsky [26] and A. Beck [24],
who described EEG desynchronization in animals, by I.M. Sechenov, who found
spontaneous rhythms in medulla oblongata in the frog, and by H. Berger, who
described alpha and beta rhythms in human EEGs.

5.2.1 Electrical Biopotential: From Neuron to Brain

According to the traditional viewpoint, brain functions are associated with
continuous processes of integration and disintegration of functional associations
within neuronal circuits. These neural associations are temporary and they represent
synchronized network activity of neuronal assemblies located in different parts of
the brain. Although neural associations are functional, they have an anatomical
substrate, viz., synaptic contacts between neurons. Neural connections can be
readily reorganized, so different neural circuits can be linked together into a single
unit, a so-called functional system. A functional system is a neuronal entity that
accomplishes specific functions [27] and disintegrates when the result has been
successfully achieved. One of the signs of neuronal integration is synchronization
of local electrical field potentials. Synchronized neuronal activity can be recorded
locally in the brain, for instance, at the surface of the cerebral cortex, by means
of an invasive intracranial electrocorticogram, or on the scalp by non-invasive
extracranial EEG [9]. An EEG contains a variety of rhythms and periodic
oscillations whose frequencies provide important information about functional
activity of the neural system. The state when different brain areas sustain oscillations
with the same frequency is called the neuronal synchronization state. It accounts
for the processes of neuronal association and information exchange between these
brain areas [28,29]. Synchronization of rhythmic activity in multi-channel EEG can
manifest the binding processes (active associations) between neurons and neuronal
ensembles [30].
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Synchronization between some cortical areas characterizes normal cognitive
brain functions. Pathological processes in the central nervous system can selectively
increase the level of synchronization between interconnected brain structures.
Abnormally high synchronization can underlie seizure activity that can be recorded
in EEG as hypersynchronized rhythms. In particular, absence epilepsy, which is
analyzed by means of wavelets in Chaps. 6 and 7, results from hypersynchronization
of the thalamo-cortical network. Up to now, thalamo-cortical interactions have not
been fully explored because they require invasive implantation of electrodes in the
thalamus (intracranial EEG). This operation could not be performed on patients with
absence epilepsy for ethical reasons (the patients do not have clinical indications for
this operation).

During the last decade, non-invasive neuro-imaging and neuro-mapping
techniques, such as magnetic resonance imaging (MRI), positron emission
tomography, and photoemission computer tomography have been widely used in
patients with absence epilepsy. These modern methods have several disadvantages,
the main one being that the time resolution is too low and there is no reliable
procedure for processing the resulting data. An additional problem with neuro-
imaging data comes from the fact that reconstruction of neuronal activity is based
on indirect measurements, such as changes in the hemodynamic response, tissue
metabolism, blood flow, and blood oxygen saturation, etc. These processes are
influenced by many factors, besides neuronal processes. The absence of effective
tools for analysis of neuro-imaging data and the high probability of errors in
reconstruction of neuronal activity often lead to false conclusions. Thus, two
different approaches to analysis of MRI signals during absence epilepsy may lead
to different results [31].

In this situation, EEG is preferable in humans as a reliable, cheap, and easily
available technique, and application of EEG in animals can be extended by
implanting intracranial electrodes in deep structures. Chapter 7 presents the results
of time–frequency wavelet analysis (continuous wavelet transform) of electrical
activity in the cortex and thalamus during absence epilepsy in animals with a genetic
predisposition to this disease.

5.2.2 Application of EEG in Epilepsy Research

Since this monograph focuses on features of the wavelet-based analysis of brain
dynamics in animals and patients with epilepsy, we briefly discuss the practical
application of EEG in epileptology. Fifteen years before H. Berger published his
landmark report (1929), in which he described spontaneous electrical activity in
the human brain, N. Cybulski and S. Jelenska-Macieszyna [32] at the University
of Krakow in Poland published the first photographs of paroxysmal activity
during experimental focal seizures in dogs (cited in [21]). In 1931, H. Berger
demonstrated the first recordings of spike-and-wave activity obtained in epileptic
patients (Fig. 5.1). Two years later, in 1933, he published an EEG recording during
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Fig. 5.1 EEG record made by H. Berger in an 18-year-old girl during a seizure. High voltage
spike-and-wave complexes appear with a frequency of about 3 per second (From [21])

a brief episode of “simple automatic activity with no other movement” (cited in
[21]). Note that it was H. Berger who first suggested applying EEG in clinical
practice (cited in [33]).

In 1935, Frederick Gibbs, Hallowell Davis, and William G. Lennox at Boston
City Hospital demonstrated spike-and-wave complexes in EEG that manifested
clinical absence seizures [34]. Since that time, clinical application of EEG has
increased rapidly and the EEG recording technique has been profoundly improved.
Over the years, EEG has helped in making short- and long-term prognoses of
various neurological and psychiatric disorders. EEG investigation is necessary for
the diagnosis of epilepsy (especially in patients with atypical epileptic syndromes),
and it also offers important prognostic information.

In clinical practice, EEG is recorded with open and closed eyes using special
techniques to provoke epileptic activity (such as photo-stimulation, hyperventila-
tion). Comparative analysis of EEG shape during the states with open and closed
eyes provides the most important information. Some paroxysmal activity appears
only when the eyes are open, and some under closed eye conditions or immediately
at the moment of opening/closing the eyes (alpha rhythm can mask the abnormal
activity that can be seen in EEG, when the eyes are open and the alpha rhythm
is suppressed). Only in about 50 % of adult patients with epilepsy can photo-
stimulation and hyperventilation provoke epileptic activity in EEG during the
waking state. This percentage can be increased up to 92 % if 4 consecutive EEG
sessions are used. EEG monitoring during sleep increases the chances of identifying
epilepsy in patients (from 50 % up to about 80 %).

The area of clinical application of EEG is rather broad. Changes in EEG structure
can be used to evaluate the effectiveness of drug medication. Changes in EEG may
also carry prognostic information and can be for short- or long-term prediction of
neurological diseases.

Routine non-invasive EEG studies provide an opportunity to localize sources
of epileptic activity and to determine which areas of the brain could benefit
from surgical correction. In complicated cases, localization of pathological brain
areas requires intracranial recordings with deep electrodes placed under the dura
mater. Electrical activity recorded intracranially from the surface of the cortex is
called an electrocorticogram (ECoG), or alternatively, a subdural EEG (sdEEG),
or an intracranial EEG (icEEG). An advantage of ECoG over EEG is its high
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spatial resolution (ECoG reflects the local electrical field potential). Furthermore,
high-frequency components are present in ECoG, but they are reduced in EEG, since
the electrical current passes through high-resistance structures, such as meninges,
bone, soft tissue, and the scalp. Despite the harmful effect of the invasive procedure,
ECoG still remains a standard for the localization of epileptic focus, and it is
often used before surgical treatment of epilepsy, when pharmacological treatment
appears ineffective. We hope that, in the future, invasive methods will be excluded
from clinical practice, to be replaced by new effective noninvasive brain imaging
techniques. These new noninvasive methods should provide a high quality of
data (spatial resolution and information content), whilst remaining as simple and
cheap as possible, and should be easily combined with subsequent data processing
techniques.

5.3 General Principles of Time–Frequency Analysis of EEG

5.3.1 The Need for Mathematical Analysis of EEG

Since the days of Hans Berger, the method for recording the EEG has improved
substantially. Progress in this area was achieved by development of engineering
and computer technologies. The ink recorder was replaced by the digital recording
system, which was able to record multi-channel EEG with high temporal resolution.
In fact, the availability of analog EEG data made it necessary to find a new approach
to the analysis of digital recordings, where the EEG signal is represented as a
sequence of discrete values of the electric potential measured in the millisecond
range. (In this book, we usually operate with the sample rate 1,024 Hz, i.e.,
a discretization step of 1/(1,024 Hz), or approximately 1 ms.) Digital recording
systems with high-capacity and digital memory meant that one could operate with
large volumes of information and perform the subsequent analysis of the EEG.
Nowadays, it is necessary to find better ways to store, share, and analyze EEG data.

New computer technologies promote an interdisciplinary approach to the inves-
tigation of brain functions under normal conditions and in pathological cases. EEG
studies are still attractive for experts in experimental and theoretical neurobiology,
psychophysiology, cognitive neuroscience, biophysics, physics, nonlinear dynam-
ics, etc. There is an interdisciplinary field of knowledge called neuroinformatics and
computational neuroscience that combines mathematical methods of neural network
modeling, time–frequency and structural analysis of neuronal signals, the theory of
dynamic chaos, and nonlinear dynamics. The interdisciplinary approach to EEG
analysis led to the development of unique methods which helped to unravel certain
mechanisms of perception and sensorimotor integration (see, e.g., [35–37]), and to
understand some fundamental aspects of sleep, epilepsy (e.g., [7,38]) and cognitive
functions [39].
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It is profitable to apply powerful tools of physics and mathematics to EEG
analysis. However, interpreting the results of mathematical analysis in the context
of neurobiology is often a complex and ambiguous matter. Any result derived
from the mathematical analysis of EEG, which may look obvious to the mathe-
matician, can appear meaningless to the physiologist. Difficulties in interpreting
the results of mathematical analysis may be caused by a considerable gap in
understanding between the biological and mathematical sciences. We believe that
new knowledge resulting from cooperation between these disciplines will help to
solve many mysteries about brain functions. But success in this venture is only
possible through close cooperation (despite all the difficulties) between theory and
practice, i.e., between experts in the exact sciences (applied mathematics, physics,
nonlinear dynamics, etc.) and practitioners in neurophysiology. Without a deep
understanding of the physiological basis of the problem, it would be impossible
to develop adequate mathematical tools for further processing and analysis of the
relevant experimental EEG records, at least such as would be easily acceptable to
physiologists [40].

An interdisciplinary approach is beneficial for any research, but in neurophys-
iology it is particularly important, because the subject of study—the brain—is
an extremely complex one. A better understanding of brain functions requires
the cooperation of biologists, physicists, chemists, mathematicians, information
specialists, and even the humanities—philosophers, linguists, and so on. One thing
is certain: the key to the success of such an interdisciplinary trend in modern
neuroscience is the clarity and meaningfulness of the statements of physiological
problems.

5.3.2 Time–Frequency Analysis of EEG: From Fourier
Transform to Wavelets

The main difficulty with the practical application of physical and mathematical
approaches in neuroscience is the strict compliance with the conditions under which
the mathematical operations can be considered to be correct and justified with regard
to the answers they provide to the relevant questions.

In terms of physics and mathematics, an EEG record is a time series which
appears as a sequence of amplitude values for a certain quantity (in the case of
EEG, it is a measure of electrical potential), measured at discrete points of time. This
representation allows one to take advantage of the considerable theoretical basis of
time series analysis developed in mathematics, physics, and nonlinear dynamics, as
well as the powerful mathematical tools of statistical analysis.

Among the methods widely used for EEG analysis, we should note the methods
of time domain measurements. This concerns primarily auto- and cross-correlation
analysis, which should be considered as statistical methods. In the frequency domain
(Fourier space), attention should be paid to spectral or Fourier analysis and wavelet
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analysis (applicable in both the time and frequency domains). The latter approach is
of particular interest in the this book. It is relatively new and has been successfully
applied in neurodynamics and neurophysiology.

In contrast, the spectral (frequency) analysis of EEG recordings is still widely
used in clinical practice, as well as in neuroscience. The fast Fourier transform
(FFT) or its modifications are typically used for neurophysiological signals [41–
43]. EEG spectral analysis results are usually presented in the form of a power
spectrum, in which the frequency content of EEG is depicted as the power value of
each frequency component.

The Fourier transform can only be applied to stationary signals, which are infinite
in time. The term “stationary” means that the spectral composition and statistical
characteristics of the signal do not change over time. However, EEG is essentially a
non-stationary signal, whose characteristics change over time.1 In particular, certain
rhythms constantly appear and disappear in EEG. Each of them is characterized by
its own frequency in Fourier space and by a typical form in the time domain.

In order to illustrate all the characteristic mentioned above, Fig. 5.2 gives an
example of an electrical activity record from the frontal cortex of a WAG/Rij rat
with a genetic predisposition to absence epilepsy.2 Large variations can observed
in both the amplitude and the frequency parameters of EEG, even in this short
fragment. Firstly, one can select the segments of background activity, so-called
desynchronized EEG (area F in Fig. 5.2). Secondly, in this EEG segment, the periods
that differ from the background EEG by the amplitude, shape, and characteristic
frequency can be easily distinguished. Hereinafter we will refer to such EEG
fragments as oscillatory patterns. The oscillatory patterns can be classified by
shape and by frequency composition. These two classifications are traditionally
used by neurophysiologists for analysis and “decoding” of EEG [42, 47]. Taken
together, they represent an accurate formal tool for analysis and classification of
EEG rhythms. In the signal shown in Fig. 5.2, several oscillatory EEG events are
highlighted, such as sleep spindles, short episodes of 5–9 Hz oscillatory activity,
K-complexes (delta waves followed by a sleep spindle), and spike–wave discharges
(SS, TR, K, SWD, respectively).

Thus, different rhythmic and oscillatory patterns can be distinguished in EEG.
In other words, EEG is characterized by a complex time–frequency structure [1].
Traditional electroencephalography subdivides the frequency content of EGG in
several bands from about 0.5 to 200–500 Hz (Fig. 5.3a). The presence of EEG
oscillations with certain frequencies (frequency bands) is associated with certain
states of vigilance (specific brain activity), so the frequency characteristics of EEG

1Although the non-stationarity of EEG signals causes difficulties for spectral analysis, Fourier
transform algorithms have been successfully adapted to EEG analysis (see, e.g., the technical
manual [44]).
2WAG/Rij rats are a special inbred line with a genetic predisposition to absence epilepsy [45, 46].
This animal model of epilepsy will be discussed in Sect. 5.3.3, and also in the following chapters
of the book.
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Fig. 5.3 (a) EEG frequency bands distinguished by traditional electroencephalography. (b) Power
spectrum of an EEG recorded from the human right frontal lobe during sleep (Figures are based on
the data from [1])

correspond roughly to specific brain functions [48–50]. EEG oscillations with
different frequencies can co-exist in one structure or present the same time in
different brain structures [49, 51, 52].

The spectral power density P of an EEG signal is inversely proportional to
the frequency f (see Fig. 5.3b). The observed 1=f law of the spectral power
suggests that the system exhibits self-organized critical dynamics [1, 53, 54], where
disturbances at low frequencies result in sequential transmission of oscillation
energy at high frequencies [55, 56]. So high-frequency EEG events superimpose
on low-frequency oscillations in EEG [49, 51, 57].

These properties of oscillations are determined by the physical architecture of
the neuronal network, as well as by the limited propagation speed of electrical
signals between neurons due to synaptic delay [58]. Since the majority of neuronal
connections are local (small in size [59]), the period of oscillation depends on
the size of neuronal ensembles involved in the oscillatory activity. High-frequency
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oscillations in EEG (which often manifest cognitive processes [60]) are underlain
by synchronous activity in relatively small neural networks that occupy a limited
region of space, while relatively widespread neural networks are involved in low-
frequency oscillatory activity [49, 61]. Considering spatial and temporal scales of
neuronal network activity, the relationship between network anatomy and frequency
of oscillations (which reflects brain activity) should be taken into account.

It is obvious that analysis of complex non-stationary signals, such as
electroencephalograms, requires specific methods with good resolution in both the
frequency and time domains. Before the introduction and development of wavelet
analysis, the only method to study the time–frequency structure of non-stationary
signals was the short-time Fourier transform (2.4) considered in Sect. 2.2. In
practice, two types of short-time Fourier transform procedure were used to analyze
neurophysiological signals.

The first approach was based on the decomposition of the non-stationary EEG
signal into fragments of length 2T, where signal parameters did not change with
time, i.e., the EEG fragments were treated as stationary. These EEG fragments
overlapped in order to minimize the undesirable effect of boundary artifacts. This
procedure could provide the power spectrum at any given time. The second method
was based on multiplying the EEG signal by a given window function, e.g., Gauss
function, Hamming window, Hann window, etc., which takes a nonzero value for
some short period of time. In fact, the Fourier transform (2.3) was performed in a
short time interval corresponding to the width of the selected window function. Then
the window function was shifted along the time axis, and the next interval of EEG
provided the major contribution to the resulting spectrum. The fixed time window is
the main disadvantage of the short-time Fourier transform (as already discussed in
Chap. 2). Furthermore, the window size could not be adapted to the local properties
of the signal.

The mathematical apparatus of the wavelet transform provides a better alternative
to the Fourier transform which is free from the above-mentioned shortcomings.
From the various physical applications of wavelets, it is well known (see, e.g., [62–
68]) that wavelet analysis is well suited for studying non-stationary signals. It is
characterized by the following important features:

• It decomposes the signals in the time and frequency domains, which allows us to
localize the particularities of a signal in both domains.

• It is suitable for short intervals. One can effectively analyze a short time series
containing a small number of characteristic periods of oscillatory activity.

• It is flexible. One can choose the wavelet basis that best takes into account the
peculiarities of the analyzed data.

• It is less sensitive to noise. Wavelets are highly effective for analyzing “noisy”
data, i.e., signals in which important information is superposed with additive
noise.

These advantages make wavelet analysis attractive for studying EEG signals, which
are characterized by non-stationarity, the simultaneous presence of oscillatory
activity with different shapes and frequencies (which requires an adaptive approach
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to examining the EEG structure), a high level of noise, and a relatively short length
(either due to the limited time of registration or short duration of fast processes in
the brain) [69–72].

The significant advantage of wavelets is that the analysis is not limited to
the selected time scale of the observation. Indeed, since the frequency of a
signal is inversely proportional to its period, the information about high-frequency
components could be obtained from the relatively small time intervals, whereas
information about low-frequency components could be obtained from the longer
periods of time.

5.3.3 Time–Frequency Analysis of Spike–Wave Discharges
by Means of Different Mother Wavelets

Here we discuss the application of wavelet analysis to the description of the structure
of the spike–wave discharges in EEG. As pointed out above, in the structure of
the EEG, one can distinguish different forms of rhythmic activity and oscillatory
patterns which reflect the nature of the neural activity and hence the functional state
of the brain. Importantly, many pathological processes in the brain may also be
manifested in EEG. For example, during epilepsy, which is characterized by the
hypersynchronous activity of brain neurons [45, 73], there are high-amplitude EEG
discharges of characteristic shape [74, 75].

There are many types of epileptic disorder (more than 30), and each of them
corresponds to a specific epileptic EEG pattern. At the same time, there are
difficulties in the diagnosis of certain types of epilepsy, and as a consequence, these
diseases remain unnoticed. According to World Health Organization data, about
1 % of the world’s population suffers from epilepsy and more than 30 % of patients
do not receive health care [75, 76]. In this section we focus on absence epilepsy
(petit mal or childhood absence epilepsy), which is a common neurological disease,
the main clinical manifestation of which is a brief loss of consciousness with the
absence of the convulsive component (the automatisms of the mimic muscles may
be observed) [74,76]. The attack of absence epilepsy (lower level of consciousness)
can last from a few seconds to tens of seconds. Epileptic seizure is accompanied
by high-amplitude spike–wave discharges in EEG [75, 76]. Spike–wave discharges
(SWD) consist of a relatively high-frequency component (the spike) with peak
amplitude significantly exceeding the background activity and the low-frequency
“wave” [77].

There are several rat lines with a genetic predisposition to absence epilepsy
[45], such as the WAG/Rij rats used in our study. Electroencephalographical and
clinical signs of absence epilepsy can be observed in 90 % of WAG/Rij rats [45],
and epileptic activity is known to increase progressively with age. Despite some
differences in the manifestation of absence epilepsy in WAG/Rij rats and human
patients (such as different age-related dynamics and the main frequency of SWD),
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Fig. 5.4 EEG fragments with typical spike–wave discharges as recorded in a WAG/Rij rat (a) and
in a human patient with absence epilepsy (b)

the WAG/Rij rat model is recognized as reliable, since the clinical manifestations
and response to drugs in WAG/Rij rats is similar to that in patients with absence
epilepsy [45].

Figure 5.4 shows typical EEG fragments with spontaneous SWD, as recorded
in a symptomatic WAG/Rij rat (Fig. 5.4a) and for a human patient suffering from
absence epilepsy (Fig. 5.4b). In the WAG/Rij rat (1 year old), EEG was recorded
intracranially by means of an electrode implanted at the surface of the frontal
cortex. In the male patient (23 years old), EEG was recorded extracranially with skin
electrodes attached to the frontal cortex (F4 electrode in the right hemisphere in the
system 10–20 [78], see Sect. 6.6 for details). Enlarged fragments at the bottom of
each EEG illustrate the detailed structure of spike–wave discharges with the typical
fast (spike) and slow (wave) components. In the human EEG, the spikes are not
pronounced, mainly because the signal was recorded at the surface of the skull, and
hence relatively far from the source of electrical brain activity.

In the rest of this section, we consider in depth the wavelet analysis of spike–wave
discharges in humans and the WAG/Rij rat by means of different types of mother
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wavelets (see Sect. 2.3.2). We start by considering the use of the complex Morlet
wavelet for the continuous wavelet analysis of the SWD. Equation (5.1) gives the
formula for the complex mother wavelet:

 0.�/ D ��1=4ei!0�e��2=2 ; (5.1)

where the second term in the brackets of (2.33) is neglected and !0 D 2� .
Figures 5.5a and 5.6a show the wavelet spectra of a spike–wave discharge as

computed with the aid of the Morlet wavelet in the WAG/Rij rat and in a human
patient with absence epilepsy, respectively. In the wavelet spectrum of the rat SWD,
the complex frequency dynamics during an epileptic event is clearly visible. In order
to identify the frequency dynamics of the SWD, Fig. 5.7a displays the skeleton of the
wavelet surface shown in Fig. 5.5a. Typically, the frequency of spontaneous SWD is
approximately 12–15 Hz at the beginning, but it decreases rapidly to �10 Hz during
the first 300 ms and becomes stable at �10 Hz with fluctuations of 1–3 Hz, while the
period of fluctuations lasts approximately 0.7 s. In general, there is a steady trend
towards a decrease in frequency to 7–8 Hz at the end of the SWD [79, 80]. The way
the SWD frequency dynamics is determined with the help of wavelet analysis from
a large volume of experimental data is further discussed in Sect. 6.2.

Analysis of the skeletons of the wavelet surface reveals that there are three first
harmonics of the SWD fundamental frequency (shown in Fig. 5.7a) located in the
range of 7–15 Hz, and that they tend to decrease in time. This kind of spectrum
with higher harmonics is typical for signals with complex shape and sharp peak
components (compare with Fig. 2.18, which shows a model pulse signal whose
spectrum contains higher harmonics, and see also the discussion in Sect. 2.3.4). It
should be noted that the frequency composition of a spike–wave discharge changes
very quickly (during one or two oscillation periods). As a consequence, the methods
given in [80] could not be used effectively to detect the time–frequency structure of
SWDs.

The wavelet spectrum of the SWD in a patient with absence epilepsy is similar
to what was found in a rat (see Fig. 5.6). The wavelet spectra of SWDs in humans
and in animals differ quantitatively, since the frequency of the human SWD lies in
the range 3–4 Hz, which is lower than the frequency in a rat. However, the tendency
for a rapid decrease of the main frequency from the beginning to the end of the
SWD, and further stabilization of the frequency in the middle of the discharge,
is observed in both rats and humans. This can be seen clearly in the skeleton of
wavelet spectrum (see Fig. 5.7b). Note also that, in humans, the wavelet spectrum
and its skeleton display less pronounced higher harmonics of the main frequency
in comparison with the rat. Therefore, in the skeleton of the wavelet spectrum
in humans, only the dynamics of the second harmonic can be traced (Fig. 5.7b).
This can be accounted for by a smoother form of SWD in humans, i.e., low spike
amplitudes, which contribute mainly to the dynamics of high frequencies in EEG
(the appearance of higher harmonics) during SWD.
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It should be noted that the complex Morlet wavelet provides the optimal
relationship between resolution in the frequency and time domains, and can be
successfully used to analyze the fine time–frequency structure and dynamics of
the fundamental frequency of complex non-stationary neurophysiological signals.
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For example, wavelet analysis has been successfully used to identify and describe
the dynamics of the intrinsic SWD frequency. The dynamics of EEG frequencies
described in this way reflects the functional activity of widespread neuronal
networks during the process of initiation and termination of the SWD, which is
important for understanding epileptogenesis mechanisms.

We turn now to the analysis of spike–wave discharges by means of real mother
wavelets. Figures 5.5 and 5.6 illustrate the modulus jW.fs; t /j of wavelet spectrum
coefficients obtained with the help of the standard real mother MHAT (2.40) and
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WAVE (2.39) wavelets. The figures show the EEG with SWD in a WAG/Rij
rat (Fig. 5.5b, c) and in a human (Fig. 5.6b, c). In order to convert the wavelet
frequencies fs into the frequencies f of the Fourier transform, we determine the
relationship between f and fs in the way discussed in Sect. 2.3.3 (see the ratio
f=fs in Table 2.1).

Indeed, the wavelet spectra obtained by means of the MHAT or WAVE wavelets
are characterized by the low-frequency resolution and, as a consequence, the higher
harmonics and their frequency dynamics are not clearly distinguished from the
background dynamics of the main frequency. At the same time, the characteristic
features of these real wavelets lead to sharp peaks in the wavelet spectrum, so
any EEG event with a sharp waveform produces intense amplitude bursts in
the frequency range of interest in the wavelet spectrum. The disadvantage of
real wavelets is the complexity involved in determining the main frequencies in
the wavelet spectrum, because the maxima and minima of the wavelet surface
correspond to an increase/decrease in the EEG amplitude. Obviously, this form
of wavelet spectrum of the SWD does not properly display the particularities of
the signal, nor the dynamics of its frequency and amplitude. An advantage of the
WAVE and MHAT wavelets is good time resolution, which allows one to track
the rapid increase in amplitude of the wavelet spectrum and the moment when
the examined rhythm appears in the EEG. However, due to the poor frequency
resolution, sharp changes in amplitude of the wavelet spectra could be missed, and
that complicates the analysis of the time–frequency structure of the signal. The
above remarks concerning real wavelets are valid for the analysis of both animal
and human epileptic EEG.

As an example application of real wavelets in EEG analysis, we mention the
paper [81], which proposed a real wavelet mother function constructed on the
basis of the Morlet wavelet, especially for the analysis of spike–wave discharges in
WAG/Rij rats. This modified Morlet wavelet zeroizes the amplitude of the wavelet
transform coefficients corresponding to the fundamental EEG frequency in the time
and frequency domains.

The modified real Morlet wavelet used in [79, 81] has the form

 0.�/ D � cos.˝�/e��2=2 ; (5.2)

where the parameter ˝ D 5. It can be shown [82] that the particularity of this
mother wavelet is that the frequencies fs max corresponding to the maximum of
the wavelet surface jW j built with the classic wavelet basis satisfy the condition
jW.fs max; t /j D 0 when the modified basis (5.2) is used. So in this case the
dynamics of the fundamental frequencies in the EEG is not determined by the
presence of local maxima as we saw earlier (Chap. 2), but by the zero values of
the wavelet surface (see Figs. 5.5d and 5.6d). The modified real Morlet wavelet
(5.2) was used to analyze the dynamics of frequency characteristics of typical SWD
in patients with child absence epilepsy, juvenile absence, or juvenile myoclonic
epilepsy, as well as to study the effect of various pharmacological substances on
the time–frequency structure of epileptic discharges.
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Comparative analysis of results obtained with the modified real Morlet wavelet
(5.2) and standard complex Morlet wavelet (5.1) did not reveal any advantages
with the modified wavelet basis. Moreover, application of the real Morlet wavelet
in the continuous wavelet transform may just obscure features in the wavelet
spectrum, especially when the amplitude of the fundamental frequency was close
to its maximum or did not reach the maximum. In this case, the wavelet coefficients
were close to zero, which was not convenient for digital signal processing and
introduced undesirable difficulties in the automatic processing of the wavelet
spectra. Modification of the mother wavelet function is potentially beneficial for
signal analysis, because it helps to adjust the method to solve specific problems
and expands the area of practical application of the wavelet transform. However,
considering the ambiguities associated with real wavelet basis functions, we will
modify the complex (not real) wavelet basis function in this book, and demonstrate
some profitable features of the modified Morlet wavelet constructed on the basis of
the standard complex mother Morlet wavelet function (5.1), which provides good
resolution in both the time and frequency domains.

The effects of pharmacological treatment on the structure of spike–wave
discharges in WAG/Rij rats, as observed by means of wavelet analysis with a
modified real Morlet wavelet, are presented in [82, 83]. This study led to the
following conclusions, which could be taken into account in clinical practice
(antiepileptic drug treatment).

Haloperidol (an antipsychotic drug) in small doses reinforces absence epilepsy
and causes numerous short spike–wave discharges in EEG. Rats under low doses of
Haloperidol had an SWD of mean duration of 5 s, characterized by a rapid change
in intrinsic frequency from 15 Hz at the beginning to 5 Hz at the end of the SWD. In
high doses, Haloperidol induces long-lasting spike–wave discharges with relatively
low frequency, which varied between 6 and 9 Hz with two types of modulation with
periods 0.5–0.6 and 3–6 s.

Vigabatrin (drug of choice for antiepileptic medication, anticonvulsant) in small
doses greatly increases the duration of SWDs (up to 20–45 s). Under vigabatrin
treatment, the SWD started with short bursts of oscillatory activity with frequency
17–20 Hz, and then the frequency decreased to 5 Hz, and gradually reached a plateau
of 8–9 Hz. The main frequency of spike–wave discharges fluctuated between 4.5–5
and 8–9 Hz, and the major changes in frequency occurred approximately every 2 s.

Ketamine (a drug with an anesthetic and analgesic action) caused a biphasic
effect on spike–wave discharges. In the first phase, the number of discharges
was reduced, and during the second phase, short and long spike–wave discharges
were usually observed. The short-lasting discharges had a head–tail waveform
(see Fig. 5.8). The “head” consisted of high-amplitude spike–wave complexes with
frequency 6–7 Hz and a duration of 1–1.5 s, whereas the “tail” was formed by low-
amplitude oscillations with a frequency about 9 Hz and duration 1–3 s.

In general, antiepileptic drug therapy altered the frequency characteristics of
SWDs, which are associated with changes in the neuronal network mechanisms of
absence epilepsy. These changes underlie the basic mechanisms of absence epilepsy
and, in particular, mechanisms involved in suppression of seizure activity.
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t, s

Fig. 5.8 Short-lasting SWD
in WAG/Rij rat under the
influence of ketamine (From
[83]). The SWD has a
specific waveform in EEG
(top) with two parts, namely
a “head” with frequency
6–7 Hz and “tail” with
a frequency of about 9 Hz.
The corresponding wavelet
surface obtained with the
modified Morlet wavelet
(bottom) shows the
time–frequency profile of this
phenomena

5.4 Applications of Wavelets in Electroencephalography

An EEG contains many different rhythmic components whose frequencies provide
important information about functional activity in different brain structures. As
already discussed, wavelet analysis is well suited to study complex processes with
time-varying characteristics, and it is widely used for time–frequency analysis of
EEG data (non-stationary signals that include a variety of oscillatory patterns with
significantly different waveforms and frequencies). Furthermore, the presence of
a high level of noise and the short duration of EEG recordings cause additional
difficulties in EEG analysis [20, 68–70, 72].

Careful attention should be paid to the specific forms of rhythmic activity
associated with specific brain and behavioral functions (episodes of epileptic
activity, sleep, etc.). It is known that rhythmic components in EEG reflect the
synchronous dynamics of a huge number of neurons integrated into ensembles
[77,84,85], and studies of rhythmic brain activity using wavelets are closely related
to an important task of nonlinear dynamics, viz., the study of synchronous behavior
in networks with complex topology [4–6, 86].

Sections 5.4.1–5.4.7 overview the most important and actively developed
applications of wavelets in studies of electrical brain activity and in diagnostics
based on EEG. In the heading of each part, we indicate the first and most important
works from our point of view, but the bibliography given here is obviously
incomplete due to the large number of publications.
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5.4.1 Time–Frequency Analysis of EEG Structure

One of the most obvious applications of wavelets in neurophysiology and
electroencephalography is identification of certain EEG patterns and analysis of
the time–frequency structure of EEG signals [18, 42, 43, 80, 82, 83, 87–110]. This
application takes into account the basic properties of wavelets and the main areas
of their use. The first wavelet-based studies in neurobiology aimed to analyze
characteristic time–frequency features of various patterns in EEG [43, 87, 89].
Subsequently, specific methods were developed to estimate different statistical
characteristics of non-stationary signals such as time-varying wavelet coherence,
wavelet entropy, etc. [109–114]. Wavelet-based studies were directed towards
determining particular interactions between the cardiovascular system and the CNS
using experimental data (ECoG and EEG) [115–117]. One of the most effective
applications of wavelets could be found in papers [81, 82, 91, 93, 104] with close
attention to pathological electrical brain activity characterized by short duration
and complex frequency content (see Sect. 5.3.3), such as spontaneous epileptic
spike-wave discharges in EEG. Wavelet analysis has also been used to identify
the influences of medication on the time–frequency structure of SWDs [83] and
to describe the structure of characteristic “precursors” of epileptic activity [101].
Wavelet-based methods were also used to study other forms of oscillatory activity
(oscillatory patterns) in EEG, in particular, sleep spindles and 5–9 Hz oscillations
[107].

Some aspects of time–frequency analysis of EEG, novel neurophysiological
results obtained using this analysis, interpretations, and conclusions are described
in Sects. 5.3.3, 6.2, and 6.3.

5.4.2 Automatic Detection of Oscillatory Patterns and Different
Rhythms in Pre-recorded EEG

Simple methods of automatic pattern recognition in EEG (e.g., the threshold
method, method of templates, simple neural networks, etc.) often failed to be
successful because of high noise levels, nonstationarity of EEG signals, and/or the
highly variable time–frequency structure of oscillatory EEG events [107,118–125].

The following properties of wavelet analysis benefit its application in the
automatic processing of EEG data:

1. A representation of the time–frequency structure of signals that enables one to
localize signal features simultaneously in the time and frequency domains.

2. Effective analysis of short time series containing small numbers of characteristic
oscillations, as required for automatic diagnostics of short-lasting events in EEG.

3. Flexibility in the choice of basis function for signal decomposition, a prerequisite
for successfully adjusting the mathematical apparatus of wavelet analysis to the
signal properties.



5.4 Applications of Wavelets in Electroencephalography 197

4. Highly effective analysis of noisy data, i.e., processes comprising a sum of useful
signals and additive noise.

Currently, there is a quite general approach to automatic processing of pre-recorded
EEG data using estimates of wavelet energy in characteristic frequency bands (with
standard mother wavelets and adaptive wavelet bases) [107, 120]. This method has
been successfully used to analyze the structure of sleep spindles in EEG, i.e., short
episodes of rhythmic activity in the EEG (see details in Sect. 7.4).

Automatic data processing methods facilitated further progress in the study of the
time-dependent dynamics of various rhythmic components in EEG. For instance, it
was shown that epileptic brain activity in WAG/Rij rats is an intermittent process
corresponding to on–off intermittency [120]. A similar intermittent dynamics was
also found in sleep spindles [107]. This type of dynamical behavior was observed
in coupled chaotic oscillators and in networks of nonlinear units at the boundary
of the synchronization region [126–131]. On–off intermittent behavior in neuronal
networks and applications of oscillation and wavelet theory can provide a deeper
understanding of the dynamics of epileptic activity and, in particular, the underlying
mechanisms of epilepogenesis. Later on, we shall describe examples of successful
applications of wavelets in this field (see Sects. 7.2 and 7.5).

5.4.3 Classification of Oscillatory Patterns

The development of standardized databases of characteristic electroencephalograph
patterns is an important fundamental and applied problem [70,80,97,107,117,132–
140]. A relatively new approach to classification and standardization of oscillatory
EEG patterns, similar to the template matching technique, constructs complex
adaptive wavelet bases from original EEG segments [80]. This procedure was
effective for identification and classification of spindle-like oscillatory events in
EEG. In particular, this method was used to describe “spike–wave spindles” that
occurred during desynchronization of EEG and were considered as an immature
form of epileptic spike–wave discharges that combined some properties of sleep
spindles and SWD [80]. More details will be given in Sect. 6.5.

5.4.4 Real-Time Detection of Oscillatory Patterns in EEG

Online identification of characteristic oscillatory patterns in EEG is one of the most
interesting and intensively studied problems [141–145]. Further progress in this area
is important for monitoring human brain activity, and also for the development of
special brain–computer interfaces. One difficulty in identification of EEG patterns
relates to the problem of selectivity (different EEG patterns have similar spectra).
It is difficult to develop a universal method for online diagnostics of oscillatory
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patterns in EEG due to the nonstationarity of experimental data. Application of
wavelets for online diagnostics in EEG may help to overcome this problem of
nonstationarity, and we shall discuss examples of how a wavelet-based method
provides a way to monitor seizure activity in the brain [144]. Let us note that current
methods for extracting characteristic EEG patterns using wavelets are increasingly
used in developing prototypes of brain–computer interfaces [137, 143, 146]. An
advantage and at the same time a disadvantage of these approaches is the use of the
discrete wavelet transform. Although it provides quick signal processing, allowing
online analysis of a large amount of experimental data, it is less appropriate for
flexible recognition of different patterns in EEG. Approaches like those described
in [144] which use the continuous wavelet transform can improve the quality
of recognition. Section 7.3 describes an algorithm for automatic online detection
of spike–wave discharges.

5.4.5 Multichannel EEG Analysis of Synchronization of Brain
Activity

It is known that different areas of the cerebral cortex often exhibit synchronous
activity in both normal states (e.g., during cognitive activity) and pathological states
(Parkinson’s disease, epilepsy, paranoid schizophrenia, etc.) [65, 95, 142, 147–154].
As shown in Sect. 2.3.5, the corresponding synchronous dynamics can be analyzed
using continuous wavelet analysis with complex mother functions in an approach
known as the time-scale synchronization [155, 156]. This has been used to study
synchronization phenomena in different kinds of system [157–162].

Application of the continuous wavelet transform for analysis of multichannel
EEG revealed periods of synchronization in short and noisy data. Besides,
synchronization of time scales is quite stable to errors when estimating the
characteristic frequencies of analyzed processes and this is important for automatic
processing of experimental neurophysiological data.

The discussed method has recently been successfully applied to reveal
synchronization between different brain areas during spike–wave discharges
(absence epilepsy) in humans and animals. It has also been used to analyze
brain activity during cognitive tasks. Section 6.6 describes the most interesting
results relating to the sequential involvement of different brain regions in the
synchronization process during epileptic discharges.

5.4.6 Artifact Suppression in Multichannel EEG Using
Wavelets and Independent Component Analysis

Analysis of EEG essentially becomes complicated due to the presence of different
artifacts, in particular high-amplitude EEG components associated with eye move-
ments, blinking, muscle activity, etc. [68, 87, 163–170]. Currently, wavelets have
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become a popular technique for artifact suppression [68, 169, 170]. For example,
a new approach known as wavelet-enhanced independent component analysis
(wICA) [167] has been applied to suppress artifacts caused by blinking eyes and
heart beats. It is important to note that wICA resulted in a tenfold reduction of
movement artifacts in EEG without significant influence on neuronal signals. This
advantage can be used to develop algorithms for automatic artifact rejection in EEG.
Section 7.8 describes peculiarities of the wICA approach.

5.4.7 Study of Cognitive Processes

In addition to analysis of pathological dynamics in EEG, the wavelet transform
is widely used in studies of cognitive processes [11, 143, 154, 171–174]. Thus,
interactions between different areas of the cerebral cortex were investigated during
cognitive tasks in [171]. This study aimed to assess the strength of intracortical
interactions using the degree of synchronization of electrical EEG activity expressed
in different brain areas. It used a wavelet-based correlation method to measure the
degree of synchronization during short time intervals (comparable with the duration
of mental operations, i.e., up to 100 ms).

The discrete wavelet transform with Daubechies functions was used in [173]
to study spectral powers in the alpha and beta frequency bands in different brain
areas of healthy subjects who were solving simple arithmetic tasks. The continuous
wavelet transform of EEG data has been intensively used to study rapid cognitive
processes underlying the process of human face recognition. Short fragments of
EEG (800 ms) were analyzed in [174] after emotionally valenced stimuli (expres-
sion of angry and neutral faces). Analysis was performed using the Morlet function
with estimation of wavelet coefficients in the frequency range �f D 1–30Hz,
reflecting the amplitude dynamics of cortical potentials in the corresponding
frequency range �f . Statistical analysis of rhythmic components in the evoked
EEG activity was carried out in the alpha and theta frequency bands. It was shown
that individual differences in the perception of facial expressions correlated with
wavelet coefficients in the above-mentioned frequency ranges. Thus, changes in the
alpha and theta bands were important at the stage of stimulus perception. Emotional
reaction is associated with theta activity. Based on wavelet analysis, Yakovenko
et al. [174] suggested that emotional expressions are accompanied by different
cortico-subcortical interactions among different humans and at different stages of
the experiment.

Finally, cognitive processes of human brain activity, accompanied by changes
in the waveform of evoked potentials in the EEG, were analyzed in [154] using
wavelets. Let us consider this work in more detail. The evoked potential represents
a structured fluctuation of electrical brain activity in response to external stimulus
[175]. Eight components of the evoked potential are traditionally introduced, taking
into account their polarity (P positive, N negative) and the latency, i.e., the time
delay from the onset of the stimulus. It is important to note that the evoked
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Fig. 5.9 Waveform of acoustically evoked potential and ranges of the “cognitive” components
N1, N2, and P300 (From [154])

potential of a certain modality (visual, auditory, somatosensory) is recorded at the
corresponding projection area of the neocortex. Potentials at other brain regions are
secondary (associative) and may differ in waveform, latent period, and amplitude.
For example, the spatial organization of an acoustically evoked potential reflects the
following stages of cognitive processes:

• Non-arbitrary perception—component N1,
• Transition from non-arbitrary to arbitrary perception—component N2,
• Information processing and decision regarding significance—component P300.

The purpose of the paper [154] was to develop an effective method for evaluating
phase synchronization to analyze acoustically evoked potentials in healthy human
subjects. It was shown that, in situations that do not require concentration (e.g.,
listening to sounds), spatial organization of the components of acoustically evoked
potentials had a diffuse character. Phase synchronization indexes fluctuated over the
range 0.5–0.8 and took similar values in all components N1, N2, and P300 (see
Fig. 5.9, reproduced from [154], which shows a typical waveform of the acoustically
evoked potential and variation of the “cognitive” components N1, N2 and P300).
Higher phase synchronization indexes in the studied components were found in
the frontal or temporal areas of the right hemisphere. Concentration (elicited by
auditory stimuli) increased this index up to 0.9 in components N1 and P300 (see
Fig. 5.10). The highest degree of synchronization was observed between associative
areas of the cortex (frontal, central, and parietal), between the hemispheres (often
diagonally), with a shift in the direction of the left hemisphere.

The described changes in the phase synchronization reflect the process of
selective involvement of the above-mentioned areas of neocortex in cognitive
(acoustic) tasks. Romanov et al. [154] used the good temporal resolution of the
wavelet transform in order to extract information about quick changes in the shape
of the electric potential (evoked potential) during mental activity. Wavelet analysis
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Fig. 5.10 Changes of phase synchronization (a) and wavelet power (b) while listening to sounds
(1) and while counting auditory stimuli (2) in the same subject (From [154])

is thus in demand in psychophysiology, where it is often necessary to analyze short
fragments of EEG and rapid processes of human brain activity.
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133. K. Polat, S. Güneş, A novel data reduction method: distance based data reduction and its
application to classification of epileptiform EEG signals. Appl. Math. Comput. 200, 10 (2008)

134. A.B. Geva, D.H. Kerem, Forecasting generalized epileptic seizures from the EEG signal
by wavelet analysis and dynamic unsupervised fuzzy clustering. IEEE Trans. Biomed. Eng.
45(10), 1205 (1998)

135. H. Ocak, Optimal classification of epileptic seizures in EEG using wavelet analysis and
genetic algorithm. Signal Process. 88, 1858 (2008)

136. N.T. Abdullaev, O. Dyshin, H.Z. Samedova, Automatic classification of electroencephalo-
grams based on their wavelet packet processing. Biomed. Electron. 6, 34 (2009)

137. W.Y. Hsu, Y.N. Sun, EEG-based motor imagery analysis using weighted wavelet transform
features. J. Neurosci. Methods 176, 310 (2009)

138. M.R. Kousarrizi, A.A. Ghanbari, M. Teshnehlab, M. Aliyari, A. Gharaviri, Feature extraction
and classification of EEG signals using wavelet transform, SVM and artificial neural networks
for brain–computer interfaces, in International Joint Conference on Bioinformatics, Systems
Biology and Intelligent Computing, 2009 (IJCBS ’09), Shanghai, 3–5 Aug 2009, pp. 352–355

139. L. Ke, R. Li, Classification of EEG signals by multi-scale filtering and PCA, in IEEE
International Conference on Intelligent Computing and Intelligent Systems (ICIS 2009),
Phoenix, 20–22 Nov 2009, pp. 362–366

140. L. Li, D. Xiong, X. Wu, Classification of imaginary movements in ECoG, in 5th International
Conference on Bioinformatics and Biomedical Engineering (iCBBE), Wuhan, 10–12 May
2011, pp. 1–3

141. K. Kiymik, I. Güler, A. Dizibüyüka, M. Akin, Comparison of STFT and wavelet transform
methods idetermining epileptic seizure activit in EEG signals for real-time application.
Comput. Biol. Med. 35, 603 (2005)

142. C. Brunner, R. Scherer, B. Graimann, G. Supp, G. Pfurtscheller, Online control of a
brain–computer interface using phase synchronization. IEEE Trans. Biomed. Eng. 53, 2501
(2006)

143. Z. Wu, D. Yao, Frequency detection with stability coefficient for steady-state visual evoked
potential (SSVEP)-based BCIs. J. Neural Eng. 5, 36 (2008)

144. A.A. Ovchinnikov, A. Luttjohann, A.E. Hramov, G. van Luijtelaar, An algorithm for real-time
detection of spike–wave discharges in rodents. J. Neurosci. Methods 194, 172 (2010)

145. A.A. Ovchinnikov, A.E. Hramov, A. Luttjehann, A.A. Koronovskii, G. van Luijtelaar,
Method for diagnostics of characteristic patterns of observable time series and its real-time
experimental implementation for neurophysiological signals. Tech. Phys. 56(1), 1 (2011)

146. W. Ting, Y. Guo-zheng, S. Hong, EEG feature extraction based on wavelet packet decompo-
sition for brain computer. Measurement 41, 618 (2008)

147. J.P. Lachaux et al., Studying single trials of the phase synchronization activity in the brain.
Int. J. Bifurc. Chaos 10(10), 2429 (2000)

148. M.L. Quyen, J. Foucher, J.P. Lachaux, E. Rodriguez, A. Lutz, J. Martinerie, F.J. Varela,
Comparsion of Hilbert transform and wavelet methods for the analysis of neuronal synchrony.
J. Neurosci. Methods 111, 83 (2001)

149. P. Gong, A.R. Nikolaev, C. van Leeuwen, Intermittent dynamics underlying the intrinsic
fluctuations of the collective synchronization patterns in electrocortical activity. Phys. Rev.
E 76(1), 011904 (2007)

150. A.R. Nikolaev, G. Pulin, C. van Leeuwen, Evoked phase synchronization between adjacent
high-density electrodes in human scalp EEG: duration and time course related to behavior.
Clin. Neurophysiol. 116, 2403 (2005)

151. D. Alexander, C. Trengove, J. Wright, P. Boord, E. Gordon, Measurement of phase gradients
in the EEG. J. Neurosci. Methods 156, 111 (2006)

152. P. Bob, M. Palus, M. Susta, K. Glaslova, EEG phase synchronization in patients with paranoid
schizophrenia. Neurosci. Lett. 447, 73 (2008)



208 5 Wavelet Approach to the Study of Rhythmic Neuronal Activity

153. M. Teplan, K. Susmakova, M. Palus, M. Vejmlka, Phase synchronization in human EEG
during audio-visual stimulation. Electromagn. Biol. Med. 28(1), 80 (2009)

154. A.S. Romanov, E.V. Sharov, O. Kuznetsova, L.B. Oknina, P.E. Volinsky, G.A. Schekutev,
Possibilities of wavelet synchronization method in assessing long-latency components of the
acoustic evoked potential of a healthy person. J. High. Nerv. Act. 61(1), 112 (2011)

155. A.E. Hramov, A.A. Koronovskii, An approach to chaotic synchronization. Chaos Int.
J. Nonlinear Sci. 14(3), 603 (2004)

156. A.E. Hramov, A.A. Koronovskii, Time-scale synchronization of chaotic oscillators. Physica
D 206(3–4), 252 (2005)

157. R.A. Filatov, A.E. Hramov, A.A. Koronovskii, Chaotic synchronization in coupled spatially
extended beam-plasma systems. Phys. Lett. A 358, 301 (2006)

158. A.E. Hramov, A.A. Koronovskii, P.V. Popov, I.S. Rempen, Chaotic synchronization of
coupled electron-wave systems with backward waves. Chaos Int. J. Nonlinear Sci. 15(1),
013705 (2005)

159. A.E. Hramov, A.A. Koronovskii, V.I. Ponomarenko, M.D. Prokhorov, Detecting synchro-
nization of self-sustained oscillators by external driving with varying frequency. Phys. Rev. E
73(2), 026208 (2006)

160. A.E. Hramov, A.A. Koronovskii, V.I. Ponomarenko, M.D. Prokhorov, Detection of synchro-
nization from univariate data using wavelet transform. Phys. Rev. E 75(5), 056207 (2007)

161. A.E. Hramov, A.A. Koronovskii, Y. Levin, Synchronization of chaotic oscillator time scales.
J. Exp. Theor. Phys. 127(4), 886 (2005)

162. A.E. Hramov, A.A. Koronovskii, V.I. Ponomarenko, M.D. Prokhorov, in Proceedings of
International Symposium “Topical Problems of Nonlinear Wave Physics”. Part 1. Nonlinear
Dynamics: Theory and Applications, St. Petersburg/N. Novgorod, 2–9 Aug 2005, ed. by
V.I. Nekorkin (Nizhnij Novgorod, 2005), p. 33

163. M. Alegre, A. Labarga, I. Gurtubay, J. Iriarte, A. Malanda, J. Artieda, Movement-related
changes in cortical oscillatory activity in ballistic, sustained and negative movements. Exp.
Brain Res. 148, 17 (2003)

164. H. Goelz, R. Jones, P. Bones, Wavelet analysis of transient biomedical signals and its
application to detection of epileptiform activity in the EEG. Clin. Neurophysiol. 31, 181
(2000)

165. A. Murata, An attempt to evaluate mental workload using wavelet transform of EEG. Hum.
Factors 47, 498 (2005)

166. X. Wan, K. Iwata, J. Riera, T. Ozaki, M. Kitamura, R. Kawashima, Artifact reduc-
tion for EEG/fMRI recordings: nonlinear reduction of ballistocardiogram artifacts. Clin.
Neurophysiol. 117, 1 (2006)

167. N.P. Castellanos, V.A. Makarov, Recovering EEG brain signals: artifact suppression with
wavelet enhanced independent component analysis. J. Neurosci. Methods 158, 300 (2006)

168. V. Krishnaveni, S. Jayaraman, L. Anitha, K. Ramadoss, Removal of ocular artifacts from EEG
using adaptive thresholding of wavelet coefficients. J. Neural Eng. 3, 338 (2006)

169. J.A. Jiang, C.F. Chao, M.G. Chiu, R.G. Lee, C.L. Tseng, R. Lin, An automatic analysis
method for detecting and eliminating ECG artifacts in EEG. Comput. Biol. Med. 37, 1660
(2007)

170. H. Leung, K. Schindler, A.Y. Chan, A.Y. Lau, K. Lau, E.H. Ng, K.S. Wong,
Wavelet-denoising of electroencephalogram and the absolute slope method: a new tool to
improve electroencephalographic localization and lateralization. Clin. Neurophysiol. 120,
1273 (2009)

171. A.R. Nikolaev, G.A. Ivanitskii, A.M. Ivanitskii, A new method of studying cortical interac-
tions in short time intervals: cortical connections during search for word associations. J. High.
Nerv. Act. 50(1), 44 (2000)

172. L. Bonfiglio, S. Sello, P. Andre, M.C. Carboncini, P. Arrighi, B. Rossi, Blink-related delta
oscillations in the resting-state EEG: a wavelet analysis. Neurosci. Lett. 449, 57 (2009)

173. X. Yu, J. Zhang, D. Xie, J. Wang, C. Zhang, Relationship between scalp potential and
autonomic nervous activity during a mental arithmetic task. Auton. Neurosci. Basic Clin.
146, 81 (2009)



References 209

174. I.A. Yakovenko, E.A. Cheremushkin, M.K. Kozlov, Analysis of induced electrical activity
of the cerebral cortex using wavelet transform at different stages of the installation on the
emotional expression. J. High. Nerv. Act. 60, 409 (2010)

175. D. Regan, Human Brain Electrophysiology: Evoked Potentials and Evoked Magnetic Fields
in Science and Medicine (Elsevier, New York, 1989)



Chapter 6
Time–Frequency Analysis of EEG:
From Theory to Practice

Abstract This chapter describes some specific results of time–frequency analysis
of EEG using the continuous wavelet transform. In this chapter we pay special
attention to technical and computational details of time–frequency analysis of
neurophysiological signals, i.e., produced by electrical brain activity in animals
and humans. This chapter also presents continuous wavelet analysis of hyper-
synchronous rhythmic activity in multichannel EEG, characterizing the onset of
absence epilepsy in patients.

6.1 Introduction

In this chapter we consider the continuous wavelet transform as an appropriate
method for time–frequency analysis of the EEG signal. The fact that there is no
requirement of stationarity is an advantage in using the CWT to characterize short
non-stationary events in the EEG of animals and humans, such as episodes of spindle
and spike–wave activity, in which the signal-to-noise ratio is low [1–3, 6]. The
present chapter also addresses the problem of individual variability and irregularity
of the EEG pattern of SWD and sleep spindle events that would be solved by
selecting optimal template wavelet functions. From a technical point of view, these
results provide a clue as to the selective identification, classification, and statistical
description of several types of phasic events in the EEG. More details for automatic
EEG processing can be found in Chap. 7.

Let us just describe how Chap. 6 is organised. We begin with the outcomes
presented in Sect. 5.3.3 concerning the time–frequency characteristics of the spike–
wave discharges in EEG as recorded in the WAG/Rij rat model of absence epilepsy.
First, we discuss the selective analysis of low-frequency (delta and theta) precursors
of epileptic SWD events (Sect. 6.2). Second, we focus on non-epileptic oscillatory
EEG patterns in epileptic rats and demonstrate some peculiarities of the time–
frequency structure of sleep spindles (Sect. 6.3). Third, we provide an algorithm for
classifying sleep spindles based on a specially constructed adaptive wavelet basis
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(mother wavelets), the so-called spindle wavelets (Sect. 6.5). Practical issues about
application of the continuous wavelet transform to time–frequency analysis of EEG
will be discussed in Sect. 6.4. The last part of the chapter presents data obtained
with the continuous wavelet transform of human multichannel EEG, specifically
regarding the dynamics of hypersynchronous rhythmic activity in patients with
absence epilepsy (Sect. 6.6).

6.2 Oscillatory Activity Prior to Epileptic Seizures

The classical description of the SWD in the multichannel scalp EEG is that the
SWD appear abruptly from a normal background activity [4]. However, a gradual
increase in power in the low frequencies at frontal locations toward the beginning
of the SWD has been found in human patients [5]. Continuous wavelet analysis of
the time–frequency structure of the SWD in long-term 5–7 h EEG recordings of
WAG/Rij rats performed with the complex Morlet wavelet (2.36) showed that the
onset of SWD was preceded by a set of short-lasting rhythmic components with
maximum spectral power in the delta (3–5 Hz) and theta/alpha (7–11 Hz) frequency
bands [6]. Let us consider the wavelet-based analysis of seizure-precursor EEG
activity in more detail.

6.2.1 Description of Experiment

6.2.1.1 Animals

Six male 1-year-old WAG/Rij rats (body weight 320–360 g) were used. The animals
were born and raised in the laboratory at the Center for Cognition, Donders Institute
of Brain, Cognition and Behavior of Radboud University Nijmegen (Netherlands).
They were kept in pairs in standard cages with food and water available ad libitum
under a 12–12 h light-dark cycle, with white lights on at 18:00, at a constant
ambient temperature of 21 ıC. The experiments were conducted in accordance with
the legislations and regulations for animal care and were approved by the Ethical
Committee on Animal Experimentation of the Radboud University Nijmegen.

6.2.1.2 EEG Recording Design and Equipment

The animals were equipped with six stainless steel electrodes (two pairs of MS
333/2A, Plastic One Inc., Roanoke, VI, USA) for monopolar EEG recordings. The
electrodes were identical, insulated with a non-insulated tip (diameter 0.2 mm). Two
EEG electrodes were placed epidurally over the cortex in the frontal and occipital
cortical areas. Two depth electrodes were implanted into the ventroposteromedial
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and reticular nuclei of the thalamus [7]. Ground and reference electrodes were
placed symmetrically over both sides of the cerebellum. Electrodes were perma-
nently attached to the rat’s skull with dental cement. Figure 6.1 illustrates the EEG
recording procedure.

The EEG was recorded in freely moving rats in a noise-isolated Faraday cage
for 5–7 h in the dark period of the light/dark cycle (see Fig. 6.1b). One day before
the EEG recording session, the rats were given 2 h to get used to the recording
procedure. They were then moved to custom-made Plexiglas recording cages (25–
30 cm wide, 35 cm high). EEG signals were fed into a multichannel differential
amplifier via a swivel contact, band-pass filtered between 1 and 500 Hz, digitized
with 1,024 samples/s/channel (Data Acquisition Hardware and Software, DATAQ
Instruments Inc., Akron, OH) and stored on a hard disk. Recorded EEG signals were
filtered at the preset processing stage in the 0.5–49 and 51–100 Hz frequency bands
to get rid of high-frequency noise and interfering signals associated with feeding
(50 Hz).

6.2.2 Time–Frequency Wavelet Analysis of Cortical
and Thalamic SWDs

SWDs were automatically identified in the frontal EEG (the area of SWD amplitude
maximum) using the wavelet-based method described in Sect. 7.2. The results
of SWD detection in the frontal EEG (where the amplitude of the spike–wave
discharges was the highest) were approximated to the thalamic channels (VPM
and RTN). Cortical and thalamic records were examined during SWD and before
the onset of SWD (pre-SWD epochs, about 3 s prior to SWD onset as defined in
the frontal EEG). Non-epileptic control EEG epochs of background activity were
also analyzed (from 6 to 12 epochs per animal). Control EEG epochs lasted 10 s.
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They did not contain SWDs and included periods of active wakefulness (low-
amplitude high-frequency EEG, mixture of theta and beta rhythmic activity),
passive wakefulness, light slow-wave sleep (immobile behavior, combined with the
presence of intermediate amplitude, slow <6Hz activity and sleep spindles), and
deep slow-wave sleep (immobile behavior, large-amplitude delta <4Hz waves).

Time–frequency analysis of automatically identified SWDs was carried out using
a continuous wavelet decomposition with a complex Morlet mother wavelet. We
examined the matrix of wavelet coefficients at each time and frequency in EEG
epochs prior to and during SWD. Precursor activity was defined by a gradual
increase in the wavelet energy compared to baseline for a minimum of 100 ms
observed in the 3 s period preceding the onset of SWD. Rhythmic precursor
activity was characterized by high wavelet energy (more than two times higher
than the background), which exceeds the threshold for at least 0.3 s. The wavelet
energy background level is determined in the period preceding precursor activity.
Characteristics of the control EEG (for example, wavelet power) during different
kinds of behavioral activity were studied individually in each experimental rat. It
was found that delta and theta components were most dominant in SWD precursor
activity.

The following time–frequency parameters of SWD precursor activity were
extracted independently in the cortex and thalamus by means of wavelet analysis:

1. Mean frequency fı or f� (Hz) of SWD precursors in their characteristic
frequency band (i.e., delta or theta/alpha). The frequency of each precursor
type was determined by measuring the peak frequency in the wavelet spectrum
(the peak frequency corresponds to the darkest spot in the wavelet spectrum in
Figs. 6.2–6.4).

2. Mean duration of SWD precursors (MD, s). In order to localize the precursor in
time, we defined the onset and offset of each rhythmic precursor. The onset of the
SWD precursor was determined when the wavelet energy in specific frequencies
exceeded the mean baseline level for at least 100 ms. The offset of the precursor
was determined as the moment when the wavelet energy in the selected frequency
band returned to the mean baseline level for this frequency.

3. Difference � D fb � fm (Hz) between the SWD frequencies fb and fm at the
beginning and at the middle, respectively.

4. Time delay Td (s) between SWD precursors and the onset (the first spike) of the
subsequent SWD.

5. Percentage nk (%) of the two types of SWD precursor, viz., 3–5 Hz (delta) and
7–11 Hz (theta), among the total number of SWDs, viz.,

nk D Nk

NSWD
� 100 % ; (6.1)

where Nk is the number of each type of SWD precursor as assessed in the cortex
and thalamus and NSWD is the total number of spike–wave discharges.



6.2 Oscillatory Activity Prior to Epileptic Seizures 215

6. The average durations d and 	 of delta and theta/alpha rhythmic precursors
(s). The starting point of the precursors was assessed as the time when the
wavelet energy in the investigated frequency range (3–5 or 7–11 Hz) exceeded
the average energy of the EEG in the corresponding frequency range for at least
100 ms. The end of the precursors was determined as the time when the wavelet
energy returned to the baseline level.

7. The number G of cases of coincident presence of delta and theta/alpha compo-
nents in the pre-SWD.

8. The relative number of cases with simultaneously present delta and theta/alpha
from the total number of delta and theta/alpha events, viz.,

K D G

N� CNı �G � 100 % ; (6.2)

where N� and Nı are the numbers of observed delta and alpha/theta events in
pre-SWD epoch.

In the control periods, the following parameters were determined automatically
using wavelet spectra:

1. The number Nı of delta components in control periods.
2. The mean number Nı=T of delta components per second, where T is the time

duration of analyzed EEG in seconds.
3. The mean frequency fı (Hz) of delta components was measured by averaging

the instantaneous frequencies at every sampling point during the full duration of
the corresponding delta event.

4. The number N� of theta/alpha components in control periods.
5. The mean number N�=T of theta/alpha component events per second, where T

is the duration of analyzed periods in seconds.
6. The mean frequency f� (Hz) of theta/alpha components was measured in a

similar way to fı .

Wavelet analysis was performed in all SWDs detected during 5–7 h of recording.
The number of SWDs in rat #23 was 107 (6 h), #24—278 (6 h), #25—59 (7 h),
#26—120 (6 h), #28—54 (5 h), #29—124 (6 h). Control periods were randomly
chosen artifact-free 10 s periods during active wakefulness, passive wakefulness,
light slow-wave sleep, and deep slow-wave sleep (6–12 control periods per rat).

Typically, as already discussed in Sect. 5.3.3, the wavelet spectrum of SWDs in
the cortex of WAG/Rij rats showed a local maximum at frequency �10–11 Hz at
the beginning of the SWD and subsequently slowed down to 7–8 Hz in the middle
part of a seizure and even lower, to 5–6 Hz, at the end. Descriptive statistics of the
frequency modulation of SWDs as recorded in the cortex and thalamus can be found
in Table 6.1.
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Table 6.1 Averaged frequencies of SWD (mean ˙ SD, number of rats n D 6) at the beginning
and in the middle of the SWD as measured in the cortex and thalamus

fb (Hz) fm (Hz) fb � fm (Hz)

Cortex 10:1˙ 1:5 7:4˙ 0:8 2:8˙ 0:8

Thalamus 8:5˙ 2:5 6:4˙ 2:4 2:1˙ 0:6

The drop in frequency from the beginning to the middle part of the cortical
SWD was statistically evaluated and significant,1 as was the frequency drop in the
thalamus. The frequency at the beginning of the SWD was higher in the cortex than
in the thalamus.

6.2.3 Delta and Theta Precursors of SWD as Measured
in the Cortex and Thalamus

Wavelet-based time–frequency analysis of EEG fragments preceding the spike–
wave discharges showed that SWD precursors consisted of several frequency
components in the range from 2 to 12 Hz. The two most powerful rhythmic
components in frequency bands 3–5 and 7–11 Hz immediately preceded the onset
of SWD, considering their predominance and close proximity in time to onset.
Theta/alpha precursor activity was found in the cortex and thalamus at the same
time, while the delta events appeared in the thalamus and cortex with a small, but
significant delay. So the time delay between the delta precursor and the subsequent
SWD was longer for the cortex (0:48˙ 0:04) than for the thalamus (0:38˙ 0:04),
and this difference was highly significant.

We also calculated the correlations between time–frequency parameters of
precursor activity and subsequent SWDs obtained by means of wavelet analysis,
in order to study whether there were relations between time–frequency parameters
of preictal and ictal EEG. Correlations between the frequency of cortical delta and
theta/alpha precursor activity and subsequent SWDs were generally positive and
also quite high (delta 0.63, theta/alpha 0.49), while for the thalamus, the coefficients
for delta and theta were 0.78 and 0.41, respectively.

Some illustrative examples of delta and theta/alpha precursor activity in the
cortex and thalamus can be found in Figs. 6.2 and 6.3. Descriptive statistics of the

1To estimate the relation between the characteristics of SWD and precursor activity, we used
the following statistics. First, Pearson’s correlation coefficients were used to analyze the relation
between the characteristics (fı , f� and corresponding MD) of SWD precursor activity and the
frequency fb. The means per subject were used. Second, Student’s paired t -tests were used to test
differences between the characteristics of SWD and precursor activity in the cortex and thalamus.
Third, differences between states were analyzed with an ANOVA followed by post-hoc tests,
according to Duncan [8].
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Fig. 6.2 Examples of wavelet surfaces of SWDs simultaneously recorded at the frontal cortex
(upper graph) and the thalamus, RTN (bottom graph). Wavelet spectra were calculated using a
complex Morlet mother wavelet with central frequency !0 D 2� . The onset of the SWD was
preceded by 3.9 and 6.4 Hz in the cortex and 4.1 Hz in the thalamus. The dome-shaped curve on
the wavelet surfaces marks the area of boundary effects (see Sect. 2.3.3). The ordinate (frequency)
axis has a logarithmic scale. Arrows indicate the beginning of the SWD

frequency and duration of delta and theta precursors in the cortex and thalamus are
given in Table 6.2.

The respective frequencies fı and f� of delta and theta/alpha precursor activity
in the thalamus were similar to those in the cortex. However, the duration MD of
theta precursor activity was slightly longer in the thalamus than in the cortex, and
the cortical delta precursor activity lasted longer than the cortical theta precursor
activity.

Delta precursor activity in the frontal cortex was found in 90 % of all SWDs,
and theta/alpha precursor activity was found in 92 %. High percentages were also
found in the thalamus (VPM), viz., 82 and 83 % for delta and theta/alpha precursors,
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respectively. There were no differences in the percentages of SWDs that were
preceded by delta and theta/alpha precursors in the cortex and thalamus. The average
duration of precursor activity was approximately equal to 0.5 s.

We also investigated whether delta precursor activity was simultaneously present
in the cortex and thalamus. It was found that, in 79 % of cases, SWDs were preceded
by simultaneous 3–5 Hz precursors in the cortex and thalamus, in 11 % of cases, only
in the cortex but not in the thalamus, and in 5 % of cases, only in the thalamus but
not in the cortex. Finally, in 5 % of cases, delta precursors were completely absent,
in both the cortical and the thalamic EEG. An example of this exceptional situation
is shown in Fig. 6.4.
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Table 6.2 Time–frequency characteristics of two types of SWD-precursor activity (delta and
theta/alpha activity) in WAG/Rij rats (mean ˙ SD)

Delta (3–5 Hz) SWD precursors Theta/alpha (7–11 Hz) SWD precursors

Rat # nd (%, see (6.1)) fı (Hz) d (s) n� (%, see (6.1)) f� (Hz) 	 (s)

Frontal cortex
23 89 4:7˙ 0:6 0:43˙ 0:04 93 10:2˙ 0:8 0:39˙ 0:06

24 88 3:2˙ 0:4 0:52˙ 0:02 89 7:6˙ 2:1 0:48˙ 0:03

25 93 4:2˙ 0:7 0:48˙ 0:02 87 7:9˙ 0:6 0:45˙ 0:05

26 87 3:7˙ 0:8 0:52˙ 0:05 92 8:2˙ 1:2 0:54˙ 0:08

28 89 4:1˙ 0:5 0:51˙ 0:10 95 8:5˙ 1:0 0:48˙ 0:06

29 92 4:6˙ 0:5 0:44˙ 0:03 96 9:3˙ 1:1 0:41˙ 0:02

Mean 89:7˙ 2:3 4:1˙ 0:6 0:48˙ 0:04 92˙ 1:4 8:6˙ 1:0 0:46˙ 0:05

˙ SD
Thalamus, ventroposteromedial nucleus (VPM)
23 87 5:3˙ 1:0 0:41˙ 0:06 89 9:9˙ 0:7 0:42˙ 0:05

24 86 3:0˙ 0:4 0:54˙ 0:04 84 7:7˙ 1:8 0:54˙ 0:03

25 89 3:9˙ 0:6 0:50˙ 0:05 79 8:1˙ 0:7 0:51˙ 0:06

26 81 5:1˙ 1:0 0:62˙ 0:08 83 8:1˙ 1:0 0:58˙ 0:09

28 85 4:4˙ 0:7 0:48˙ 0:09 88 8:2˙ 1:0 0:49˙ 0:06

29 62 4:3˙ 0:6 0:45˙ 0:06 72 9:3˙ 0:9 0:43˙ 0:04

Mean 81:7˙ 9:9 4:3˙ 0:8 0:50˙ 0:07 82:5˙ 6:2 8:5˙ 0:8 0:50˙ 0:06

˙ SD

A similar study of the co-occurrence of delta and theta/alpha activity was carried
out in the control periods in the cortex and in the thalamus in relation to different
states (active and passive wakefulness, light and deep slow-wave sleep). The relative
numberK of co-occurrence of theta/alpha and delta activity was 8.1 % for the cortex
and 6.0 % for the thalamus. This difference was not significant, although an effect
of state vigilance was found: the co-occurrence was rarer during deep slow-wave
sleep than during the other states, yet these three states were not different.

The numbers of delta and theta/alpha events as recorded in the cortex and
thalamus in control periods (background EEG) are presented in Table 6.3. We found
that the percentage of co-occurrence during the control periods (7.7 %) in the cortex
was much lower than that during the precursor activity (79 %).

Thus, analysis of electrical brain activity preceding SWD onset using the
continuous wavelet transform has several advantages over traditional FFT. First,
the wavelet transform enables reliable detection of non-periodic and non-stationary
phasic events (short-lasting rhythmic bursts in EEG). Second, the wavelet transform
provides information in the time domain, i.e., information regarding the dynamic
changes of spectral components. The above results lead to several interesting
conclusions about the SWD precursor activity in the cortical and thalamic EEG,
suggesting that seizure-precursor epochs differ from non-epileptic EEG and could
be regarded as a transient between non-epileptic and SWD activity. The main finding
is that both delta and theta/alpha precursor activities preceded the onset of SWD,
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Fig. 6.4 Examples of wavelet surfaces of SWDs simultaneously recorded at the frontal cortex
(upper graph) and the thalamus, RTN (bottom graph). Wavelet spectra were calculated using a
Morlet mother wavelet with central frequency !0 D 2� . Clear precursor activity (3.7 Hz) was
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and that this combination rarely occurred in control periods. Other findings were
the strong association between cortical and thalamic theta/alpha precursor activity
and the earlier presence of cortical delta precursors in comparison with thalamic
precursors.
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Table 6.3 Percentage of co-occurrence of delta and theta/alpha activity in cortex as measured dur-
ing 2.5–3.0 s periods preceding SWD and during control periods (active and passive wakefulness,
light and deep slow-wave sleep)

Frontal cortex (%) Thalamus, VPM (%)

Pre-SWD activity 88.9 79.0
Active wakefulness 8.6 6.3
Passive wakefulness 12.9 11.7
Light slow-wave sleep 9.3 4.8
Deep slow-wave sleep 2.2 0.8

The appearance of delta activity in the cortex immediately prior to spike–wave
discharges might be regarded as a seizure-related trigger activity, instantiating
hypersynchronous discharges in the thalamo-cortical network. More detailed discus-
sion of the neural mechanisms of slow-wave seizure-precursor and the epileptogenic
nature of delta and theta/alpha precursors can be found in [6, 9, 10]. It should be
emphasized that detection of specific oscillatory patterns, precursors of epileptic
events, was only possible with the aid of wavelet-based time–frequency analysis of
EEG signals.

6.3 Time–Frequency Analysis of Sleep Spindles
and Spindle-Like Oscillatory Patterns

6.3.1 Relationship Between Sleep Spindles, 5–9 Hz
Oscillations, and SWDs

Here we consider the characteristics and peculiarities of the time–frequency struc-
ture of sleep spindles, i.e., the oscillatory patterns that are the electroencephalo-
graphic correlates of slow-wave sleep. Sleep spindles are among the most numerous
spontaneous oscillations, abundantly present in electroencephalograms during non-
REM sleep in humans and animals [11]. Sleep spindles can be recorded at the
cortical surface, and also in the thalamus as brief episodes of 9–14 Hz oscillations.
Basic electrophysiological studies have shown that sleep spindle oscillations are
triggered by the reticular thalamic nuclei, spread throughout the thalamus, and
propagate to the cortex [12–15].

Under certain conditions,2 the thalamo-cortical neuronal circuit, which normally
produces sleep spindles, could give rise to epileptic spike–wave discharges (SWDs)

2This can happen when the level of neuronal network synchronization becomes too high (hyper-
synchronization), or when cortical neurons express too strong an excitation (hyper-excitation) in
response to the thalamic input.
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[15–21], which are electroencephalographic hallmarks of generalized idiopathic
epilepsies, such as absence epilepsy and other syndromes (see Chap. 5).

It is well known that sleep spindles and spontaneous SWDs (but not pharma-
cologically induced seizures, see, e.g., [16, 18, 19]) are characterized by a similar
temporal distribution across the sleep–waking cycle. In particular, both EEG events
are predominant in the drowsy state and in the transition from wakefulness to
sleep (see, e.g., [22–24]). Sleep spindles are abundant during slow-wave sleep,
and the circadian dynamics of SWDs also correlates positively with the dynamics
of slow-wave sleep, as was demonstrated in the WAG/Rij rat model of absence
epilepsy [22]. In human patients, absence epilepsy is sometimes dismissed as
simple “daydreaming”. Absence epilepsy might be considered as a sleep-related
disorder, inasmuch as SWDs appear more often when the level of vigilance is low,
e.g., passive wakefulness, drowsiness, and light slow-wave sleep in animal models
[22, 25, 26], as well as in epileptic patients [27, 28]. Altogether this implies that the
occurrence of sleep spindles and SWDs could be controlled by a common circadian
timing mechanism that regulates the sleep–wake cycle.

The relationship between SWDs, sleep spindles, and sleep mechanisms is very
complicated and not yet well understood. Absence seizures may be initiated by
wake-related processes (see [29, 30]). In particular, in Genetic Rats with Absence
Epilepsy (GAERS), “SWDs develop from wake-related 5–9 Hz oscillations, which
are distinct from spindle oscillations (7–15 Hz)” [31, p. 209]. Five to nine hertz
oscillations originate from the cortex (“launched by corticothalamic neurons” [31]),
in contrast to sleep spindles, whose pacemaker is well known to be located in the
thalamus [18]. Spontaneous medium-voltage 5–9 Hz oscillations are usually present
in EEG during waking immobility, but they do not always lead to spike-and-wave
discharges [32]. In addition to that, 5–9 Hz oscillations can be recorded in non-
epileptic rats and never give rise to SWDs [32].

This section describes the time–frequency properties of two kinds of thalamocor-
tical oscillatory pattern: sleep spindles and 5–9 Hz oscillations [33, 34].

6.3.2 Experimental Procedure

EEG analysis was performed by means of the continuous wavelet transform of 24 h
EEG recorded in the cortex and thalamus in eight freely moving WAG/Rij rats. The
method of EEG recording in rats was described in detail in Sect. 6.2. Criteria for
assessing spindle-like patterns in EEG of rats derived from animal EEG research
[14, 18, 35]. In WAG/Rij rats, sleep spindles represented a sequence of 8–14 Hz
waves. They were characterized by a twofold increase in amplitude as compared to
the EEG background and had waxing–waning morphology and a minimal duration
of 0.3–0.5 s. For the study, we selected typical fragments of EEG during sleep with
well-pronounced sleep spindles.

A typical multichannel recording of a “sleep” EEG is shown in Fig. 6.5. The
oscillatory patterns under study (sleep spindles) are marked by dashed frames in the
EEG time series. One can see that sleep spindles are most clearly distinguished in
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5 s
Fig. 6.5 Example of a multichannel EEG recorded during sleep in a symptomatic WAG/Rij rat.
The dashed frames are selected sleep spindles. Here Fr is the signal recorded in the frontal cortex,
Oc in the occipital cortex, RTN in the reticular nucleus, and VPM in the ventroposteromedial
nucleus of the thalamus

the frontal cortex (channel Fr, Fig. 6.5), so in further research we used univariate
scalar EEG signals recorded in this area.

6.3.3 Time–Frequency Analysis of Spindle-Like Oscillatory
Patterns: Comparison of Different Mother Wavelets

In the preliminary stage, we tested several mother wavelet functions for the
continuous wavelet transform of sleep EEG and identified the advantages and
disadvantages of each of them. We focused our attention on the real MHAT (2.40),
and complex Paul (2.37) and complex Morlet (5.1) mother wavelets. It is noteworthy
that the wavelet transform with each wavelet basis resulted in wavelet surfaces with
specific frequencies fs that differ from Fourier frequencies f which are commonly
used in neurophysiology (see Sect. 2.3.3). More specifically, for the MHAT wavelet,
fs � 3:97f , for the Paul wavelet with parameter m D 4, fs � 0:71f , and for the
Morlet wavelet with central frequency !0 D 2� , fs � f .

The results of wavelet analysis of the EEG recorded in the frontal cortex during
sleep with numerous sleep spindles are shown in Fig. 6.6. This figure shows a typical
EEG epoch (Fig. 6.6a) containing several sleep spindles and the corresponding
amplitude wavelet spectra jW.fs; t /j, obtained with the mother MHAT (Fig. 6.6b),
Paul (Fig. 6.6c), and Morlet (Fig. 6.6d) wavelet functions. The dashed frames
indicate the sleep spindles in the EEG and the corresponding regions of the wavelet
spectra. Taking into account the fact that the main frequency of sleep spindle
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oscillations varied between 10 and 15 Hz (alpha range), this frequency range was
selected to analyze the amplitude distribution of the wavelet coefficients.

Analysis and comparison of different mother wavelet functions showed that the
complex Morlet wavelet is the optimal mother wavelet function to identify the time–
frequency structure of sleep spindles in EEG. The complex Morlet wavelet was
therefore used in an automatic system for identification of the sleep spindles (see
Sect. 7.5). In the wavelet spectrum obtained by means of the real MHAT wavelet
(see Fig. 6.6b), the frequency resolution is low. Correspondingly, the frequency
range of sleep spindles in the wavelet spectra is broad and it overlaps with the other
types of oscillatory activity in the EEG. At the same time, the real MHAT-based
wavelet transform, spikes, and other sharp components in the EEG corresponded
to a robust increase in the amplitude jW.fs; t /j of the wavelet coefficients in the
alpha frequency band of interest. The latter feature impedes analysis of oscillatory
activity in this range. Furthermore, the shape of the MHAT-based wavelet spectrum
does not allow one to track dynamic frequency and amplitude changes in the
spindle oscillations. The advantage with the MHAT wavelet is the good temporal
resolution, which determines a sharp increase in the amplitude of the wavelet
spectrum coefficients when the corresponding oscillatory event appears in the EEG.
However, it is a complex matter to classify the sharp jumps in the wavelet spectrum
amplitude due to the low-frequency resolution.

A similar situation is observed in the case of the wavelet transform with the Paul
mother function (m D 4), the results of which are shown in Fig. 6.6c. Likewise,
its frequency resolution does not permit precise determination of the dynamical
features of the EEG oscillations in the alpha band. In this frequency range in the
wavelet surface, we observed many high-amplitude components that are not sleep
spindles and complicate sleep spindle analysis.

At the same time, the Morlet mother wavelet with central frequency !0 D 2�

combines a good resolution both in the frequency and time domains of the EEG
signal (see Fig. 6.6d). In the time–frequency wavelet spectrum obtained in the alpha
band, we can easily localize patterns corresponding to sleep spindle events, both in
the time and the frequency domains. This gives an opportunity to track the variations
of frequency and amplitude of the EEG oscillations which are typical for sleep
spindles, including the parameter identification in automatic mode (see Sect. 7.5).

Wavelet analysis of a large number of sleep spindles has shown that, in the
EEG recordings of WAG/Rij rats, two typical kinds of spindle-like patterns can
be picked out using the criterion provided by the fundamental frequency of their
wavelet spectrum. As already mentioned above, the fundamental frequency of
typical sleep spindles lies in the 10–15 Hz range, and the shape of their oscillations
exhibits extreme variability, so the fundamental frequency varies considerably in
this frequency range from spindle to spindle. Simultaneously, in the wavelet spectra
we found spindle-like oscillatory events, whose shape was close to the that of sleep
spindles, but whose fundamental frequencies were in the low-frequency range (5–
9 Hz).

Figures 6.7 and 6.8 show EEG epochs, typical wavelet spectra obtained with
the Morlet mother wavelet function, and instantaneous energy distributions over
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Table 6.4 Main time–frequency characteristics of sleep spindles and 5–9 Hz oscillations in EEG
registered in the frontal cortex during sleep. N , T , and f are the number, average duration, and
mean frequency of analyzed events in the EEG, respectively

Sleep spindle 5–9 Hz oscillations

Rat # N T (s) f (Hz) N T (s) f (Hz)

1 3,312 0.8 14.1 1,378 0.73 7.2
2 5,440 0.58 12.6 869 0.84 6.4
3 2,776 0.69 13.2 974 0.85 6.1
4 2,007 0.7 12.8 1,096 0.76 8.3
5 3,145 0.66 14.0 1,511 0.86 7.4
6 4,421 0.64 12.1 1,827 0.81 7.8

Mean ˙ SD 3; 517˙ 1; 227 0:68˙ 0:07 1,276 ˙363 0:81˙ 0:05

frequencies for several typical sleep spindles (10–15 Hz) and 5–9 Hz spindle-like
oscillations, indicating that peak frequencies of these phenomena lie in two clearly
distinctive frequency bands.

Indeed, according to Morlet-based wavelet analysis, sleep spindles in WAG/Rij
rats showed a markedly increased wavelet power in the range 10–15 Hz (see Fig. 6.7,
where illustrations of typical sleep spindles are shown). The wavelet spectrum of
sleep spindles was often contaminated with additional low-frequency components
and high-frequency bursts (occasional spikes). There were substantial frequency
fluctuations within one spindle train (i.e., intra-spindle frequency variation) and the
mean frequency of different sleep spindles also varied (i.e., inter-spindle frequency
variations). The average sleep spindle frequency per rat varied from 12.1 to 14.1 Hz
(inter-subject variations).

Five to nine hertz oscillations (see Fig. 6.8) are characterized by a spindle-like
waveform. The frequency of these oscillations was lower than that in sleep spindles
and matched the frequency of epileptic spike–wave discharges, i.e., peaks of wavelet
power spectra are in the 7–9 Hz range.

The main time–frequency characteristics of sleep spindles and 5–9 Hz oscilla-
tions in EEG registered during sleep are presented for six rodents in Table 6.4. It can
be seen that sleep spindles appear in the EEG more frequently in comparison with
5–9 Hz spindle-like oscillations. Note that the number of spike–wave discharges
observed in the 6 h EEG recordings under study is estimated to be on average
approximately 300 events.

Comparing the instantaneous wavelet spectra E.fs/ obtained with the help of
different mother wavelets and presented in Fig. 6.9, we can conclude that only the
Morlet wavelet allows one to identify and distinguish between the two kinds of
spindle-like activity (sleep spindles and 5–9 Hz oscillations). It is clearly that the use
of real MHAT and complex Paul mother wavelets as basis functions does not provide
the required frequency resolution (the large width of the corresponding peak in the
averaged wavelet spectra in Fig. 6.9), so the peaks corresponding to the 8 and 12 Hz
frequencies merge and are not distinguishable using the wavelet analysis. Note that
the wavelet energy of the 5–9 Hz oscillations is significantly lower (in fact, two to
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and Morlet mother wavelets (!0 D 2�) for sleep spindles (10–15 Hz) (a, solid lines) and 5–9 Hz
oscillations (b, dashed lines) in the frontal cortex

three times lower) than the energy of a typical sleep spindle, so it is difficult to select
the low-frequency spindle-like activity in the background EEG and to distinguish it
from the more frequent typical sleep spindles. This fact can also greatly complicate
the automatic detection of various types of sleep spindles using the above-mentioned
mother wavelets.

At the same time, the wavelet analysis with the complex Morlet mother wavelet
can effectively separate the two types of spindle-like activity. There are several
reasons for this. First, due to the good frequency resolution of the Morlet wavelet,
the peaks corresponding to the two kinds of spindles in the wavelet spectra do
not overlap. Second, the Morlet-based wavelet spectrum is such that the amplitude
of both kinds of spindle-like oscillatory patterns (sleep spindles and 5–9 Hz
oscillations) can be compared with each other. As we shall see, this makes it possible
to solve the problem of the recognition of these two different kinds of oscillatory
patterns in the EEG using the Morlet mother wavelet.
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We emphasize that balanced time–frequency resolution of the complex Morlet
wavelet with !0 D 2� allows for effective analysis of frequency dynamics within
sleep spindles that would not be possible with other mother functions. Figure 6.10
shows the EEG epoch (Fig. 6.10a) and its wavelet spectrum obtained with the help
of the Morlet wavelet (Fig. 6.10b), and the instantaneous amplitude distributions of
the wavelet spectrum at different times (Fig. 6.10c), which correspond to the times
1–3 indicated by arrows in Fig. 6.10a. In the given time interval of the EEG, we
observe two sleep spindles, but the first one that appears at time t D 4 s is short
and poorly visible in the EEG signal. Therefore, the analysis was carried out for the
second sleep spindle, occurring in the time interval t D 9–11 s and indicated by
arrows.

The most important result of this detailed time–frequency analysis is the fact
that the main frequency within spindle oscillations varies significantly, increasing
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Table 6.5 Dynamics of intra-spindle frequency and average duration of spindle events. f1 and
f2 are the average typical frequency of EEG oscillations at the beginning and the end of a sleep
spindle, respectively. T is the average duration of the sleep spindles

T (s) f1 (Hz) f2 (Hz) f2 � f1 (Hz)

WAG/Rij, age 5 months 0:59˙ 0:23 10:28˙ 2:02 11:26˙ 2:26 0:98˙ 1:84

WAG/Rij, age 9 months 0:37˙ 0:08 11:14˙ 2:15 11:30˙ 2:27 0:16˙ 1:44

Wistar, age 7 months 0:32˙ 0:08 12:15˙ 2:0 11:74˙ 1:98 0:59˙ 0:83

Wistar, age 9 months 0:30˙ 0:08 12:45˙ 2:1 13:33˙ 2:06 0:88˙ 1:26

toward the end of the sleep spindle. This is clearly seen in the wavelet surface
jW.fs; t /j and the instantaneous wavelet energy distributions E.fs/ plotted at the
three different times. Indeed, the oscillations at the beginning of the sleep spindle are
observed with a frequency close to 7.5 Hz (curve 1 in Fig. 6.10c). We then observe
an increase in the amplitude of the oscillations and a slow frequency shift towards
higher frequencies (curve 2). Simultaneously, oscillatory components with smaller
amplitude and frequency close to 14 Hz are present in the wavelet spectrum. By
the end of the sleep spindle, there is a rapid increase in the frequency of spindle
oscillations to a value of about 12 Hz (curve 3). However, the 7.5 Hz rhythm present
at the beginning of the spindle remains, with a reduced amplitude in the wavelet
spectra.

6.3.4 Intra-spindle Frequency Dynamics in Epileptic
and Non-epileptic Rat Strains

In order to analyze this intra-spindle frequency dynamics, we measured the instan-
taneous frequency at the beginning (f1) and at the end (f2) of each sleep spindle.
Table 6.5 presents statistical data for the dynamics of the main frequency during
sleep spindle oscillations in WAG/Rij rats (animal model of absence epilepsy, six
rodents) and Wistar rats3 (animals without signs of epilepsy, four rodents). It is
clear that the growth of the dominant frequency of spindle oscillations is typical
(f2 �f1 > 0) for an inbred strain of epileptic (WAG/Rij) and non-epileptic (Wistar)
rats. It should be noted that the dynamics of the intra-spindle frequency of sleep
spindles (a gradual increase from the beginning to the end of events) is opposite
to the corresponding dynamics of the dominant SWD frequency. The frequency of
spike–wave discharges is reduced toward the end of the SWD.

In [36], the mean frequency of oscillations within a spindle obtained by
CWT with the Morlet mother wavelet was used as a criterion for dividing sleep
spindles into three categories: slow (mean dominant frequency 9.3 Hz), transitional

3Wistar rats are an outbred strain of albino rats belonging to the species Rattus norvegicus. This
strain was developed at the Wistar Institute in 1906 for use in biological and medical research.
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Each point in the skeleton of the wavelet surface corresponds to a local maximum in the wavelet
spectrum (see Sect. 2.3.4). Gray boxes indicate sleep spindle events

(11.4 Hz), and fast (13.5 Hz). Figure 6.11 shows typical examples of each kind of
sleep spindle with different inter-spindle dynamics (increase or decrease of intra-
spindle frequency) in WAG/Rij rats. Slow and transitional sleep spindles displayed
an increase in frequency from the beginning towards the end. It was shown that
a higher incidence of epilepsy corresponded to a lower duration of sleep spindles
(all types). The mean frequency of transitional and fast spindles was higher in rats
with more intensive epileptic discharges. In general, it has also been shown that
high epileptic activity in WAG/Rij rats corresponds to the most substantial changes
within transitional spindles, whereas changes within slow and fast spindles were
moderate.
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6.3.5 Age-Related Changes in the Time–Frequency Structure
of Sleep Spindles

Furthermore, age-related changes in the typical time–frequency structure of sleep
spindles are observed by means of the wavelet spectra consideration. For example,
in Wistar rats, the intra-spindle frequency of sleep spindles increased from the
beginning to the end (f1 < f2, p < 0:0001), and this effect became more
pronounced with age (the difference between f1 and f2 in 9-month-old animals was
greater than in 7-month-old animals, p > 0:02). In contrast to Wistar rats, although
the instantaneous frequency of sleep spindles in WAG/Rij rats also increased on
average, this effect became poorly defined with age, i.e., f2 � f1. So on average the
intra-spindle frequency in WAG/Rij rats remained unchanged during sleep spindles
in 9-month-old animals.

We found that the frequency of sleep spindles in WAG/Rij rats with absence
epilepsy was lower than in non-epileptic Wistar rats. The presence of slow (<10Hz)
sleep spindles in rats with absence epilepsy may have important implications (the
frequency of sleep spindles due to membrane properties of thalamic neurons, such as
imbalanced IT and Ih currents in TC cells), but this needs to be confirmed in other
animal models and in epileptic patients. The frequency content of sleep spindles
seems to be underestimated, especially in human patients. The problem is that the
frequency is traditionally determined by peak-to-peak calculations or by traditional
spectral analysis (fast Fourier transform). Fourier-based frequency estimates have
serious limitations when applied to short-lasting transient events in EEG, such as
sleep spindles [1, 37]. As emphasized by W. Jankel and E. Niedermeyer in [38]: “as
‘transient nonstationarities’, spindles escape methods of EEG computer analysis”.

We believe that the wavelet-based approach to EEG analysis of sleep spindles
in epileptic patients may enhance our knowledge of pro-epileptic changes in sleep
EEG that may be useful for diagnostic and prognostic purposes. Studies of the time–
frequency structure of sleep spindles, as well as precursors of spike–wave discharges
(see Sect. 6.2), taking into account the short duration of these events, could only be
carried out with the help of the wavelet transform approach, since it can be optimally
configured to operate with such short-length variable oscillatory patterns in the
EEG. In Sect. 6.4, we will make some general comments concerning the application
of the continuous wavelet transform to time–frequency EEG analysis.

The age-related changes in the dynamics of the intra-spindle frequency described
above reflect plastic transformations in the thalamocortical (TC) neuronal network.
We now consider these neurophysiological mechanisms in more detail.

Sleep spindles are characterized by an upward-sloping dynamics of the instanta-
neous frequency during each spindle event only in non-epileptic Wistar rats, but not
in epileptic WAG/Rij rats. This ascending frequency dynamics during each spindle
event can be accounted for by TC network activity. In fact, it is known that initiation
and maintenance of sleep spindles require mutual interactions between two types of
thalamic neurons: TC neurons of specific thalamic nuclei (glutamatergic relay cells)
and GABA-ergic cells of the reticular thalamic nucleus, the RTN (see references
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in [12, 13, 23, 39]). Neurons in the RTN have a propensity to trigger spindle
oscillations and fire in bursts at every cycle, acting as pacemaker cells. TC cells
receive inhibitory synaptic input from the RTN and produce rhythmic bursts only
once in two to four cycles. Cortical neurons of deep layers (corticothalamic cells)
effectively control thalamic activity in both RTN and TC neurons via excitatory
connections. However, corticothalamic input predominantly excites RTN neurons
and feed-forward inhibition of TC cells overcomes direct cortical excitation [40].
This phenomenon is called inhibitory dominance of corticothalamic action on TC
cells and it is essential for large-scale synchronization of sleep spindles.

Each sleep spindle presents the following sequence of thalamocortical processes
[23, 39, 41, 42]:

1. Initial period. The spindle sequence is initiated by the pacemaker cells in the
RTN.

2. Waxing (beginning) phase. The first two-to-four bursts of RTN neurons, when
TC neurons do not display rebound bursting activity and do not return signals to
the RTN.

3. Middle phase. Characterized be mutual recruitment of TC and RTN neurons,
when regular spike-bursting in TC was locked in phase with the RTN and cortical
neurons.

4. Waning (termination). Characterized by less synchronized activity of thalamic
and cortical neurons.

Our data in Wistar rats indicated that, at the beginning of the waxing phase, the
instantaneous frequency of cortical sleep spindles was relatively low, but that it
gradually rose up during the middle and reached the highest value during the
waning phase. The spindle frequency strongly depends on the coupling strength
between RTN and TC neurons [43]. In particular, an increased coupling strength
in RTN ! TC neurons resulted in an increase in the spindle frequency in the range
9.5–16 Hz, although in contrast an increase in TC ! RTN coupling led to a decrease
in the spindle frequency by 0.5–2 Hz. The upward-sloping dynamics of the intrinsic
spindle frequency in Wistar rats (f1 < f2) may result from a gradual increased
coupling in RTN ! TC neurons during a spindle (but in the opposite direction,
TC ! RTN). At the end of the sleep spindle, the coupling in RTN ! TC cells
reached a maximum and a further increase in coupling strength led to the excessive
cortical synaptic feedback to the thalamus (TC and RTN cells) that is required to
terminate the sleep spindle [41, 42]. It is known that cortical neurons are tonically
depolarized from the middle to the end of spindles, thus contributing to spindle
termination [41].

Our results described in this section and obtained by CWT with the Morlet
wavelet indicated that the difference between f1 and f2 in Wistar rats increased
with age and sleep spindles became longer, suggesting that the propensity of the
thalamocortical network to produce long spindle oscillations increases from 7 to
9 months of age. We also found that, in WAG/Rij rats, the intra-spindle frequency
did not change during a spindle (f1 D f2). It seems that the thalamocortical
mechanism of spindle maintenance and termination is affected by genetic factors
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(predisposition to absence epilepsy), but does not associate with the severity of
seizures. In WAG/Rij rats, excitability of the neocortex is known to be increased
[21, 44, 45]. Over-intensive cortical feedback to the thalamus in epileptic rats may
prevent the ascending dynamics of the intra-spindle frequency. Another mechanism
may involve the thalamus (RTN ! TC neuron associations). The gradual increase in
coupling strength in RTN ! TC neurons that might account for the upward-sloping
dynamics of the intra-spindle frequency in non-epileptic rats may be impaired in
epileptic rats.

In contrast to Wistar rats, the time–frequency properties of sleep spindles in
WAG/Rij rats did not change with age. It seems that age-related aggravation of
absence seizures prevented normal developmental changes of sleep spindles in
WAG/Rij rats. Epileptic processes in the thalamocortical network underlying age-
related aggravation of absence seizures may interfere with the normal mechanisms
of sleep spindle development.

In conclusion, these wavelet-based results suggest that (i) the low frequency of
sleep spindles and (ii) lack of intra-spindle frequency dynamics could be used as
biomarkers for the early (perhaps, preclinical) stage of absence epilepsy.

6.4 Practical Notes Concerning Application
of the Continuous Wavelet Transform
in Time–Frequency EEG Analysis

The continuous wavelet transform has several advantages over traditional FFT for
representing non-periodic and non-stationary signals that have sharp peaks or other
kinds of fast events. One limitation of FFT is that it characterizes the EEG signal
only in the frequency and not in the time domain, i.e., information regarding the
dynamic changes of spectral components. In wavelet space, the EEG signal power
is simultaneously represented as a function of time t and frequency fs. In the case
of a real mother wavelet function, the wavelet coefficients W represent the degree
of correlation of a prototype wavelet function  0 with the EEG signal on the given
time scale s (wavelet frequency fs D 1=s). The wavelet transform with complex
mother wavelet can be regarded as a bandpass filter whose transfer characteristic is
determined by the mother wavelet, and which also carries information about phase
relationships.

The wavelet prototypes (mother wavelets) are wave-like scalable functions which
are well localized in both the time and frequency domains [46]. Some mother
wavelets provide better resolution in the time domain, and others in the frequency
domain. The choice of mother wavelet is of great importance and it is crucial for
accurate representation of the EEG signal in the wavelet space (t0; fs). Important
characteristics that were taken into account before making a choice of mother
wavelet were complex/real, width, and shape of the candidate wavelets  0.
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6.4.1 Complex or Real Mother Wavelet

A real wavelet  0 D Re 0 returns information about the amplitudes of the EEG
signal and it may be sufficient for isolating EEG spikes or other discontinuities
(for example, various artifacts and interferences during EEG registration), but
not sufficient for detecting sustained oscillatory processes. A complex wavelet
returns information about both amplitudes and phases (see Sect. 2.3.5) and this is
more suitable for time–frequency analysis and for representing oscillatory EEG
phenomena in wavelet space [46, 47].

6.4.2 Shape of Mother Wavelet

Accurate results from the wavelet decomposition are dependent on the shape of
the chosen wavelet function, which should be similar to the shape of the analyzed
EEG signal [48]. Rectangular functions such as the Haar (2.42) or FHAT (2.41)
wavelets are better for representing EEG spikes (and other sharp events in the EEG),
while the real Mexican hat (MHAT) wavelet (2.40), which has a smoother shape
than the non-smooth Haar and FHAT wavelets, is particularly suitable for detecting
epileptic spikes and spike–wave discharges in EEG [48,49]. Meanwhile, oscillatory
EEG patterns can be more accurately represented with complex wavelet functions
which are based on smooth harmonic functions, and the Morlet wavelet (2.36)
in particular is better suited for the detection of delta, theta, and alpha events,
as well sleep spindles, because it mimics the characteristic spindle waveform
[37,48,50]. Although the Morlet wavelet has no sharp elements equivalent to spikes
in SWDs and its shape does not mimic SWDs, it provides the best time–frequency
representation and resolution of spike–wave discharges (as well as other oscillatory
EEG patterns) in comparison to other mother wavelets (including the sharp-looking
Mexican hat wavelet) [37, 51].

6.4.3 Width of Mother Wavelet

If a candidate wavelet in Fourier space is too narrow, the frequency resolution
will be poor, and if it is wide, the time localization will be less precise. It is also
important to take into account the reverse relationship between time and frequency
resolution. The higher the frequency resolution, the lower the time resolution and
vice versa. The time–frequency resolution can be defined by the shape and width
of the mother wavelet function in the frequency domain. In the case of the complex
Morlet wavelet, properties of the time–frequency resolution of the wavelet transform
can be controlled by changing the main frequency !0, which affects the width and
position of the Fourier image of the Morlet wavelet in Fourier space (see (2.36)
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and (5.1), Fig. 2.11, and Table 2.1). Actually, in the complex Morlet wavelet family
the parameter provided by the central frequency !0 determines the shape and
the width of the wavelet function in the frequency domain. When !0 < � , the
temporal resolution is high, but little information is available about the frequency
content of EEG events (the frequency resolution is low). When !0 > 4� , the
frequency resolution is high, but the time resolution is low. As the Morlet wavelet
central frequency !0 increases, the properties of the wavelet transform approach
the characteristics of the window Fourier transform. We chose the complex Morlet
wavelet with !0 D 2� as the most appropriate basis, providing optimal time–
frequency resolution for the majority of observed EEG phenomena. This basis
function was particularly good in localizing the abrupt onset of SWD, as well as
gradual amplitude changes during the seizure train. A further advantage in choosing
this parameter value !0 D 2� is that the frequency fs of the wavelet transform is
equal to the frequency f of the Fourier transform, viz., fs D f , which facilitates
the explication and comparison of results.

6.5 Classification of Sleep Spindle Events by Means
of Adaptive Wavelet Analysis

The classification of different kinds of oscillations in the EEG and the creation of
databases for the reference electroencephalographic patterns are very important and
actively investigated problems associated with fundamental research on brain func-
tions [52–54], and with applied tasks such as the development of brain–computer
interfaces (BCI) [55–57]. Nowadays various methods have been proposed for
solving these problems, based on different mathematical and cybernetic approaches
to pattern recognition and classification [52, 58–60].

6.5.1 Construction of Adaptive Wavelet Basis (“Spindle
Wavelet”) for Automatic Recognition of Sleep Spindles

As mentioned above (see Sect. 6.3), sleep spindles showed a greater variability
in shape, and their electroencephalographic pattern was less stereotypic. This
embarrassed the automatic detection of sleep spindles. In [37], a new approach to
EEG structure study was developed on the basis of adaptive continuous wavelet
analysis [47, 61]. An adaptive wavelet analysis uses as a mother wavelet function
some selected EEG epoch which has the highest affinity for the analyzed pattern
and serves as a tool for the extraction and recognition of non-standard complex
shape oscillations. This strategy, which we refer to as adaptive wavelet matching,
is to some extent comparable with the matching pursuit technique [62–66], in
which a template function is chosen from a stochastic library that contains a set
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Fig. 6.12 Algorithm used for constructing adaptive spindle wavelets. Sleep spindle prototypes
g.t/ are selected in the native EEG, converted into the complex form and normalized with a
Gaussian function. (a) Spindle wavelet type 1 and (b) type 2. The black line corresponds to the
real part of the spindle wavelets and the grey line to the imaginary part

of Gabor, Dirac, and Fourier basis waveforms. In the case of adaptive wavelet
analysis, we do not use preset templates, but our spindle wavelet basis functions are
adopted directly from the EEG signal. This approach can be used both for effective
automatic identification of sleep spindles (see Sect. 7.4) and for standardizing
the EEG structure and creating a database of reference electroencephalographic
patterns.

For the standardization of sleep spindle patterns, an adaptive wavelet basis
function (spindle wavelet) was built using a sleep spindle prototype extracted
from the native EEG. Figure 6.12 illustrates this approach to adaptive wavelet
construction. The EEG signal was represented by the function S.t/. The signal g.t/
with eliminated mean value was considered, viz.,

g.t/ D S.t/ � 1

�T

Z

�T

S.t/ dt ; (6.3)

and subsequently transformed into the complex form

Og.�/ D g.�/C ig.�C T=4/ ; i D p�1 ; (6.4)
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where T denotes the typical period of a sleep spindle oscillation. The time shift
between the real and imaginary parts was T=4.

In order to construct a localized-in-time wavelet basis  S.�/, the function Og.�/
was normalized with a Gaussian function:

 S.�/ D ˛ Og.�/ exp

�
� .� � T=2/2

2

�
; (6.5)

were ˛ is the parameter determined from the normalization condition

˛2
C1Z

�1
j Og.�/j2 exp

�
� .� � T=2/2

2

�
d� D 1 : (6.6)

Both spindle wavelets fulfilled the requirements for wavelet bases, i.e., continuity,
zero mean amplitude, and finite or near finite duration (see Sect. 2.3.1). Note that
the same computational procedure is used for the harmonic function, e.g., sin.!0t/
(or cos.!0t/), in order to construct the complex Morlet wavelet (see (5.1)).

In order to select a typical spindle template, about 100 candidate spindle
templates were chosen in five WAG/Rij rats (15–25 spindles per rat). Each spindle
template was tested as a wavelet basis (spindle wavelet) which was used to calculate
and analyze the wavelet spectra of sleep spindles. We considered the dependencies
of the wavelet spectrum energy E.t/ on time t , for a time scale s D 1:0.
Peaks E.t/ D Emax in the wavelet energy dependencies E.t/ correspond to
sleep spindles with shape similar to the shape of the considered spindle wavelet.
Introducing a certain threshold Ek , we could pick out the sleep spindles for which
the characteristic energy value exceeded the threshold: Emax > Ek . Sleep spindles
showed different degrees of conformity to two types of spindle wavelets, e.g.,
spindle wavelets type 1 and type 2.

6.5.2 Identification of Two Spindle Types with the Aid of Two
Adaptive “Spindle Wavelets”

The spindle wavelet which demonstrated the best quality of recognition and
provided the maximum number of positive spindle detections, e.g., the one which
had the highest affinity to the maximum number of sleep spindles in the EEG of
all analyzed experimental animals, was chosen as the universal adaptive wavelet
basis which best reflects and optimally describes the typical sleep spindle pattern in
the epileptic EEG. Spindle wavelets are adopted from spindle prototypes, i.e., from
sleep spindle events in the EEG, and therefore embrace the most typical (or generic)
features of sleep spindles.

The constructed universal spindle wavelet is shown in Fig. 6.12a. A majority
of sleep spindles (85–90 %) is selected by CWT with this spindle wavelet type.
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This spindle type is referred to as type 1, and on the basis of its EEG features, it
is considered to represent normal spindle oscillations with fundamental frequency
10–14 Hz, which prevail during slow-wave sleep.

The remaining sleep spindles, those which failed to be captured with spindle
wavelet 1, were selected using spindle wavelet 2, which is shown in Fig. 6.12b. A
basis function for spindle wavelet 2 had to be selected for each rat individually
(10–20 spindles per subject were tested as mother wavelet). It was found that type 2
sleep spindles comprised 7.9 % of the total number of sleep spindles. These spindles
have high power between 12 and 25 Hz. They exhibit a deviant spindle waveform
and might be considered as pro-epileptic events (a transitory waveform between
sleep spindles and spike–wave discharges) [37].

6.5.3 Two Types of Sleep Spindles and Their Relevance to SWD

There was a clear inconsistency in the population of sleep spindles: those that
matched spindle wavelet 1 failed to be captured by spindle wavelet 2. In order to
get a better understand of the physiological meaning of this divergence of sleep
oscillations, we performed a power spectrum analysis of the two spindle prototypes.
Spindle wavelet 1 had a fundamental frequency of 12.2 Hz (see Fig. 6.13) that
corresponds precisely to the mean frequency of sleep spindles in rats [35], and in
addition, it had a spectral peak at 7 Hz and elevations around 2 and 26 Hz.

In contrast to the spectrum of spindle wavelet 1, the spectrum of spindle wavelet 2
was more complex and its major peak appeared with a frequency of 21 ˙ 3Hz.
Typically, spindle wavelet 2 showed several sharp peaks at 1, 3, 16.7, and 21.3 Hz,
and moderate elevations at 8.5, 11, 24.5, and 27 Hz (see Fig. 6.13). It can be
concluded that atypical type 2 sleep spindles can be distinguished from the common
type 1 sleep spindles: a powerful beta component can be considered as a hallmark
of type 2 spindles by having a larger individual variation.

The occurrence of type 2 sleep spindles with the strong 16–25 Hz component
might be accounted for by processes of epileptogenesis taking place in our subjects.
Previously, it was shown in [67] by means of EEG coherence analyses that
the SWD frequency spectrum was characterized by the fundamental frequency
(10–12 Hz) and its second harmonic (20–24 Hz), but also that the onset of SWD
was characterized by an increased synchronization in the range 15–16 Hz between
bilaterally symmetric cortical areas. Here the peaks with the same frequency (16.7
and 21.3 Hz) were detected in type 2 sleep spindles by means of CWT. It is therefore
likely that neuronal synchrony at 16.7 and 21.3 Hz is common to SWD and type 2
sleep spindles. So the type 2 sleep spindles might be considered as a transitory
oscillatory waveform between spindle and SWD in the EEG of WAG/Rij rats [37].
Our studies (see [36,37]) have shown that the number of such type 2 events does not
exceed 10–15 % of the total number of observed sleep spindles in epileptic EEGs.

As a result, we found by means of adaptive CWT that sleep spindles represent
a very heterogeneous group of oscillations, which causes difficulties regarding
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Fig. 6.13 EEG waveforms of sleep spindles in WAG/Rij rats. Top: Native EEG in which the
majority of sleep spindles comprise characteristic repetitive elements that match spindle type 1.
Spindle wavelet type 1 is universal for all the animals. This type of oscillatory activity is a typical
sleep spindle. However, 10–15 % of sleep spindles are not recognized by the adaptive wavelet type
1, and their recognition requires one to construct new wavelet bases separately for each animal.
This wavelet (referred to as the type 2 spindle wavelet) is characterized by a very complex form
which is specific to each animal. Type 2 sleep spindles display larger inter-subject variability and
complex structure and can be associated with pro-epileptic activity on the EEG. Bottom: Frequency
power spectra of spindle wavelets types 1 (left) and 2 (right). The type 1 spindle wavelet is
characterized by a predominant 8–14 Hz frequency component (spindle range). The type 2 spindle
wavelet frequency spectrum consists of several frequency components in the spindle and non-
spindle range

extraction, recognition, and classification of spindle events in the EEG. In all our
rats, almost all sleep spindles (95.5 %) are extracted with joint application of two
different types of adaptive spindle wavelets. Spindle wavelets are adopted from
spindle prototypes, i.e., from sleep spindle events in the EEG, and therefore they
embrace the most typical (or generic) features of sleep spindles. The frequency
profile of these two types of sleep spindles is crucially different. Note that the
type 2 spindle wavelet is characterized by a strong harmonic component (20–
25 Hz). The same harmonic component is present in the SWD and is likely to
be elicited by spikes (see Sect. 5.3.3). Spikes may also be present in the type 2
spindle sequence. These type 2 sleep spindles exhibit a deviant spindle waveform
and they might be considered as pro-epileptic events. We also concluded with the
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help of adaptive wavelet analysis that the EEG patterns of sleep spindles and SWDs
belong to different families of phasic EEG events with different time–frequency
characteristics.

6.6 Synchronous Dynamics of Epileptic Discharges:
Application of Time-Scale Synchronization Approach

As already mentioned in Sect. 5.4, there has recently been increased interest in the
use of wavelets to study the synchronization phenomena in neuronal networks and
ensembles, and in particular, to analyze the synchronization of different areas of
the brain. Different cerebral cortex regions are known to operate synchronously
under both normal conditions (e.g., cognitive activity) and pathological conditions
(Parkinson’s disease, various forms of epilepsy) [68, 69].

One of the most promising applications of wavelets in this context is for
diagnosing synchronous activity in complex multifrequency signals, i.e., signals
with several fundamental frequencies. In Sect. 2.3.5, we discussed the possibility
of using continuous wavelet analysis to study the synchronization of complex
oscillations. This approach, well-known as time-scale synchronization, provides an
effective method of detection and analysis of the synchronous states in systems of
different nature, including the investigation of essentially non-stationary and noisy
data.

By way of example, we shall consider the evolvement of a hypersynchronous
epileptic discharge in EEGs from patients with absence epilepsy, a quite common
neurologic disorder associated with total or partial loss of consciousness. We
will use a time-scale synchronization approach, based on the continuous wavelet
transform with complex Morlet mother wavelet [1, 70].

Absence seizures usually last from a few seconds to tens of seconds, and are
accompanied by characteristic spike–wave complexes in EEGs (see also Fig. 5.4b)
[71, 72]. Spike–wave discharges recorded during epileptic seizures have a high
amplitude and frequency on the order of 3–4 Hz. As is well known, absence
seizures are associated with rapid growth of synchronization between different brain
regions, and that this in turn leads to the appearance of hypersynchronous spike-
wave discharges in EEGs. The source (so-called focus) of epileptic activity and
synchronization dynamics before, during, and after spike–wave discharge remains
to be elucidated and raises concerns among researchers and clinicians. These issues
are closely connected with the very important problem of identifying the epileptic
activity source by examination of multichannel EEGs [73, 74].

Attempts to find answers to these questions have been undertaken repeatedly,
but in an overwhelming majority of cases, EEG analysis was provided qualitatively
by the expert, without applying rigorous mathematical methods. But as experts in
neurophysiology have noted [74], the interpretation of the functional condition of
the brain by analyzing the qualitative character of the EEG, i.e., the overall pattern



6.6 Synchronous Dynamics of Epileptic Discharges: Application of Time-. . . 243

of electrical activity, may lead to unjustified and erratic conclusions, especially in
the presence of disease. So, for example, to localize the focus of epileptic activity,
experts are guided by their own toolkit, experience, and qualification, rather than
using the rigorous methods of mathematical analysis.

The possibilities for accurate solution of this problem using recordings of
electrical brain activity in patients with absence epilepsy are considered in [73,
75, 76], but the methods used by the authors depend heavily on the quality of the
analyzed EEG signal. This essentially limits the possibilities for applying the offered
approaches since, in the overwhelming majority of cases, the researcher or clinician
is investigating EEG signals recorded through the skin of the patient’s head. Such
signals are well known to involve a high level of noise and various artifacts, due
to the fact that the skull bones and cutaneous covering significantly distort the
shape of the EEG potentials indicating neuronal oscillations. For this reason the
spectral structure of EEGs recorded from electrodes placed on the scalp differs
from neuronal electrical signals received directly from brain structures by means
of depth electrodes. Consequently, application of the time-scale synchronization
approach to such experimental data is rather productive and allows one to extract
new information about the way the brain operates.

The hardware–software solution Entsefalan produced by the Russian company
Medicom-MTD, Taganrog,4 consisting of an electroencephalograph analyzer and
software for EEG registration and preliminary processing, has been used to register
multichannel EEGs in patient volunteers. During EEG registration, patients were
subjected to external influences to provoke epileptic attack, e.g., stimulation by
audio and photo stimulus with frequency increasing from 3 to 27 Hz and hyperven-
tilation of the lungs, with the latter being the most effective method for provoking
seizure.

The EEG registration time was 30 min. During this time, one to five spike–wave
discharges were observed in each patient, with average duration close to 2.8 s. The
main frequency of SWD oscillations was close to 3 Hz. We considered only signals
from 14 electrodes, indicated in Fig. 6.14a by circles. The analyzed EEG signals
were unipolar, i.e., they represented a potential difference between an active and
indifferent electrodes, viz., electrodes 1 and 2, located on the earlobe of the patient
(see Fig. 6.14a). The typical fragment of multichannel EEG containing the spike–
wave discharge is presented in Fig. 6.14b. Figure 5.4b illustrates the structure of
oscillations during seizure in an EEG from the frontal cortex. The wavelet spectra
of the EEG epoch containing the SWD are presented in Figs. 5.5 and 5.6, where
showing results of wavelet transforms using different mother wavelets.

As already discussed in Chap. 5, the spike–wave discharge pattern in EEGs
recorded from multiple electrodes placed on the scalp differs essentially from the
SWD structure in EEGs recorded directly at the brain surface by means of depth
electrodes. In particular, the high-frequency component is poorly pronounced—the
amplitude of a sharp component (peak) of SWD oscillations is significantly smaller

4www.medicom-mtd.com/eng/index.htm

www.medicom-mtd.com/eng/index.htm
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a b

Fig. 6.14 (a) Standard electrode arrangement on the patient’s head (10–20 system). Signals from
electrodes enclosed by circles were used in synchronization analysis. (b) Example of a typical
multichannel EEG showing a spike–wave discharge (2.8–5.2 s)
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Fig. 6.15 Time-scale synchronization measure versus time for the EEG epoch with spike–wave
discharge. (a) Establishment of the synchronization regime at the beginning of the SWD (Fp1 and
C4 leads). (b) Synchronization delay (F3 and T5 leads). (c) No synchronization (P3 and C5 leads).
The gray rectangle shows the time interval corresponding to the SWD

than the amplitude of a low-frequency (wave) component. At the beginning of the
SWD, the greater part of the energy lies in oscillations with frequency close to 3–
4 Hz, but later in the SWD the period of spike-and-wave complexes increases, as
observed in WAG/Rij rats. The duration of the epileptic seizure in humans was also
significantly shorter than the duration of the SWD in laboratory animals (WAG/Rij
rats).

To localize a source of spike–wave discharge in patients, the time-scale synchro-
nization (see conditions (2.85) and (2.86)) was investigated pairwise between all the
EEG channels shown in Fig. 6.14. Figure 6.15 displays the typical dependence of
the time-scale synchronization measure � (see (2.89)) on time in several cases:

• For pairs of EEG channels between which the time-scale synchronization was
observed at the beginning of the epileptic seizure (see Fig. 6.15a).
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• For pairs of EEG channels between which synchronization was expressed more
weakly and observed after inception of the SWD (see Fig. 6.15b).

• For EEG channels in which time-scale synchronization was not observed (see
Fig. 6.15c).

The measure of time-scale synchronization was examined in the frequency range
0.5–10 Hz where the wavelet spectrum energy was highest. It is easy to see that,
in the case of absence of synchronization, the measure � takes small values, and
the proportion of synchronized scales does not exceed 5 % of the full energy of
the wavelet spectrum of the EEG oscillations. This value of the synchronization
measure is not equal to zero due to the fact that, at every instant of time, it is
possible to find synchronized frequencies. Apparently, this is a normal feature of
brain operation since the measure of synchronization calculated for the background
EEG epochs exhibits the same behavior.5 However, as we approach the beginning
of the spike–wave discharge, the time-scale synchronization measure of well-
synchronized EEG channels starts to increase (see Fig. 6.15a). This means that
the wavelet spectrum energy share corresponding to the synchronized time scales
increases, and at the beginning of the spike–wave discharge, the measure of time-
scale synchronization reaches � � 90%. Such a high level of the time-scale
synchronization measure remains throughout the discharge and subsequently, at
the end of the SWD, drops to the normal level corresponding to the value of the
synchronization measure in control periods without spike–wave discharges. There
is another situation where there is also synchronization between EEG channels, but
the measure of synchronization begins to grow only after onset of the discharge (see
Fig. 6.15b). Finally, in the case of nonsynchronized EEG channels (see Fig. 6.15c),
the synchronization measure remains small throughout the discharge.

The results of the search for the focus of epileptic activity and the temporal
dynamics of hypersynchronous state formation are presented in Fig. 6.16, where
the spike–wave discharge development is shown from the point of view of the
synchronization approach. Arrows A–D in Fig. 6.16 indicate typical time moments
which correspond to the diagrams of the synchronous state between different pairs
of EEG channels. The continuous wavelet analysis involved instantaneous phases
in a narrow frequency range of 3–4 Hz, within which the largest fraction of wavelet
spectrum energy of spike–wave discharges fell. The lines connect pairs of EEG
leads between which synchronization occurred at an instant of time indicated by a
corresponding arrow on the EEG fragment plot (see the top of Fig. 6.16).

To reveal the spatial-temporal features of various interacting areas of the brain
during epileptic seizure, the time-scale synchronization was estimated at different
instants of time during the spike–wave discharge:

• Before the appearance and after the completion of the SWD (Fig. 6.16a, f).
• One second after the start of the SWD (Fig. 6.16b).

5Note that intermittency of spontaneously occurring synchronized EEG oscillation epochs has
already been described in humans [77].
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Fig. 6.16 Spatial-temporal dynamics of spike–wave discharge from the point of view of the time-
scale synchronization of different brain regions. The number of synchronized areas increases as
the spike–wave discharge develops and almost all cortical areas prove to be synchronized by the
end of the SWD event. Diagrams correspond to different instants of time indicated by arrows A–D
on the bipolar EEG recording from the frontal cortex (electrodes F4–A2, see Fig. 6.14)

• One second before the end of the SWD (Fig. 6.16e).
• Three and five seconds after the beginning of the SWD (Fig. 6.16c, d).

The presence of time-scale synchronization in the pair of EEG channels at some
instant of time was assumed if the phase-locking condition (2.85) was fulfilled
during no fewer than three periods of SWD oscillations (i.e., in this case, not less
than 1 s).

Let us analyze the results. It is easy to see that the synchronized region is
formed in the frontal cortex a few seconds before the beginning of the spike–wave
discharge in the EEG (see Fig. 6.16a). This accords with existing notions about
the peculiarities of absence seizures and the results of earlier studies regarding
spatial features of spike–wave discharge formation [78, 79]. Westmijse et al. [73]
demonstrated that frontal area in the right hemisphere has been primarily involved
in the process of sinchronization at the beginning of the SWD, i.e. synchronous
regime during epileptic activity originated from these local brain area. It should be
noted that, at this point in the EEG, there are no typical spike–wave complexes with
frequency close to 3 Hz that are typical for epileptic seizures.
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At the next examined instant of time (1 s after the SWD begins, see Fig. 6.16b),
the spike–wave discharge becomes appreciable in EEG, and the number of syn-
chronized channels increases. The new synchronized leads are located in the
immediate vicinity of the epileptic source. In the case considered, a second focus
of synchronized epileptic activity forms in the occipital cortex, but synchronous
links between the frontal and occipital focuses are absent.

After further development of the SWD, the number of synchronized EEG chan-
nels proceeds to increase until the two synchronous focuses formed at the beginning
of the SWD merge into one (see Fig. 6.16c, d), and the synchronization state
acquires a generalized character in the brain cortex. This hypersynchronous state
extends over all the EEG channels. Soon after formation of the hypersynchronous
state, the synchronization regime starts to break down (see Fig. 6.16e). First,
synchronization between the frontal and occipital cortexes disappears, whereupon
synchronization in the occipital cortex covers a smaller spatial area in comparison
with that in the frontal cortex.

Finally, at the end of the SWD, when the spike–wave activity in the EEG
has already completely disappeared, synchronization is only observed in a small
area of the frontal cortex where the initial epileptic focus was located, i.e., the
synchronization area in the epochs preceding the SWD (compare Fig. 6.16d, a).
After that the frontal cortex area corresponding to the epileptic focus is also
desynchronized for several seconds.

The same dynamics of formation and development of spike–wave discharges was
observed for all patients, except for one who was under medication. In all patients,
we have identified a steady focus of synchronous activity in the frontal cortex.
The additional focus in the occipital cortex has been observed only in some of the
patients. Thus, the results of the time-scale synchronization analysis can help, not
only to understand the mechanisms of formation of paroxysmal hypersynchronous
states during an absence seizure, but also to make predictions. We assume that the
participation of the occipital cortex and the presence of the additional synchronous
focus during the spike–wave discharge are signs of a progressing clinical course and
a negative forecast.

Thus, the time-scale synchronization method based on the application of con-
tinuous wavelet analysis with a complex basis was successfully used to describe
space-time synchronization of electrical brain activity. Analysis of multichannel
EEG recordings by this method not only allowed efficient localization of the source
of epileptic activity, but also revealed its distribution patterns and described the
process of epileptic activity generalization. These approaches may find application
to the solution of other problems such as the detection of links between different
brain regions, the search for high-frequency brain activity related to cognitive
abilities [80–83], etc.
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Chapter 7
Automatic Diagnostics and Processing of EEG

Abstract This chapter considers basic problems of automatic diagnostics and
processing of EEG. We discuss the wavelet-based techniques in order to fully
automatize “routine” operations, such as visual inspection of EEG. In addition to
that, we exemplify some practical applications of wavelet methods for automatic
analysis of pre-recorded signals of neuronal activity (off-line diagnostics), and also
some examples of EEG analysis in real-time (on-line). We also discuss principles of
fast and precise detection of transient events in EEG and organization of closed-
loop control systems that can be used in BCI. Finally, we consider methods of
artifact suppression in multichannel EEG based on a combination of wavelet and
independent component analysis.

7.1 Introduction

Electroencephalographic signals (EEG) reflect synchronous synaptic activity
produced by different brain areas located close enough to the recording electrode.
Thus, EEG recordings can be used as a tool for studying information processing
or for monitoring the brain activity and detecting abnormal changes. Importantly,
EEG recorded from multiple electrodes placed on the scalp offers a non-invasive
low-cost technique with multiple medical and technological applications. Therefore,
developing new methods and expert systems for the analysis of EEG signals is an
important trend, both in fundamental neuroscience and in clinical practice.

In this chapter we discuss several automatic and semi-automatic methods for
processing EEG signals using wavelets. In the past few decades, the wavelet
approach has been consolidated as an important tool in studying EEG. This is
explained in part by a certain degree of linearity in EEG signals that can be
considered as a linear mixture of coexisting oscillatory components of different
origin. Thus, nonlinear effects can be neglected in the first approximation, thus
allowing linear models of EEGs. This in turn facilitates decomposition of EEG
by linear methods like the wavelet transform or independent component analysis
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into spectral and/or temporal components containing some desired properties. For
example, in Sect. 7.2, we use a wavelet decomposition of EEG to identify specific
patterns of absence epilepsy in the gamma frequency band. It appears that this band,
which is not the most powerful in the spectrum of spike–wave discharges, is in fact
the most representative.

When speaking about automatic or semi-automatic methods, one must
distinguish off-line and on-line processing of EEG. In the first case we deal with
a previously recorded EEG with access to the full data set. Thus, for a given time
point t D t�, we know not only the “past” (t < t�), but also the “future” (t > t�)
data samples. This allows one to compute the wavelet transform normally. In the
case of on-line or real time processing, we have two additional difficulties. First,
the “future” data samples are not available, which forces special adaptation of the
wavelet transform. Second, real time calculations impose strong limitations on
algorithm complexity. It must be fast enough to carry out the necessary calculations
within the time window between two consecutive data samples.

The use of on-line algorithms is a must in the study of brain–computer interfaces
[5, 14, 33, 43, 59, 67, 70, 72, 78, 83, 90, 97, 113, 120, 128, 129, 136]. In particular,
the spectral characteristics of the activity of the sensorimotor cortex are related
to movements of the limbs. This finding underlies apparatus improving the life-
quality of paralyzed patients and can be used for selection of letters or phrases on
a screen [33, 57, 71, 98, 109]. Methods capable of diagnosing pathological brain
activity in real-time are equally important [84]. In particular, on-line detection of
spike–wave discharges could be used to trigger the presentation of external stimuli
to study information processing during periods of reduced consciousness [25], or
to trigger automatic electrical brain stimulation upon appearance of spike–wave
discharges [8]. In Sect. 7.3, we provide an algorithm for real-time diagnostics of
epileptic seizures and discuss its experimental implementation.

Advanced automatic methods could significantly improve systems monitoring
brain activity. In Sects. 7.4 and 7.5, we consider automatic detection and discrimi-
nation of sleep spindles and 5–9 Hz oscillations by means of standard Morlet-based
and adaptive wavelet analysis. Then we demonstrate the application of the methods
to long-term EEGs. Such methods significantly reduce the time of EEG analysis and
errors when dealing with large amounts of data.

The identification of spike–wave discharges and sleep spindles in long recordings
offers the possibility of studying their temporal dynamics. In Sect. 7.6, we apply
methods of nonlinear dynamics and study on–off intermittency of spike–wave
discharges, sleep spindles, and 5–9 Hz oscillations. This allows us to show that
the first two patterns are likely to follow deterministic chaotic behavior, whereas
5–9 Hz oscillations exhibit different dynamics. Such findings provide insight into
the thalamo-cortical network that lies behind the patterns.

Optimal identification of multiple patterns coexisting in EEG requires fine tuning
of many parameters controlling the algorithm. This may be achieved through
tedious empirical work or by employing some optimization algorithm. In Sect. 7.7,
we discuss serial identification of EEG oscillatory patterns using methods from
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optimization theory and adaptive wavelet-based analysis. The method can lead to
a significant reduction in identification errors compared to the empirical approach.

Finally, in Sect. 7.8, we study the problem of artifact suppression in
multi-electrode EEG recordings from the scalp. Such recordings have multiple
artifacts due to eye movements, blinking, muscle activity, etc. There are two major
ways to get rid of artifacts:

• Selection of artifact free epochs, which leads to a drastic reduction of available
data, and

• Filter-like procedures.

The latter is more attractive, but requires advanced methods. Our wavelet enhanced
independent component analysis provides a satisfactory solution to this problem.
This method has now become a standard procedure for artifact suppression in EEGs.

7.2 Automatic Identification of Epileptic Spike–Wave
Discharges

7.2.1 General Aspects of Automatic SWD Detection in EEG

Spike–wave discharges (SWD), typical in cases of absence epilepsy, are represented
in the EEG in the form of a two-component complex containing spike and wave (see
Sect. 5.3.3, Fig. 5.4). In WAG/Rij rats, the duration of SWDs ranges from 1 to 30 s,
and their average number in mature animals is about 15–20 per hour.

At first glance the problem of automatic detection of spike–wave discharges may
seem trivial. Indeed, one solution arises directly from the definition of an SWD as
an event with oscillation amplitude significantly higher then the background EEG.
Thus one could monitor the oscillation amplitude and simply detect events when
it overcomes some threshold. However, such a straightforward approach will have
poor performance. There are three main reasons. First, besides SWDs, the typical
EEG contains other high amplitude patterns, such as sleep spindle waves [112] (see
Fig. 5.2, and also Sect. 6.3). Second, the amplitude of the background (desynchro-
nized) EEG can differ essentially with regard to various types of electrical activity
(e.g., in sleep and wakeful states). Third, there are SWD-like events with duration
less than 1 s that have very similar structure, but are not considered pathological
[111]. Thus a more advanced method is required.

In the literature there is a great variety of different methods for recognition of
spike–wave discharges. We can separate them into three classes. The first class uses
the nonlinear dynamics approach and quantifies different features of EEG signals,
such as Lyapunov exponents [2] or entropy [58]. The second class uses artificial
neural networks and learning algorithms for data classification [35]. The third class
of methods attempts to formalize the definition of the SWD and compares statistical
features of different typical epochs in the EEG [12, 81].
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It should be noted that some of these methods present the following drawbacks:

• Not applicable for real-time signal processing, e.g., methods based on the
calculation of Lyapunov exponents or entropy.

• Low accuracy, e.g., methods estimating statistical properties of different epochs.
• Unstable performance, requiring adjustment of parameters for each individual

EEG, e.g., methods based on artificial neural networks.

Applications of the discrete wavelet transform to detection of SWDs has been
reported in [118]. Below, we shall discuss methods based on the continuous wavelet
transform that provide some benefits over DWT.

7.2.2 Off-Line Wavelet-Based Algorithm for Automatic
Detection of SWDs

Let us consider an off-line method for automatic detection of epileptic spike–wave
discharges in a previously recorded EEG [39, 112]. A practical implementation
of this method has been used to detect SWDs in long-term EEG recordings in
WAG/Rij rats with a predisposition to absence epilepsy. We used a single-channel
EEG recorded from the frontal cortex (the detailed experimental procedure can be
found in Sect. 6.2).

Analysis of a large number of SWDs allowed us to reveal some particular features
in their time–frequency structure, namely, the occurrence of the corresponding
patterns in the EEG was accompanied by a sharp increase in the spectral power in the
gamma frequency range (20–50 Hz). Importantly, such an increase does not appear
during other strongly pronounced EEG patterns like sleep spindles. Therefore, a
sharp increase in the gamma spectrum can serve as a marker for SWDs.

A natural way to detect an increase in the power in the gamma band is to use
a wavelet transform. The main idea is to estimate the instantaneous energy of the
wavelet spectrum in this frequency band and compare it with a threshold. If the
energy exceeds a certain critical value (threshold), then the expert system draws its
conclusion with regard to the presence of an SWD [63, 65, 66].

Figure 7.1 shows a typical energy distribution E.f / (see (2.33)) of the wavelet
spectrum for an SWD, a sleep spindle, and the background EEG. The fundamental
frequency of the SWD oscillations is about 8 Hz, which corresponds to the strongest
peak in the wavelet spectrum. However, at low frequencies (f < 15Hz), this
peak overlaps with the spectral peak of spindle waves, whence SWD and spindle
events may be confused. Nevertheless, SWD epochs show high power at higher
frequencies f > 15–20 Hz, i.e., in the gamma frequency band, due to the presence
of the second and third harmonics of the fundamental SWD frequency (see Figs. 5.7
and 7.1, harmonics are marked by arrows). Thus each individual peak, a part of the
spike-and-wave complex, is displayed in the wavelet spectrum as a local burst in the
wavelet power (see, for example, Fig. 5.5).
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Fig. 7.1 Typical distributions of the wavelet spectrum energy E.f / over frequencies characteriz-
ing different oscillatory patterns in WAG/Rij rat EEGs. (a) Spike–wave discharge. Arrows mark the
fundamental frequency of SWD oscillations and its harmonics. (b) Sleep spindles. (c) Background
EEG. Wavelet spectra were calculated using the Morlet wavelet

Let FSWD D 30–50 Hz be the characteristic frequency range of apparent
structural differences between spike–wave discharges and other oscillatory patterns.
Since we expect an increase in the energy in this frequency range during SWDs, it
is convenient to consider the following integral energy:

wFSWD.t/ D
Z

FSWD

jW.t; f /j2 df : (7.1)

If a spike–wave discharge occurs at a certain time t , then the following relation
holds:

wFSWD.t/ 	 Ek ; (7.2)
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Fig. 7.2 Typical results from automatic recognition of SWDs using a wavelet-based method with
a Morlet wavelet with central frequency !0 D 2� . (a) EEG fragment with spike–wave discharges
marked by grey rectangles. (b) Modulus jW.f; t/j of the wavelet spectrum corresponding to this
EEG. The dome-shaped curve in the wavelet spectrum outlines a confidence (upper) area in
which boundary effects are significant (see Sect. 2.3.3.3). (c) Time-dependence of the instantaneous
energy w.t/ (7.1) averaged over the characteristic frequency range FSWD = 30–50 Hz. SWDs were
recognized automatically using the value of the wavelet energy w.t/ when w.t/ > Ek , where Ek
is the threshold level (dashed line)

where Ek is the experimentally determined threshold energy.
For automated delimitation of epileptic events, we used the method of threshold

sorting. Time instants at which the value of wFs (7.2) exceeded the threshold Ek
and did not decrease within the following 1 s were regarded as onsets of epileptic
activity. Time instants when the energy level dropped below the threshold were
considered as the ends of SWDs.

Figure 7.2a shows an EEG epoch with five spike–wave discharges (grey rectan-
gles) corresponding to epilepsy paroxysms. Figure 7.2b, c illustrate the modulus
jW.f; t/j of the wavelet spectrum obtained with the Morlet wavelet (central
frequency !0 D 2� rad/s) and the corresponding integral energy wFSWD.t/.
Identification of SWDs is carried out using the criterion (7.2). The threshold level
Ek D 0:5 is indicated by the dashed line in Fig. 7.2c. Thus in the integral wavelet
spectrum, SWDs (highlighted in grey) are easily recognized by simple thresholding.
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Table 7.1 Results of automatic identification of SWD using the CWT with the complex Morlet
wavelet (!0 D 2� rad/s)

Performance of automatic detections

Visual detections Automatic detections Accuracy Sensitivity Specificity

Rat # Nexpert TP FP FN �SWD [%] ˇ [%] ı [%]

1 105 105 0 0 100.0 100.0 100.0
2 81 79 2 1 97.5 98.8 97.5
3 249 247 1 2 99.2 99.2 99.6
4 120 117 1 3 97.5 97.5 99.2
5 66 65 2 1 98.5 98.5 97.0
Mean ˙ SD 98:5˙ 1:1 98:8˙ 0:9 98:7˙ 1:3

7.2.3 Performance of the Method

The performance of the above-described method has been evaluated by measuring
the percentage of true positive/negative and false positive/negative detections. We
also computed the sensitivity and specificity of the method. True positives (TP) are
defined as the number of correctly detected SWDs. True negatives (TN) are the
number of correctly rejected SWD-like events. Then false positives (FP) and false
negatives (FN) represent the numbers of events wrongly identified as SWDs and
SWDs missed by the method, respectively.

Primarily the accuracy of the automatic recognition of absence epileptic
oscillatory patterns was computed as

�SWD D TP

Nexpert
� 100 % ; (7.3)

where Nexpert is the number of SWD events selected by an operator, expert in
SWD neurophysiology. Table 7.1 summarizes the main results for the automatic
identification of spike–wave discharges.

Using FSWD D 30–50 Hz and Ek D 0:5, we achieved successful identification
of almost all SWD events in all animals. The obtained accuracy oscillates between
97.5 and 100 % (mean 98.5 %, n D 5). The rate of incorrect detections or false
positives was below 1.8 %. Thus, SWD events can be faithfully distinguished from
the non-epileptic background EEG by the described method. We note that SWDs
were automatically recognized with the same parameters (FSWD and Ek) in all
animals. Thus the parameter choice is quite robust and requires no further tuning.

The quality of the algorithm’s performance, i.e. correctness of the “binary”
solution on the presence/absence of an epileptic event (SWD) was statistically
analyzed using a criterion that provided false result with a certain degree of
probability: the sensitivity ı and specificity ˇ [16]. The sensitivity and specificity
were assessed using the definitions
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ı D TP

TP C FN
� 100 % ; (7.4)

ˇ D TP

TP C FP
� 100 % : (7.5)

The first characteristic ı is used to estimate the sensitivity of the method, i.e., the
percentage of recognized spike–wave discharges out of the total number in the
analyzed EEG fragment. The second characteristic ˇ estimates the percentage
of events correctly identified as spike–wave discharges out of the total number
of events diagnosed as spike–wave discharges. These characteristics also exceed
98 % (Table 7.1), which is more than acceptable for automatic methods processing
neurological signals.

Thus, our findings show that the automatic wavelet-based method for recognition
of SWDs may significantly surpass the available standard techniques in terms of
accuracy and simplicity of application (no tuning is required). Moreover, the method
has a great potential for detection of other oscillatory patterns in EGG.

7.3 Brain–Computer Interface for On-Line Diagnostics
of Epileptic Seizures

In Sect. 7.2, we described an off-line method for automatic identification and
delimiting of epileptic EEG epochs. It is restricted to use with complete (previously
recorded) time series. Here we present a description and an experimental verification
of a real-time algorithm for detection of SWDs in the EEGs of a genetic rodent
model (WAG/Rij rats).

7.3.1 On-Line SWD Detection Algorithm

Diverse EEG patterns belonging to different classes may have similar spectral
composition [60, 94]. Therefore, a method used for pattern recognition should
adequately distinguish among such patterns with similar frequency content and, in
addition, must be numerically efficient to allow hardware or software implementa-
tion for on-line EEG analysis [79, 94, 131].

Another significant problem stemming from the on-line data processing is a lack
of knowledge of the full time realization. Indeed, at a given time instant t0, only the
preceding time instants (t � t0) are available for the analysis. Thus, the problem of
developing a universal method for diagnosis of oscillatory patterns in real-time is
extremely complex. Therefore, in this section we provide a brief description of an
already existing and tested method for on-line detection of spike–wave discharges
[67, 90, 91].
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The first problem mentioned above can be reasonably solved by using a complex
Morlet wavelet. This wavelet offers optimal selectivity in terms of time-spectral
resolution and can distinguish similar oscillatory patterns. The second problem (data
restriction to t � t�) can be solved if we select a mother wavelet function  that
decays rapidly in time. Then the definition (2.18) can be replaced by (2.44) with
high enough accuracy (for details, see Sect. 2.3.3). In other words, to calculate the
wavelet coefficients for a given time scale s at some fixed time instant t�, we need
to have a fragment of signal with t 2 Œt� � T; t� C T �. Therefore, we can only
determine whether there was an SWD at t D t� when we reach time t D t� C T ,
i.e., with a time lag T , which is essentially unremovable using this method. The
value of T depends on the mother wavelet and the time scale s (wavelet frequency
fs � 1=s). In the case of the Morlet wavelet, we can take T � 4 s.

Let us now discuss the key features of an on-line diagnostic algorithm for
detecting oscillatory patterns in EEGs, as proposed in [90, 91]. The method is
based on the approach considered in Sect. 7.2. First, the wavelet transform (2.44) is
calculated using the Morlet wavelet with central frequency !0 D 2� rad/s. Second,
a measure of the spectral energy within the frequency range FSWD is introduced (see
also (7.1)):

wFSWD.t/ D
Z

FSWD

jW.t; f /j df : (7.6)

This is the integral measure of the absolute value of wavelet coefficients over the
given frequency domain, i.e., the wavelet power over domain (WPOD).

As in Sect. 7.2, we selected the gamma frequency band FSWD D 30–80 Hz, since
it is the most characteristic for distinguishing SWDs and spindle waves. The wavelet
power wFSWD.t/ in this frequency range can be calculated with a delay of about 4 s �
4 � 1=30 � 0:14 s. If wFSWD.t/ shows a drastic growth, then we can mark this time
instant as the beginning of an SWD. A similarly rapid decrease in the power marks
the end of the SWD. Thus fulfillment of the condition wFSWD.t/ > Ek (see (7.2) in
Sect. 7.2) is the basic guideline for detecting an SWD at time t D tcurrent � T .

We note that an EEG is a complex signal, which may have relatively short
bursts provoked by motion artifacts, K-complexes, and other events [138]. Then
the spectrum of bursting activity can overlap with FSWD and we can observe a rapid
growth of the WPOD measure wFSWD.t/, which may exceed the threshold Ek . Thus
some bursting activity in EEG can lead to false detection of spike–wave discharges,
i.e., false positive errors (FP). Figure 7.3a, b show an example of this situation.
An EEG epoch has an SWD and an artifact (arrow). Then the WPOD wFSWD.t/

calculated over this epoch shows a strong pulse corresponding to the artifact. The
pulse amplitude is significantly higher than the background oscillations of wFSWD.t/

and hence, during on-line processing, we could wrongly detect such a pulse as the
marker of an SWD event.

To reduce the number of such false positive detections, we could use a higher
value of the threshold Ek . However, this may not help (as in Fig. 7.3b), but merely



262 7 Automatic Diagnostics and Processing of EEG

-10
-5
0
5

 10

 0  2  4  6  8 10 12 14

 0

 1

 2

 3

0

1

2

3

V, mV

w(t)

<w(t)>

t, s

t, s

t, s

0 2 4 6 8 10 12 14

0 2 4 6 8 10 12 14

a

b

c

Fig. 7.3 (a) Fragment of an EEG containing a single pulse of high amplitude (arrow at 3 s) and
a spike–wave discharge (5.5–12.3 s). (b) Instantaneous WPOD energy wFSWD .t/ with an artificial
peak (arrow) corresponding to the single pulse in the EEG (FSWD D 30–80 Hz). (c) The artificial
peak is attenuated in the time-averaged measure hwFSWD .t/i (� D 0:2 s)

increase the number of false negatives. Besides, a higher threshold would introduce
an additional time delay into the onset of the SWD. Another way to reduce the
number of false positives is to consider an averaged value of wFSWD.t/ over some
smoothing window �:

˝
wFSWD.t/

˛ D 1

�

tC�=2Z

t��=2
wFSWD.	/ d	 : (7.7)

Then the criterion for detecting a spike–wave discharge is

˝
wFSWD.t/

˛
> Ek : (7.8)

Figure 7.3c shows this new measure hwFSWD.t/i. One can see that the artificial
peak becomes much lower, so we can detect SWD events with higher accuracy
and exclude incidental short EEG events. Increasing the averaging window �, we
can achieve more accurate detection (better smoothing of short artificial events).
However, averaging introduces an additional delay of order �=2 D 0:1 s into the
detection of SWD patterns. There is thus a tradeoff between detection accuracy and
detection delay.

Figure 7.4 shows a flowchart for implementation of the on-line method for
detecting SWDs, called OSDS. To compute the wavelet transform we used the
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Fig. 7.4 Flowchart of the on-line algorithm for detecting epileptic seizures (OSDS). w.t/ is the
WPOD (defined by (2.47)), Ek is the threshold for the WPOD, xi and yi are the discrete values
of the EEG signal and preliminary calculated mother wavelet function, respectively, and log 0 and
log 1 are the logical zero (absence of SWD) and one (presence of SWD) of the algorithm output,
respectively

fast method based on the vector product (2.47) discussed in Sect. 2.3.3.1. The
program calculates the corresponding wavelet power for a given frequency range
(30–80 Hz) each time a new data sample is acquired (e.g., every 2 ms for 500 Hz
sampling rate). The calculated power is compared with a threshold and a binary
output (presence/absence of SWD) is generated.

More precisely, the program performs the wavelet transform for 15 scales
(corresponding to frequencies equally distributed in the range 30–80 Hz). Our
results show that increasing the number of scales above 15 provides no significant
improvement in the algorithm sensitivity, but rather requires additional calculation
resources (the calculation time must be kept within 2 ms). The sum of the calculated
wavelet power values provides wFSWD.t/, which is further averaged and compared
to the threshold Ek . The result of the comparison is assigned to the output logical
variable

Vout.t/ 2 ˚log 0; log 1


:
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At the beginning, it is set to logical zero, i.e., Vout D log 0. As soon as wFSWD.t/

exceeds the threshold Ek , the output is set to logical one, i.e., Vout D log 1. The
output is maintained until wFSWD.t/ goes below Ek , at which point the output is
switched to logical zero, i.e., Vout D log 0.

We note that the algorithm can also be used to detect other kinds of oscillatory
patterns in EEG.

7.3.2 Experimental Verification of the Algorithm and On-Line
SWD Diagnostics

To test the algorithm, we used differential recordings made in eight rats [90].
The EEG was continuously acquired over 5 h during the light phase (5–15 h).1

In addition, two of the 8 rats were subject to continuous 24 h recording. Rats
were connected to EEG recording leads attached to a swivel contact, which allows
registration of the EEG in freely moving animals. Signals were recorded using the
WINDAQ recording system (DATAQ Instruments, Akron, OH, USA, www.dataq.
com) with a constant sample rate of 500 Hz. Before digitizing, the EEG signal was
amplified and filtered by a band pass filter with cutoff frequencies set at 1 and
100 Hz. In addition, a 50 Hz notch filter was applied to reject power line hum. The
digitized signal was sent to the OSDS (Fig. 7.4).

Figure 7.5 shows a typical example of on-line SWD detection. Whenever the
WPOD wFSWD.t/ exceeds the threshold Ek D 0:8, an SWD is detected (Fig. 7.5b).
The threshold value Ek should be adjusted for each animal individually. A good
initial guess is 2.5–3.5 times the mean WPOD value at normal activity (i.e.,
non-epileptic background). The algorithm output Vout.t/ (Fig. 7.5c) is sent to an
additional channel of the WINDAQ recording system. This channel has a digital–
analog converter (DAC) with two possible levels: high (log 1 WD C2:5V) and low
(log 0 WD �2:5V).

The output signal Vout.t/ of the OSDS delimits SWD events and, in general, can
also control some external device, such as a generator sending some stimuli to the
animal’s brain. Thus an organized feedback loop can be used, e.g., for studying
the effect of external stimuli on epileptic focus, synchronized with the onset of the
epileptic neuronal activity.

In experiments, we determined the most adequate individual threshold values Ek
using off-line analysis of EEG traces for each rat. One hour EEG fragments were
analyzed and Ek was tuned. Ek varied between 0.6 and 1.0 for different animals.
This approach allowed us to achieve perfect sensitivity to SWDs for all animals,
that is, ı D 100% (Table 7.2), i.e., there were no false negative detections. The

1The experimental system OSDS (on-line SWD detection system) was designed and developed
at the Donders Institute of Brain, Cognition and Behavior, Radboud University Nijmegen, The
Netherlands.

www.dataq.com
www.dataq.com
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Fig. 7.5 On-line detection of SWDs. (a) Example of an EEG epoch containing SWDs. (b) WPOD
averaged power in the 30–80 Hz band. (c) Output of the detection algorithm (OSDS)

mean precision was ˇ D 96:9% (range 94.3–100 %, n D 8) in the 5 h data set. The
average time needed for SWD detection was 1:0˙ 0:55 s following the SWD onset
(smoothing window size 500 data points and sample rate 500 samples/s). The SWD
detection time is determined primarily by the length of the smoothing window and
can be reduced.

The results of the second experimental data set of 24 h EEGs recorded in two
rats are presented in Fig. 7.6. The number of incorrectly detected events remains
at an acceptably low level throughout the 24 h experiment. The rats had 300–400
SWDs during the 24 h period, with a mean duration of 6.6 s. This agrees with earlier
findings in WAG/Rij rats of the same age [111, 126].

Let us now consider the errors in the OSDS algorithm. False negative (FN)
errors (SWD events skipped by the algorithm) appear in the first place due to small
variations in the dynamics of the brain in response to changes in environmental
conditions. In relatively short experiments with properly chosen parameters, FN
errors do not appear (Table 7.2). In long-term experiments, FN events are rare and
can be observed when the physiological state of the animal changes significantly
(Fig. 7.6). The first missed events begin to appear 4–8 h after the beginning of the
EEG recording. Such events tend to group together, i.e., within a few hours after
registration of the SWD with subthreshold WPOD value, the probability of finding
another one becomes greater. At the same time, the total number of unrecognized
SWD events remains small (<1 % of all detected SWDs).

Another class of errors is false positives (FP), i.e., events wrongly detected as
being SWDs. Figure 7.7 illustrates detection of an underdeveloped SWD. Despite
the fact that the increase in the WPOD in this case was not as large as during
a genuine SWD, it was enough to exceed the threshold and hence lead to false
detection of an SWD event. Visual inspection of FP events showed that they
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Fig. 7.6 Detection rates of spike–wave discharges for each hour during 24 h recording in two
animals. (1) True SWD detections. (2) False positive SWD detections. (3) False negative SWD
detections (missed events)

correspond to intermediate states or spiky phenomena [32]. It should be noted that,
by increasing the size � of the smoothing window, the number of false positives
can be reduced significantly. However, this will be achieved at the cost of increasing
the time lag required for reliable detection of SWD events. The results shown in
Table 7.2 were obtained through a compromise between speed of detection and
number of FP errors.

The two most important parameters determining algorithm performance are the
threshold value Ek and the size � of the smoothing window. Figure 7.8 shows the
dependence of true detections and missed SWDs on these parameters, as obtained
from a 5 h EEG recording. It can be inferred from these maps that there are some
areas (combinations of threshold values and smoothing window sizes) for which all
SWDs can be detected, while the number of false detections and missed events is
kept close to zero. These areas correspond to the threshold Ek � 0:7–0.9 and the
window size � � 0:4–0.6 s.

It should be noted that these maps provide all knowledge required to make an
appropriate choice of the two parameters. However, it is not necessary to compute
the whole map to find the best parameters, as the area of feasible window sizes does
not vary much from animal to animal. It is more practical to establish the number
of false detections and missed events for the chosen threshold value and to use the
median value of the range as a suitable window size.

7.4 Automatic Detection of Sleep Spindles by Adaptive
Wavelets

In Sect. 6.5, we discussed how one can create different types of adaptive wavelet
bases, so-called adaptive spindle wavelets. Such wavelets are tuned optimally to the
structure of various kinds of oscillatory EEG patterns appearing during sleep (sleep
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Fig. 7.7 Illustrative examples of typical complexes in EEG (intermediate states) falsely detected
as SWDs and corresponding dynamics of the averaged WPOD hw.t/i versus time

spindles and 5–9 Hz oscillations). Although the variability in the waveform of sleep
spindles was rather high, we were able to distinguish two types of sleep spindles
with different shapes, frequency spectra, and times of occurrence (see Fig. 6.13).
Sleep spindles showed different degrees of conformity to the two types of spindle
wavelets. Type 1 sleep spindles had a typical waveform and predominated during
slow-wave sleep. Type 2 spindles had an atypical form and were picked out by the
adaptive spindle wavelets 2 which were individual for each rat. These type 2 spindles
might be considered as a transitory oscillatory waveform between spindle and SWD
in WAG/Rij rat EEGs.
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Constructed adaptive wavelet bases can also be used to mark sleep spindle events
in the automatic regime [112]. For automatic detection of sleep spindles, we can use
the approach discussed in Sect. 7.2, based on the method of threshold sorting (7.2)
of the wavelet power w.t/, over the typical frequency domain FS.

Table 7.3 shows separately the results of automatic recognition of sleep spindles
of types 1 and 2. The notation is similar to that adopted in Table 7.1. This facilitates
comparison with the OSDS algorithm for SWD recognition. Table 7.4 shows the
performance of automatic detection of sleep spindles in the EEG by means of the
spindle wavelet-based algorithm. When spindle wavelet 1 was used for automatic
recognition of spindle events, about 87.4 % of sleep spindles (so-called type 1
sleep spindles) were identified correctly in the frequency band Fsp1 2 .f1; f2/ D
.7; 14/Hz (Tables 7.3A and 7.4). Note that type 1 sleep spindles were recognized
with the aid of one common template (spindle wavelet 1). The threshold level Ek1
for the detection of type 1 sleep spindles was 12.4 for all animals. The remaining
sleep spindles, which failed to be captured by spindle wavelet 1, were selected
using spindle wavelet 2 in Fsp2 2 .20; 25/Hz. We found that type 2 sleep spindles
comprised 7.9 % of the total number of sleep spindles (Tables 7.3B and 7.4).
Table 7.3B shows empirically defined thresholds Ek2 for the identification of
type 2 sleep spindles for each animal. Figure 7.9 provides an example of automatic
detection of sleep spindles of both types and comparison with detection made by an
expert using visual inspection.

The best performance for automatic recognition of sleep spindles is achieved
after selecting the optimal wavelet template and adjusting the optimal amplitudes
(Ek1;2) and frequency band (FS) parameters. Almost all sleep spindles (90–95 %)
were extracted by the joint application of two different types of adaptive spindle
wavelets.
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Table 7.3 Automatic identification of sleep spindles with the aid of adaptive wavelet templates
(spindle wavelets). The basis function known as spindle wavelet 1 was the same for all animals.
Detections of type 1 spindles were made if the wavelet power w.t/ in the frequency band
Fsp1 2 .f1; f2/ D .7; 14/Hz exceeded the threshold Ek1. The basis function known as spindle
wavelet 2 was chosen for each animal individually. Type 2 spindles were detected when the WPOD
w.t/ in the frequency band Fsp2 2 .f 1; f 2/ D .20; 25/Hz exceeded the threshold Ek2. NS1 is
the number of sleep spindles missed by the type 1 spindle wavelet. TP is the number of correct
detections of sleep spindles, TN the number of correct rejections of sleep spindles, FP the incorrect
automatic detections of sleep spindles, and FN the number of events missed by the automatic
wavelet-based method. fsw2 is the average peak frequency of the spindle wavelet 2 basis

A. Type 1 spindle wavelet

Visual detections Automatic detections

Rat # Nexpert TP FP FN Threshold Ek1
1 2,341 2,130 23 281 12.4
2 1,381 1,132 28 110 12.4
3 1,491 1,312 30 149 12.4
4 1,305 1,096 39 104 12.4
5 1,598 1,422 16 144 12.4
Mean ˙SD 1;623˙ 416 1;418˙ 419 27˙ 9 157˙ 72 12:4˙ 0:0

B. Type 2 spindle wavelet

Automatic detections

Rat # NS1 TP TN FP FN fsw2 Threshold Ek2
1 211 140 2,154 70 22 23.3 21.0
2 249 110 1,215 69 21 24 23.5
3 179 164 1,327 30 15 19 18.8
4 209 117 1,175 26 18 17 18.5
5 176 112 1,454 48 14 22 18.5
Mean ˙SD 205˙ 30 129˙ 23 1;465˙ 400 48:6˙ 20:8 18˙ 6 21˙ 3 20:1˙ 2:1

Table 7.4 Performance of automatic detection of sleep spindles by means of the spindle wavelets

Type 1 spindle wavelet Type 2 spindle wavelet

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity
Rat # �1 [%] ˇ [%] ı [%] �2 [%] ˇ [%] ı [%]

1 91.1 88.4 98.9 66.3 96.9 86.4
2 82.2 91.2 97.6 44.2 94.6 84.0
3 87.8 89.8 97.8 91.6 97.8 91.6
4 83.9 91.3 96.6 56.0 97.8 86.7
5 88.9 90.8 98.9 63.6 96.8 88.9
Mean ˙SD 86:8˙ 3:7 90:3˙ 1:2 97:9˙ 1:0 64:3˙ 17:5 96:8˙ 1:3 87:5˙ 2:9

The merit of the presented method is the pinpoint accuracy of automatic sleep
spindle recognition in EEG, which can theoretically reach 100 % by increasing the
number of adaptive bases (spindle wavelets). The disadvantage with this approach
is its computational complexity, which requires exhaustive testing of a large number
of sleep spindle templates for the selection of the optimal basis.
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Fig. 7.9 Automatic recognition of sleep spindles with the aid of two spindle wavelets. (a) Example
EEG with sleep spindle oscillations. (b) Distribution of wavelet energy w.t/ (7.1), as obtained
with types 1 and 2 spindle wavelets in the characteristic frequency bands (Fsp1;2). Type 1 spindle
wavelet sleep spindles in Fsp1 D 7–14 Hz with threshold Ek1 D 12:4. Type 2 in Fsp2 D 20–25 Hz,
threshold Ek2 D 21. (c) Automatic spindle detections (top) match expert selections (bottom)

7.5 Automatic Detection and Discrimination of 5–9 Hz
Oscillations and Sleep Spindles

The method described in Sect. 7.4 is computationally complex. In [114], we
suggested a simplified algorithm for automatic recognition and discrimination of
5–9 Hz oscillations and sleep spindles. The method uses the CWT with standard
complex Morlet mother wavelet and is based on the method of detection of spike–
wave discharges described in Sect. 7.2 (see also (7.1) and (7.2)). This is what we
shall now describe.

As mentioned in Sect. 6.3, the wavelet spectrum of spindle-like patterns is
characterized by the presence of a peak at 8–15 Hz (see Figs. 6.7 and 6.8). This
peak corresponds to the fundamental frequency of spindle waves. However, this
frequency is not constant, but usually increases from the beginning to the end of
the spindle pattern (see Fig. 6.10). The presence of a spectral peak at 8–15 Hz is
a necessary but not a sufficient condition for detecting sleep spindles in EEG. For
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example, sleep spindles could often be confused with SWD events, which also have
a peak in the 8–15 Hz frequency band. Identification of SWDs, however, can rely
on a wavelet measure of the power in the gamma frequency band. Then we can
achieve an identification accuracy close to 100 % (see Sect. 7.2). Therefore, in order
to reduce errors in the detection of spindle waves, we can first identify SWD events
and then set the corresponding EEG segments to zero [112].

Selective detection of sleep spindles (Fig. 6.7) and 5–9 Hz oscillations (Fig. 6.8)
is based on measurements of the integral wavelet energy (WPOD) in two frequency
bands: F 1

s 2 Œ5; 9�Hz and F 2
s 2 Œ10; 15�Hz. The resulting measures w1.t/ and

w2.t/ are thresholded (see (7.8)) using levels E1
k and E2

k , respectively. These levels
are chosen empirically to provide the most accurate localization of sleep spindles
and 5–9 Hz oscillations in the time domain. We decide on the presence of a sleep
spindle if, in the frequency range 10–15 Hz, the wavelet power satisfies w2.t/ > E2

k

and w2.t/ > w1.t/. Thus the criterion is

spindle: w2.t/ > E
2
k and w2.t/ > w1.t/ : (7.9)

Similarly, 5–9 Hz oscillations must satisfy the condition

5–9 Hz: w1.t/ > E
1
k and w1.t/ > w2.t/ ; (7.10)

i.e., the wavelet power w1.t/ in 5–9 Hz exceeds the threshold E1
k and is bigger than

the power in 10–15 Hz.
In order to determine the end point of each oscillation, we compute the average

wavelet power w0 of the EEG background2 for 10 s. Then the value of w0 is
compared to w1.t/ and w2.t/. The end of sleep spindles and 5–9 Hz oscillations
is assigned to the instant of time satisfying

wi.t/ � w0 ; i D 1; 2 ; (7.11)

i.e., the WPOD wi.t/ becomes comparable to the wavelet energy of the EEG
background.

Another difficulty for automatic classification is the presence of rhythmic
alpha/theta components in EEG that are related neither to sleep spindles nor to 5–
9 Hz oscillations. These rhythmic components correspond to a short-term increase in
the instantaneous wavelet energy wi.t/ in the frequency bands F 1

s and F 2
s , and may

sometimes cause false detections. In order to prevent incorrect detections induced
by rhythmic components, the instantaneous wavelet energy wi.t/ can be averaged
over a time window � (see also (7.7)):

2That is, the EEG epoch which does not contain any oscillatory patterns, i.e., SWD and spindle-like
patterns.
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Fig. 7.10 Principles of automatic detection of sleep spindles and 5–9 Hz oscillations in EEG. (a)
An epoch consisting of sleep spindles and 5–9 Hz oscillations. (b) Wavelet energy wi.t/ measured
in the 5–9 Hz frequency band (dotted line) and in 10–15 Hz (solid line). (c) Output of the automatic
detection algorithm for sleep spindles and 5–9 Hz oscillations

˝
wi.t/

˛ D 1

�

tC�=2Z

t��=2
w.	/ d	 : (7.12)

Empirically we chose � D 0:5 s. Then we can use the average wavelet energy
hwi.t/i instead of wi.t/ in (7.9)–(7.11). This procedure improves the quality of
automatic detections. It also helps to avoid false detections of short spindle-like
events lasting less than 0:5 s.

Figure 7.10 illustrates the procedure for automatic discrimination of sleep
spindles and 5–9 Hz oscillations in an EEG fragment. Table 7.5 provides the
amplitude and threshold parameters used for selective detection of sleep spindles
and 5–9 Hz oscillations in the EEG.

7.6 On–Off Intermittency of Thalamo-Cortical Oscillations

7.6.1 Nonlinear Dynamics of SWDs, Sleep Spindles,
and 5–9 Hz Oscillations

Spike–wave discharges are EEG hallmarks of absence epilepsy. SWDs are known
to originate from a thalamo-cortical neuronal network that normally produces sleep
spindle oscillations. Although sleep spindles and SWD are considered as thalamo-
cortical oscillations, the functional relationship between them is not obvious.
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Table 7.5 Amplitude, frequency, and threshold parameters counted by the Morlet wavelet-based
algorithm for selective detections of sleep spindles and 5–9 Hz oscillations in WAG/Rij rat EEGs.
Wmax is the maximal energy of the wavelet spectra of analyzed EEG patterns. The central frequency
of the Morlet wavelet was !0 D 2� rad/s

5–9 Hz oscillations Sleep spindles (10–15 Hz) Background energy

Rat # Wmax E1
k Wmax E2

k w0
1 0.21 0.072 0.20 0.076 0.031
2 0.41 0.115 0.28 0.071 0.028
3 0.43 0.132 0.37 0.124 0.034
4 0.27 0.090 0.24 0.080 0.025
5 0.24 0.088 0.19 0.078 0.028
6 0.26 0.081 0.22 0.069 0.024
Mean ˙ SD 0:3˙ 0:09 0:096˙ 0:023 0:25˙ 0:07 0:083˙ 0:021 0:028˙ 0:004

The wavelet-based algorithms for automatic detection of oscillatory events
described in the previous sections can be used to study the global temporal dynamics
of SWDs, sleep spindles (10–15 Hz), and 5–9 Hz oscillations from the point of
view of nonlinear dynamics. In [39, 64, 114], we used the theory of intermittency
to evaluate the statistical properties of spindles and SWD events.

Briefly, intermittency is associated with aperiodic switching between so-called
regular behavior and chaotic bursts [9, 103]. Applying this concept to EEG,
we can relate regular behavior to long-lasting periods of a desynchronized state
(background EEG), whereas various kinds of oscillatory events can be considered
as chaotic bursts. In healthy human subjects, intermittent EEG behavior is a
characteristic feature of spontaneous alpha-range activity 8–13 Hz [31,47]. It is also
observed in seizure activity in patients suffering intractable partial epilepsy [96].

A particular type of intermittent behavior, so called on–off intermittency [34,
36,103], is manifested as an abrupt shift between synchronized and desynchronized
states in coupled dynamical systems and networks [10,11,38]. On–off intermittency
appears in a model system that continually alternates between brief episodes of
bursting activity, referred to as the on-state, and the quiescent off -state [34, 36, 62].
These findings suggest that a similar intermittent mechanism may underlie the
temporal dynamics of synchronous thalamo-cortical oscillations, such as SWDs,
sleep spindles, and 5–9 Hz oscillations.

To describe intermittent dynamics in EEGs, we used the algorithm described
in Sect. 7.5 for detection of SWDs, sleep spindles, and 5–9 Hz oscillations. The
method of event detection relies on measuring the distribution of wavelet energy.
An increased WPOD w.t/ during SWDs, sleep spindles, and 5–9 Hz oscillations is
a characteristic feature of synchronized EEG states. We thus consider such epochs
as on-states of intermittent behavior (Fig. 7.11). In general, different types of EEG
oscillations present different types of on-states (Table 6.4, Sect. 6.3). The temporal
dynamics of the investigated oscillatory patterns were examined using statistical
analysis of time intervals between consecutive EEG events. These intervals L
correspond to the off-phase in the intermittent behavior (Fig. 7.11).
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Fig. 7.11 Intermittent dynamics of (a) sleep spindles (grey boxes) and (b) spike–wave discharges.
Intervals L between consecutive events have been used for statistical description

We analyzed SWD, sleep spindles, and 5–9 Hz oscillations separately and tested
them for power-law dynamics. Under this assumption, the dependence of the
number (frequency) N.L/ of off-phases on their duration L should obey

N.L/ D �L˛ ; (7.13)

where ˛ is the exponent and � is the normalization factor. It has been proven that
˛ D �3=2 is characteristic of systems with on–off intermittency [15, 34, 36, 39].

In each individual experiment, the parameter ˛ was calculated by minimizing the
root-mean square error " of empirically obtained distributions N.L/ with different
bin widths �L. Figure 7.12 (upper plot) shows the relationship between the bin
width �L and the exponent ˛ characterizing the temporal distribution of time
periods between consecutive sleep spindles.The value of ˛ decreases from �1:0 to
�2:3 with the increase in�L. The bottom plot (Fig. 7.12) shows that the root-mean
square error " attains a minimum for �L � 6 s. For this value of �L, we get the
exponent ˛ D �3=2, which is characteristic of on–off intermittency.

Figure 7.13 shows the distribution of N.L/ for SWDs, spindles, and 5–9 Hz
oscillations obtained in six animals. Distributions of both inter-SWD and inter-
spindle intervals are close to a straight line with ˛ D �3=2 on a log–log
scale in all experimental animals, i.e., N.L/ � L�3=2. As mentioned above,
this type of distribution is known to be a key feature of on–off intermittency
[34, 36, 39, 64, 85, 103].

The same analysis of 5–9 Hz oscillations showed that the distributions of
inter-oscillation intervals fit a power law with exponent ˛ D �1 (Fig. 7.13c). This
kind of dynamics was rather uncertain, and it obviously differs from the on–off
intermittent behavior of sleep spindles and SWDs.

Although the number of SWDs and sleep spindles varied from rat to rat, these
EEG events were distributed in time according to a power law with exponent
˛ D �3=2. It is important that on–off intermittent behavior was found in both SWDs
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and sleep spindles, despite the fact that these EEG events differ significantly in their
time–frequency profiles (Sects. 5.3 and 6.3).

7.6.2 Intermittent Dynamics of SWDs Under the Influence
of a Pro-absence Drug (Vigabatrin)

In order to characterize how pharmacological treatment influences dynamical
properties of epileptic activity, we analyzed the EEG recordings in WAG/Rij rats
under the influence of a pro-absence drug, vigabatrin, in different doses [39].
Vigabatrin has positive effects in the treatment of generalized epilepsy [4]. However,
it has a negative effect in absence epilepsy [77]. Vigabatrin causes a dose-dependent
increase in the number and duration of spike–wave epileptic discharges [130], which
are characteristic for absence epilepsy.

We tested the distributions of inter-SWD intervals for the presence of on–off
intermittency after injection of vigabatrin. In lower doses (125 and 250 mg), viga-
batrin decreases the mean length of the laminar phases (so called L intervals), i.e.,
normal EEG activity decreases. However, distortion of laminar phases provoked by
injection of vigabatrin does not disrupt the power law with the characteristic expo-
nent ˛ D �3=2 (Fig. 7.14a, b). The pattern of on–off intermittency in drug-injected
animals was similar to that observed in control animals (see Fig. 7.13a). Thus,
low-doses of vigabatrin do not alter the global dynamics of the epileptic activity.
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Fig. 7.13 Distributions of time intervals (L intervals) between investigated EEG events plotted on
a log–log scale. SWDs (a) and sleep spindles (b) are best approximated by the power law with
exponent ˛ D �3=2 in all experiments (ID D 1–6). This is typical for on–off intermittency. Five
to nine hertz oscillations (c) fit the power law with ˛ D �1

Injecting a larger dose of vigabatrin (500 mg) disrupts the on–off intermittency
pattern of EEG activity (see Fig. 7.14c). The lengths of inter-SWD intervals become
more random and do not follow the line with ˛ D �3=2. This may imply that high
doses of vigabatrin influence the transition from synchronous EEG states (SWDs)
to out-of-phase states (background EEG). Therefore, the intermittency acquires
another (probably, more complex) pattern compared to that in control animals.
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Fig. 7.14 Distributions of inter-SWD intervals after i.p. injections of vigabatrin in doses of (a)
125 mg, (b) 250 mg, and (c) 500 mg (shorter time series compared to Fig. 7.13a have been used).
Black circles correspond to experimental data. Straight lines plot the power law N.L/ � L�3=2.
In doses greater than 500 mg, vigabatrin significantly changes the distribution of L intervals and
on–off intermittency (characteristic for control animals, Fig. 7.13a) is no longer observed

7.6.3 Mechanisms of Intermittent Behavior
in the Thalamo-Cortical Neuronal Network

Intermittency in general refers to a wide variety of behaviors, in which almost
periodic (oscillatory) dynamics is suddenly interrupted by chaotic bursts. In models
of chaotic dynamical systems (such as coupled oscillators and neural networks), the
mechanism of intermittency is known to underlie alternations between synchronous
and asynchronous regimes [11, 38, 40, 41, 139]. On the basis of the dynamical
scenarios, intermittency can be classified into several types: type I, type II, type III,
ring, eyelet, and on–off [9, 11, 40, 42, 99].

The results obtained in previous sections on the dynamics of different EEG events
demonstrate that:

• The distribution of spindles, 5–9 Hz oscillations, and spike–wave paroxysms is
not random.

• The temporal dynamics of sleep spindles and SWDs (but not 5–9 Hz oscillations)
follows the law of on–off intermittency.

This is a remarkable finding. Indeed, according to the theory of nonlinear dynamics,
on–off intermittency appears in dynamical systems displaying deterministic chaos.
We know that SWD and sleep spindles are produced by the thalamo-cortical neural
network [21,23,30,69,115,117]. This implies that this network operates in a regime
of deterministic chaos.

It is known that the onset of synchronized phases in systems with on–off
intermittency is regulated by an external control parameter or driving force.
This suggests that the process of synchronization/desynchronization in the
thalamo-cortical network should be controlled by a high level hierarchic mechanism
(driving force). This driving mechanism may involve the reticular activating system
that modulates excitability of thalamo-cortical neurons and is capable of entraining
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the network in either sleep-related oscillations or spike–wave paroxysms [116].
Alternatively, this control mechanism might involve the preoptic hypothalamic
area, which is responsible for circadian activity and/or sleep–wake transitions, and
which is known to be involved in the pathogenesis of absence seizures in WAG/Rij
rats [119].

Note that observation of on–off intermittency in thalamo-cortical oscillations is
not surprising. Intermittency has been described earlier in spontaneously occurring
synchronized EEG oscillations in humans. In particular, the dynamics of syn-
chronized episodes of alpha activity in human EEG had the property of type I
intermittency [31]. Gong and colleagues [31, p. 011904-1] assumed that “this kind
of dynamics enables the brain to rapidly enter and exit different synchronized states,
rendering synchronized states metastable”. Moreover, analysis of shorter aspects of
paroxysmal discharges constituting behavioral seizures in human patients suffering
partial and traumatic epilepsies revealed type III intermittency [96].

Based on these recent data, we suggest that intermittent behavior may
characterize rapid switches between synchronous and asynchronous brain activities.
This mechanism may help to avoid unstable oscillatory synchronous regimes
that could emerge in the transition from one stable state to another. Intermittent
behavior of synchronous EEG patterns implies that their temporal dynamics has a
deterministic nature. Such determinism may have clinical interest, allowing long-
term prognosis about seizure remission. Further studies in this field may provide
effective tools for predicting epileptic activity.

The present results also indicate that the temporal dynamics of 5–9 Hz
oscillations is totally different from that in SWDs and sleep spindles. This can be
explained by differences in global network mechanisms and in particular the role of
the thalamus. The latter does not contribute to the generation of 5–9 Hz oscillations
[101, 102], whereas thalamic cellular and intrathalamic network mechanisms are
necessary for the initiation of sleep spindles and for the maintenance of SWDs
[100, 115, 117].

7.7 Serial Identification of EEG Patterns Using Adaptive
Wavelet Analysis

Among the available automatic recognition techniques in neuroscience,
wavelet-based approaches are the most powerful. However, they require an
appropriate selection of parameters in order to minimize errors of pattern
recognition. Indeed, the efficiency of wavelet-based methods can be significantly
reduced if some parameters are not optimal. Dealing with the continuous wavelet
transform, we should select the mother wavelet and at least two parameters
characterizing translation and dilation of the mother wavelet. The problem of
parameter selection has been partially addressed in Chap. 4, where we discussed a
wavelet approach to spike sorting (see also [74, 93, 106]).
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In this section, we shall introduce a special wavelet-based method for pattern
identification, which we shall refer to as a serial adaptive wavelet method [86–
88]. The advantage of this method is that we may forgo the empirical selection
of the wavelet parameters based on optimization theory. Since optimal parameters
are computed by means of the proposed technique, the quality of pattern recognition
does not depend on the experience of the researcher.

7.7.1 Adaptive Wavelet-Based Technique and the Serial
Method

In previous sections, we saw that the continuous wavelet transform with Morlet
wavelet provides the best time–frequency resolution of spike–wave discharges and
other oscillatory EEG patterns (see also Sect. 6.4). Unlike other wavelets, the Morlet
wavelet has an additional parameter !0, called the central frequency, which can be
used to adjust the time–frequency resolution. Thus, the Morlet CWT of an arbitrary
signal S.t/ can be represented as a transform that depends on the scale s, translation
t0, and central frequency !0 :

W S.s; !0; t0/ D 1p
s

TZ

0

S.t/ !0

�
t � t0
s

�
dt ; (7.14)

where

 !0.�/ D ��1=4ei!0�e��2=2 (7.15)

is the Morlet wavelet function.
Let us now illustrate the main idea of our adaptive approach. Figure 7.15 sketches

the pattern identification problem. Important characteristics of an EEG signal S.t/
can be assessed by integrating the instantaneous wavelet amplitudes within some
range of scales (see, e.g., Sect. 7.3, and in particular (7.6)):

wS .t/ D
Z smax

smin

ˇ̌
W S.s; !0; t0/

ˇ̌
ds : (7.16)

An additional smoothing of the function wS .t/ can be performed in order to reduce
effects of artifacts (see (7.12)). In the simplest case, we can introduce a filter Z,
which provides NS averages over a sliding window of size NH [104]:

wS .t/ D Z


wS .t/; NS; NH

�
: (7.17)

As a result of pattern identification, a binary (logical) signal S.t/ is obtained (see
Fig. 7.15). The output is logical zero S.t/ D 0 in the absence of any specific
oscillatory pattern, while S.t/ D 1 corresponds to intervals containing patterns:
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Fig. 7.15 EEG containing sleep spindles (SS) and SWD patterns. Identifications of sleep spindles
and SWDs are represented by expert logic signals SSS

E .t/ and SSWD
E .t/, respectively

S.t/ D C


wS .t/; �L; �H

� D
�
1 ; wS .t/ 2 Œ�L; �H� ;

0 ; otherwise ;
(7.18)

where �L and �H are two thresholds. The value �L provides separation of sleep
spindles and spike–wave discharges from the background EEG. The value �H

provides selective identification of either sleep spindle or SWD patterns, since these
two patterns cannot appear in EEG at the same time and they are characterized by
different wavelet energies.

Finally, the standard CWT approach to pattern recognition requires manual or
semi-automatic selection and adjustment of the following parameters:

P D ˚
smin; smax; !0; NS; NH; �L; �H



: (7.19)

This tedious problem (P 2 R
7) is frequently resolved suboptimally.

The accuracy of pattern recognition can be estimated by comparing the output
S.t/ of the automatic algorithm and the binary signal SE.t/ provided by a human
expert after visual exploration of the data. Then the following integral measure can
be estimated:

E.S; SE/ D 1

T

TZ

0

ˇ̌
S.t/ � SE.t/

ˇ̌
dt : (7.20)

Additional characteristics quantifying the quality of recognition are the number
NE of patterns identified by an expert and the number ND identified by some
standard CWT approach. We shall use several measures quantifying the accuracy
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Fig. 7.16 (a) EEG recording containing only one type of pattern (sleep spindle) and (b) the
extracted time series formed by background activity SB.t/ and by the detected X patterns SX.t/
(sleep spindle)

of recognition of sleep spindle patterns �SS, the sensitivity ıSS, and the specificity
ˇSS (see (7.3)–(7.5)).

Serial identification of EEG patterns involves some aspects of optimization
theory [92, 137]. The method assumes that the EEG signal S.t/ (t 2 Œ0; T �) can be
divided into two parts T1 and T2, where T1 C T2 D T and � D T1=T . The first part
is used to adjust the parameter set P which affects the quality of pattern recognition.
This part must contain all types of patterns to be recognized in order to reveal their
most essential distinctions from the background EEG. A visual inspection of this
part by an expert provides a way to quantify the quality of pattern recognition.

In the adaptive wavelet-based method, we consider instantaneous amplitudes
associated with parameters aj ; !j that are denoted by wS .sj ; !0j ; t/. Then filtration
and transition to the binary signal S.t/ are performed using (7.17) and (7.18).
Further, we use optimization theory to define parameter values for the most effective
and accurate recognition of specific EEG patterns. For this purpose, we consider a
multi-parametric approach and introduce a series of sj ; !0j , j 2 Œ1; NB�, in order to
quantify parameters informing about the complex organization of EEG patterns. The
values sj ; !0j , j 2 Œ1; NB�, are estimated according to objective functions that max-
imize distinctions between two investigated patterns (sleep spindle or SWD) and the
background EEG activity. Further, the remaining parameters (�L; �H; NS; NH) are
optimized to reduce pattern recognition errors.

Let us consider an arbitrary pattern in EEG which we refer to as pattern X . This
may be a sleep spindle, SWD, or another kind of pattern detected by an expert in
the signal S.t/, t 2 Œ0; T1� (see Fig. 7.16). At this stage, let us also suppose that we
are dealing with a single type of specific oscillatory activity (X pattern) that should
be separated from the background EEG activity (indicated by B in Fig. 7.16).
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In order to distinguish between SX.t/ and SB.t/, which are associated with X
patterns and the background activity, respectively, these fragments of EEG can be
extracted and considered as new time series (see Fig. 7.16b). These new time series
are further divided into p parts of duration m (pm D 	 , where 	 is the length of the
shorter signal in Fig. 7.16b).

The instantaneous amplitudes of the signal SX.t/ are averaged across each part
to get a series of values vXk .sj ; !0j / with k 2 Œ1; p�. Using the same algorithm, a
series of averaged instantaneous amplitudes vB

k .sj ; !0j / is obtained corresponding
to the signal SB.t/. The functions vk.sj ; !0j / of both series are used to compute an
objective function Rd.sj ; !0j /:

Rd.sj ; !0j / D
˝
vXk .sj ; !0j /

˛
k

� ˝
vB
k .sj ; !0j /

˛
k

�.vXk .sj ; !0j //k C �.vB
k .sj ; !0j //k

; (7.21)

where angle brackets denote mean values and � is the standard deviation.
Another way to compute the objective function does not require decomposition

and fragmentation of the EEG. An alternative computation of instantaneous ampli-
tudes for signals SB.t/ and SX.t/, the function RI is introduced as follows:

RI.sj ; !0j / D 1

	

	Z

0

rI.sj ; !0j ; t/db ; (7.22)

rI.sj ; !0j ; t/ D

8
ˆ̂̂
<

ˆ̂
:̂

wS
X
.sj ; !0j ; t/ � wS

B
.sj ; !j ; t/

wSX .sj ; !0j ; t/
; wS

X
.sj ; !0j ; t/ 	 wS

B
.sj ; !0j ; t/ ;

wS
X
.sj ; !j ; t/ � wS

B
.sj ; !j ; t/

wSB
.sj ; !0j ; t/

; wS
X
.sj ; !0j ; t/ < wS

B
.sj ; !0j ; t/ :

Optimal parameters sj and !0j of the Morlet mother wavelet are selected according
to the values of objective functions given by (7.21) and (7.22). Optimal values ofRd

vary between 1.0 and C1, but for the function (7.22), we should consider appropri-
ate values between 0.3 and 1.0 that can be achieved by stochastic optimization based
on Monte Carlo methods or by a simpler method [92,137] assuming a maximization
procedure for Rd or RI. Selection of the remaining parameters (NS, NH, �L, �H)
can also be performed to improve the quality of pattern recognition.

At the first stage, fixed values njS and njH of the parameters NS and NH are
considered, and the parameters �L, �H are optimized according to the minimum
of E.SX; SXE / or using a general objective function

R�.�L; �H; n
j
S ; n

j
H/ D 1

2

h
1 �E 
SX; SXE

�C P


SX; SXE

� i
: (7.23)

At the fixed values njS and njH, optimal thresholds �jL , �jH are defined according to
the maximum of (7.23). Then the next pair of parameters NS, NH is selected, viz.,
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n
jC1
S and njC1

H , and so on. Parameters can be changed step-by-step or stochastically.
Optimal settings are determined by

9 k W P 
SX
t; �kL ; �kH; nkS; nkH
�
; SXE

� D max ; t 2 Œ0; T1� : (7.24)

The proposed serial adaptive method assumes a sequential detection of all specific
oscillatory patterns that should be recognized in the structure of EEG. The automatic
recognition procedure can be performed starting from patterns with the highest
energies. In this method, visual inspection of the first part of the EEG signal (T1)
has been done by an expert, and the signals S

Xj
E are obtained for each type of

specific oscillatory activity. Further, all types of patterns are reordered according
to decreasing spectral power.

For the validation of the proposed serial method (the adaptation stage), recog-
nition starts from a pattern X0 characterized by the highest energy. The considered
technique is applied to optimize the parameters .sk; !0k/, k 2 Œ1; NB�

ˇ̌
X0

and then
the parameters (�L,�H,NS,NH). This procedure is repeated for all remaining types
of patterns.

For the full processing mode (the working stage), the serial method assumes that
the adapted CWT algorithm is applied to the whole of the EEG data and aims to
reveal the patternsXj at the same order j as during the previous stage. In this work,
we basically concentrate on two types of oscillatory patterns (sleep spindles and
SWD).

7.7.2 Experimental Validation of the Serial Method

In order to the compare accuracy of the standard wavelet-based method and
the proposed serial technique, we considered EEG signals containing both sleep
spindles and SWDs. At the first stage, the standard wavelet-based method was
applied with empirically selected parameters. The range of scales in (7.16) was
chosen as ˙10% of the scale associated with the spectral maximum, !0 D 2� .
Table 7.6 summarizes the results.

Application of the proposed serial adaptive method with the objective function
Rd improves recognition abilities of wavelets (see Table 7.7). The accuracy � is
increased from 71.4 to 87.6 % for SS patterns and from 94.1 to 98.3 % for SWD
patterns. Other measures such as the error E, the sensitivity ı, and the specificity ˇ,
confirm the higher efficiency of the adaptive technique. Similar results are achieved
for the objective function RI (see Table 7.8).

Figure 7.17 shows average characteristics obtained with the proposed serial
adaptive technique for sleep spindle patterns and which confirm the improvement
of recognition abilities using this approach. The results presented demonstrate that
a more effective recognition of EEG patterns can be achieved with the adaptive
method as compared to the method used previously with the standard CWT-based
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Table 7.6 Results of SWD and sleep spindle recognition by the standard CWT-based approach
applied to EEGs recorded in 6 rats

E [%] Accuracy � [%] Sensitivity ı [%] Specificity ˇ [%]

Rat # SS SWD SS SWD SS SWD SS SWD

1 18.8 1.6 71.6 100.0 78.0 100.0 100.0 95.0
2 9.3 0.8 92.9 100.0 95.5 100.0 66.7 97.3
3 9.8 1.6 76.0 97.3 83.3 97.3 100.0 97.1
4 4.8 2.3 57.4 67.9 64.2 95.0 96.4 72.5
5 19.9 9.2 58.3 100.0 61.1 100.0 87.1 47.9
6 12.4 1.3 72.0 100.0 78.3 100.0 87.5 95.6
Mean 12.5 2.8 71.4 94.2 76.7 98.7 89.6 84.2
˙ SD ˙5:9 ˙3:2 ˙13:1 ˙12:9 ˙12:7 ˙2:1 ˙12:6 ˙20:2

Table 7.7 Results of SWD and sleep spindle recognition by the adaptive CWT-based approach
with Rd function for NB D 100

E [%] Accuracy � [%] Sensitivity ı [%] Specificity ˇ [%]

Rat # ˛.T1/ SS SWD SS SWD SS SWD SS SWD

1 13.4 8.0 0.3 80.4 100.0 83.4 100.0 100.0 100.0
2 9.0 7.0 0.4 87.5 100.0 90.2 100.0 100.0 98.3
3 6.0 7.5 1.3 88.5 100.0 92.7 100.0 94.6 99.8
4 10.8 3.2 0.6 91.7 92.3 96.5 92.9 92.9 98.4
5 18.2 8.3 0.5 91.4 96.8 93.7 96.8 93.6 98.0
6 10.0 10.3 1.1 85.9 100.0 87.9 100.0 93.8 98.4
Mean 11.2 7.4 0.7 87.6 98.1 90.7 98.3 95.8 98.8
˙ SD ˙4:1 ˙2:3 ˙0:4 ˙4:2 ˙3:2 ˙4:6 ˙2:9 ˙3:3 ˙0:9

Table 7.8 Results of SWD and sleep spindle recognition by the adaptive CWT-based approach
with RI function for NB D 100

E [%] Accuracy � [%] Sensitivity ı [%] Specificity ˇ [%]

Rat # �.T1/ SS SWD SS SWD SS SWD SS SWD

1 13.4 9.0 0.3 85.1 100.0 90.1 100.0 100.0 100.0
2 9.0 8.4 0.3 86.8 100.0 91.5 100.0 100.0 99.0
3 6.0 9.5 2.1 92.3 78.4 95.5 90.6 81.1 99.8
4 10.8 4.9 1.2 80.0 85.7 85.1 100.0 96.4 95.6
5 18.2 8.0 0.5 87.3 96.8 91.0 96.8 93.5 98.0
6 10.0 10.4 0.8 83.3 87.5 85.7 100.0 87.5 99.6
Mean 11.2 8.4 0.9 85.8 91.4 89.8 97.9 93.1 98.7
˙ SD ˙4:2 ˙1:9 ˙0:7 ˙4:1 ˙8:9 ˙3:9 ˙3:8 ˙7:5 ˙1:7

approach. The objective function Rd provided more effective identifications of
the examined patterns in EEG. In this case, the error E is equal to 7.38 % for
sleep spindles and 0.69 % for SWD patterns, respectively. This confirms that the
difference between the signals S.t/ and SE.t/ is reduced. Numerical values of
E.S; SE/ are controlled by appropriate selections of the thresholds �L and �H.
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Fig. 7.17 Mean values of all estimated characteristics used for the automatic identification of sleep
spindles in EEG. The values 1, 2, and 3 correspond to the standard wavelet approach and to the
proposed adaptive technique with objective functions Rd and RI, respectively

The quality of pattern recognition obviously depends on the duration of the initial
time interval T1 used by an expert to provide a visual identification of specific
oscillatory structures. This interval should be long enough to adjust the algorithm
parameters, which are subsequently used for detection of patterns in the whole
EEG recordings and for further identification of similar oscillatory phenomena in
the other time series. The time interval T1 should contain enough pattern statistics
to assess the most informative features. The minimal length of T1 used in this
study was about 10 % of the whole EEG recordings, which corresponds to about
400 sleep spindle patterns. A further increase in T1 improves the recognition. Thus,
a consideration of about 20 % of the entire EEG durations increases the accuracy
� by 1–2 %. However, this requires twice the duration of data preprocessing by an
expert.

7.8 Artifact Suppression in Multichannel EEG Using
Wavelet-Enhanced Independent Component Analysis

EEG scalp recordings are widely used in medical practice. Such recordings always
have artifacts from eye movements, blinking, muscle activity, etc. The artifact
magnitude may be much higher than the underlying neural signals. Thus artifact
rejection or suppression is one of the most important preprocessing steps in EEG
analysis.

Currently, a widely used way to get rid of artifacts is manual or semi-automatic
selection of artifact free data segments or epochs. Although convenient in many
cases, this procedure is subjective, requires a high level of skill on the part of the
operator, and leads to a significant decrease in the amount of data available for
subsequent study. As an example, from a 10 min long EEG of a healthy subject,
one usually obtains about a minute of joined artifact-free data. In medical practice,
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the massive presence of artifacts in, e.g., EEGs of children [124] or patients with
certain injuries [125] makes data reduction even more drastic. Hence, employing a
non-cutting, i.e., filter-like procedure for data cleaning becomes indispensable.

In this section we discuss state-of-the-art non-cutting procedures for artifact sup-
pression in multichannel EEG. We introduce a method that uses a wavelet denoising
technique to enhance the performance of independent component analysis (ICA).
The method, known as wICA and implemented with the wICA Matlab package3

[18], has already proven useful in many applications, such as the study of memory
impairment [17], the dynamics of cortical networks [108], obsessive–compulsive
disorder [89], brain response to musical stimuli [19], etc.

7.8.1 Independent Component Analysis in EEG Studies

An EEG recording from a single scalp electrode can be considered as a mixture of
signals from different brain regions and artifacts. In the first approximation, signals
of neural origin can be considered independent of artifacts (for details see, e.g.,
[51, 55, 56]). With this in mind, a non-cutting method of artifact suppression based
on independent component analysis was recently proposed [6]. Later, several mod-
ifications of the original algorithm were introduced [3, 28, 44, 45, 49, 50, 52, 54, 82].

ICA tries to separate the recorded EEG signals into statistically independent
sources (or components), and then rejects those responsible for artifacts. The
majority of EEG applications of ICA focus on the removal of ocular artifacts, where
it has been shown to be very useful [28, 54–56, 123, 132, 133]. Currently, ICA is
perceived as a potentially robust and powerful method for artifact removal in EEG
data and is receiving increasing attention [48, 55, 56, 123–125, 133]. However, there
are still several issues that need to be addressed:

• The identification of components responsible for artifacts requires experience
on the part of the operator and a priori knowledge about the artifact structure.
Besides, an optimal algorithm application is achieved with relatively short
(around 10 s) data segments [55]. This counterintuitive result, viz., “more data are
not always better”, has been discussed, e.g., in [13], and it assumes a laborious
sequential analysis of EEG divided into many short epochs. As a step towards
automatic artifact removal, James and Gibson [50] suggested using independent
components constrained to be similar to some reference signal incorporating a
priori information about the temporal structure of the artifact. Another approach
for detection of the components responsible for ocular artifacts uses correlations
between electro-oculograms and independent components [28].

• While ICA is now considered an important technique for removing artifacts
in EEG signals, there are still few quantitative results showing its advantages
and limitations. Existing studies have focused almost exclusively on the spectral

3Available at www.mat.ucm.es/%7Evmakarov/downloads.php

www.mat.ucm.es/%7Evmakarov/downloads.php
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improvements provided by the ICA decomposition when suppressing typical
artifacts. Although it has been proven that ICA-corrected EEGs exhibit a strong
reduction in the spectral bands corresponding to artifacts [123, 124], an alert has
recently appeared according to which artifact suppression may also corrupt the
power spectrum of the underlying neural activity [61, 135]. Thus the question as
to how ICA correction distorts the spectrum of the underlying cerebral activity
needs to be studied quantitatively.

• One of the most challenging applications of EEGs is the study of cortical circuitry
and its reorganization as the brain state changes (see, e.g., [107, 127, 134]). The
current literature lacks evaluation of ICA artifact suppression for analysis of
synchrony between different electrodes. Non-local characteristics like spectral
and partial spectral coherences depend on the phase relation between signals
recorded at different electrodes. Thus coherence distortions due to artifacts
and their rejection are not generally reducible to power (amplitude) spectrum
distortions. Hence, for reliable circuitry analysis, the coherence distortion should
also be quantified.

Finally, we would like to draw the reader’s attention to intracerebral EEG record-
ings, also called local field potentials (LFPs). Such recordings are usually made
using electrode arrays (collecting up to hundreds of recording tips) that can span
single or several neuronal nuclei and provide subcellular spatial resolution and a
sampling rate up to 50 kHz. The amount of information generated by such setups
is considerable and allows one to study information processing at the mesoscopic
level (the level of several interconnected neural nuclei). Recently, we adapted ICA to
such studies and were able to reveal functional circuitry and structural organization
of cortico-hippocampal pathways [7, 26, 27, 75, 76].

7.8.2 ICA-Based Artifact Suppression

ICA is based on the three following assumptions:

• Experimental data are a spatially stable mixture of the activities of temporarily
independent cerebral and artificial sources.

• The superposition of potentials arising from different parts of the brain, scalp,
and body is linear at the electrodes, and propagation delays from the sources to
the electrodes are negligible.

• The number of sources is no greater than the number of electrodes.

ICA starts with the assumption that L simultaneously recorded EEG signals

X.t/ D 

x1.t/; : : : ; xL.t/

�T
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are linear mixtures of N (N � L) a priori unknown independent components
(sources) Z.t/ D 


z1.t/; : : : ; zN .t/
�T

, including artifactual components and those
of neural origin:

X.t/ D MZ.t/ ; (7.25)

where M 2 MK�N .R/ is the unknown mixing matrix defining weights with which
each source is present in the EEG signals recorded on the scalp. Topographic scalp
maps of the components (i.e., 3D plots of columns of the matrix M , see examples
in Sect. 7.8.4) provide additional information on the localization of the sources. The
aim of ICA is to estimate bothZ.t/ andM fromX.t/. Technically, two components
zj .t/ and zk.t/ are uncorrelated if the expectation of their product can be factorized:
EŒzj zk� D EŒzj �EŒzk�. However, this property is necessary but not sufficient for
independence. Two components zj .t/ and zk.t/ are independent if and only if their
joint probability density can be factorized:

p.zk; zj / D p.zk/p.zj / : (7.26)

Although (7.26) defines independence, it is computationally unpractical. Therefore
other criteria are used, derived from (7.26) (for a review see, [45]).

For ICA, we used the infomax algorithm proposed by Bell and Sejnowski [6]
and further modified by Amari et al. [1] and Lee et al. [73]. The algorithm
is implemented in the EEGLAB MatLab toolbox [22].4 It uses neural networks
maximizing the joint entropy and minimizing the mutual information among the
output components of a neural processor. For cross-checking, we also employed
another ICA implementation, FastICA [46].5

Once the algorithm has been applied, we analyze the temporal structure and
topography of the components Z.t/ (e.g., the ocular artifacts mainly project to
frontal sites) and identify among them those components that account for artifacts:

Z.t/ D 

z1.t/; z2.t/; : : : ; zart.t/; : : : ; zN .t/

�T
: (7.27)

Then we set the identified artifactual components to zero, zart.t/ D 0, obtaining a
new component matrix OZ.t/ where the artificial sources have been rejected:

OZ.t/ D 

z1.t/; z2.t/; : : : ; 0; : : : ; zN .t/

�T
: (7.28)

Finally, we reconstruct ICA-corrected EEG signals:

OX.t/ D M OZ.t/ : (7.29)

4Available at sccn.ucsd.edu/eeglab
5Available at www.cis.hut.fi/projects/ica/fastica

sccn.ucsd.edu/eeglab
www.cis.hut.fi/projects/ica/fastica
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Obtained in this way, the new data set OX.t/ represents the ICA estimate of the
original artifact-free data.

7.8.3 Wavelet-Enhanced ICA (wICA) for Artifact Suppression

The wavelet transform has been used for analysis of EEGs from the very beginning
in different contexts. Throughout this book, we have provided many different
applications. Let us now show how wavelets can enhance ICA and greatly improve
the performance of artifact suppression.

The WT allows decomposition on multiple scales with further analysis of the
wavelet coefficients. For instance, one can suppress (set to zero) some of the
coefficients resembling “undesirable” properties in the signal under study. Then
inverse WT allows one to restore the original signal, but without these “undesirable”
properties. This procedure can be used, e.g., for noise cancelation or denoising. The
method known as wICA relies on ICA and makes use of wavelet thresholding, not
for denoising the observed raw EEG, but as an intermediate step toward the demixed
independent components. This thresholding conserves the time–frequency structure
of artifacts and recovers the cerebral activity “leaked” into the components.

When dealing with real EEGs, ICA estimates independent components cap-
turing artificial sources. However, besides strong artifacts, these components can
frequently contain a considerable amount of cerebral activity. This may occur, e.g.,
due to the limitation on the maximal number of independent sources, restriction
on temporal independence, or suboptimal algorithm application [13, 55]. Rejection
of such components involves the loss of a part of the cerebral activity and,
consequently, distortion of the artifact-free EEG [29].

Figure 7.18a gives an example of an independent component z1.t/ found by
ICA and identified as corresponding to blinking artifacts. According to the ICA
assumptions, this component cannot include other artifacts independent of the
ocular ones. The component can be split into a high amplitude artifact A.t/
(Fig. 7.18b) and a low amplitude residual neural signal n.t/ (Fig. 7.18c):

z1.t/ D A.t/C n.t/ : (7.30)

Note that the ocular artifact vanishes outside of the blinking episodes (Fig. 7.18b).
However, the component contains a significant amount of the persisting neural
signal (Fig. 7.18a–c).

In the conventional ICA algorithm, the whole component is set to zero, i.e.,
z1.t/ D 0, before the signal recomposition of (7.28) and (7.29). This way, in the
ICA-corrected EEG, we lose a part of the cerebral activity:

Oxj .t/ D rj .t/ �mj1n.t/ ; (7.31)
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where rj .t/ D xj .t/ � mj1A.t/ is the artifact-free signal and mj1 is the
corresponding weight from the mixing matrix M .

Estimating the persisting neural signal n.t/, we can further subtract it from
the component and thus correct the ICA reconstruction of the artifact-free EEG
recording. A priori, as happens in ICA, the decomposition (7.30) of the independent
component into artifactual and neural activity is unknown. However, using proper-
ties of the signals A.t/ and n.t/, we can estimate them. Indeed, the artifact A.t/
has high magnitude (power) and is localized in the time and/or frequency domains,
while n.t/ is of low amplitude and has a broad band spectrum (Fig. 7.18b, c). These
properties fit well with the wavelet decomposition technique, which provides an
optimal resolution in both the time and the frequency domains, without requiring
signal stationarity.

The continuous wavelet transform of the sum (7.30) can be written as

W z.s; t0/ D W A.s; t0/CW n.s; t0/ ; (7.32)

where W A.s; t0/ and W n.s; t0/ are the wavelet coefficients obtained by the CWT
of the artificial and neural parts of the component, respectively. As mentioned
above, the coefficients corresponding to artifacts will be of high amplitude and well



292 7 Automatic Diagnostics and Processing of EEG

c

2 4 6 8

b

a

0.12

0.24

0.12

0.24

0.12

0.24

Fig. 7.19 Wavelet representation of the independent component z1.t/ (a) and its parts: artifactual
A.t/ (b) and neural n.t/ (c). Gray intensity codifies the absolute value of the wavelet coefficients.
The data corresponds to the voltage traces shown in Fig. 7.18

localized in time and scale, while the neural coefficients will be distributed across
all scales, and will have a broad spectrum of low energy. To illustrate this, we apply
the CWT to the three signals shown in Fig. 7.18.

Figure 7.19 shows the independent component and its parts in the wavelet space.
Indeed, the artifactual component A.t/ has high amplitude wavelet coefficients
(Fig. 7.19b) localized in time windows of the blinking episodes (see also Fig. 7.18),
and on long enough scales. The neural part n.t/ is small and spreads homogeneously
over the whole spectrum of scales and localizations. Accordingly, the decomposition
procedure (7.30) can generally be described as a thresholding: all wavelet coeffi-
cients above a certain threshold are set to zero, and then the resulting structure is
used for the inverse wavelet transformation. Note that the thresholding can also
be performed with the DWT, where in addition to (7.32) we get separation of
the wavelet coefficients into “artificial” and “neural”, i.e., if W A.j; k/ D 0 then
W n.j; k/ D 0 and vice versa. The described procedure is very similar to the
denoising technique proposed by Donoho et al. [24], but here we aim at the opposite
goal, i.e., to separate the useful low amplitude and broad band signal from the strong
artifacts.

Finally the wavelet enhanced ICA (wICA) algorithm for artifact suppression in
EEG is as follows:

• Apply a conventional ICA decomposition to the raw EEG, thus obtaining the
mixing matrix M and N independent components



z1.t/; z2.t/; : : : ; zN .t/

�T
.
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• Wavelet transform components, obtaining their representations fW.j; k/gsi .
• Threshold the wavelet coefficients, i.e., set W.j; k/ D 0 for those that are higher

than the threshold, i.e., jW.j; k/j > K.
• Inverse wavelet transform the thresholded coefficients W.j; k/, thus recompos-

ing components fni .t/g consisting of sources of neural origin only.
• Compose the wICA-corrected EEG: X�.t/ D M



n1.t/; n2.t/; : : : ; nN .t/

�T
.

Selection of the threshold valueK is an essential element of the algorithm. Here we
use the simplest fixed form of threshold:

K D p
2 logNt� ; (7.33)

where Nt is the length of the data segment to be processed, and

�2 D 1

0:6745
median


jW.s; t0/j2
�

(7.34)

is the estimator of the magnitude of the neural broad band signal part. As we shall
see, this threshold yields a good performance with ocular and heart beat artifacts.
Other thresholding strategies (for a review, see [20]) can also be applied, possibly
providing better tuning of the algorithm to the particular peculiarities of other
artifacts or EEGs.

Note that our algorithm may be completely automatic, since no laborious
visual inspection of the independent components followed by selection of those
responsible for artifacts is required. The components having no high magnitude
artifacts just pass through the wavelet thresholding (steps 2–4) intact, i.e., nk.t/ D
sk.t/. This allows for an automatic algorithm application, and consequently its most
crucial step 1, to relatively short (say around 10 s) contiguous epochs, as suggested
by Jung et al. [55].

7.8.4 Data Collection and Numerical Tools for Testing
Connectivity

We assess the performance of artifact suppression by the ICA and wICA methods
when applying them to EEGs with two final goals:

• To test the quality of brain signal recovery in the presence of artifacts.
• To quantify the distortions of the EEG power spectrum and spectral coherences

introduced by ICA and wICA.

For the first test, we employ semi-simulated recordings, where a priori information
on the cerebral signals allows estimation of the recovering quality in the time
domain. For the second goal, we use real EEGs. As a reference, in the latter
case, we use non-overlapping artifact-free epochs. Such epochs were manually
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delimited off-line in the original EEG recordings by a careful inspection of the
channel traces [56]. Below, we shall refer to these as control epochs. Once suitable
data (ICA/wICA-corrected EEGs and control epochs) have been obtained, posterior
spectral and connectivity analyses are applied. Then we compare the derived
characteristics (power spectra, coherences) obtained over the same epochs in ICA-
and wICA-corrected EEGs with those found for the control.

7.8.4.1 EEG Recordings

For illustration, we considered EEG data acquired following standard guidelines
[105] from healthy subjects with their eyes open. The ECI Electro-Cap System with
19 scalp electrodes placed according to the International 10–20 System was used
for this purpose. The signals were digitized at a rate of 256 Hz and further filtered
(notch filter at 50 Hz, and band pass filter 4–45 Hz).

7.8.4.2 Semi-simulated Data

We manually cut out non-overlapping artifact-free epochs from a real EEG, thereby
collecting 15 s clean signals. Then we simulate eye blinking and heart beat artifacts
and mix them with the clean EEG, accounting for the artifact morphology, spatial
distribution, and scalp topographies using a mixing matrix from a real recording
[37]. To reproduce the shape of eye blinking episodes, we use a band pass filtered
(1–3 Hz) Poisson random process of 0.3 s per episode. The heart beat is simulated
by a pulse train at 1 Hz.

7.8.4.3 Spectrum Estimation

A multi-taper Fourier transform is used for continuous data sets. The algorithm
reduces the variance of the spectral estimate by using a set of tapers rather than
a unique data taper or spectral window. It is especially effective for short data
segments [95, 122]. A MatLab toolbox is freely available [53].6

7.8.4.4 Functional Connectivity

To infer on the topological structure of the interaction between different brain
regions, a common approach uses spectral coherence (SC) and partial spectral
coherence (PSC). To evaluate the SC and PSC we used a customary written Matlab
code (based on spectral calculations implemented in the Signal Processing Toolbox).

6Available at chronux.org/chronux

chronux.org/chronux
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The SC is a normalized measure of the cross-spectrum Pxy.!/ D Px.!/Py.!/

of two EEG signals x.t/ and y.t/ recorded at different sites:

SCxy.!/ D Pxy.!/p
Pxx.!/Pyy.!/

: (7.35)

If the SC equals zero for all frequencies !, the two processes are linearly
independent, i.e., no interaction between the two measured EEG signals exists.
jSCj D 1 indicates a perfect linear relationship between the two processes, i.e.,
the dynamics of one signal is completely explained by the other. A significant level
of the SC between these extremes, i.e., 0 � jSCj � 1, in a certain frequency band
implies an association (in terms of synchronization) between the signals, and it is a
sign of functional connectivity between the corresponding cortical areas.

The PSC of two EEG signals x.t/ and y.t/ is given by

PSCxyjC.!/ D � gxy.!/p
gxx.!/gyy.!/

; (7.36)

where g.!/ D P�1.!/ is the inverse matrix of the cross-spectra and C denotes
all the other signals. The PSC is also a bounded function, 0 � jPSCj � 1. To
decide whether two sites are (functionally) coupled directly or not, we apply the
same criterion as for the SC.

To conclude positively on the connectivity (synchrony) between two EEG chan-
nels, the coherence (either SC or PSC) should be higher than the significance level
obtained under assumption of the null hypothesis that time series are statistically
independent. In other words, we have to estimate the level of random leakage
between the channels. To evaluate the significance level, we use a surrogate data test
[110,121]. The surrogate time series are obtained from the original by randomizing
phase relations, keeping the other first order characteristics intact [68].

7.8.5 Suppression of Artifacts by ICA and wICA Methods

Let us first exemplify artifact suppression for the rejection of eye blinking and heart
beat artifacts. The eye blinking artifact appears in EEG in the form of large pulses
that are well localized in time, and it has the strongest impact on EEG signals. The
heart beat artifact appears when an electrode is placed near an artery, and it shows
up as a train of short-lasting, relatively low amplitude pulses at a frequency of about
70 beats per minute.

Figure 7.20a shows an example of an EEG taken from a healthy adult subject,
instructed to remain in a steady state with the eyes open. The data segment shown
has both artifact types we are interested in. Two eye blinking episodes (localized
around 3 and 7 s) spread over all channels and affect the frontal sites (from FP1
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Fig. 7.20 Example of an ICA decomposition of an EEG contaminated by ocular and heart
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ocular artifacts, while the fourth captures the heart beat artifacts. (c) Scalp maps showing relative
projection strengths of the components over all electrodes. Artifactual components #1 and #4
project most strongly to the frontal and left tempo-occipital areas, respectively
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to F8) most strongly. Control segments (for FP1) are taken between consecutive
artifact episodes, e.g., at 3.5–6.5 s. The heart beat artifact mainly contaminates the
left tempo-occipital electrodes (T3, T5, O1).

The ICA algorithm separates the contributions of the artifactual and neural
signals into 19 independent components. The first independent component exhibits
strong pulses (Fig. 7.20b) and projects mainly to frontal sites (Fig. 7.20c). This is
the “fingerprint” of blinking artifacts whose morphology is characterized by strong
short-lasting pulses, and scalp topography shows clear evidence in the frontal sites
[55]. Using this a priori knowledge, we identify the first component as being due to
the eye blinking artifacts. Similarly, the fourth independent component (Fig. 7.20b)
captures the rhythmic pulses from the heart beat artifact. It projects mainly to the
left tempo-occipital area (Fig. 7.20c).

Now according to the ICA artifact suppression method, we set the first and the
fourth components to zero and reconstruct the EEG recording using (7.29), thus
obtaining the ICA-corrected EEG (Fig. 7.21a). Note that, in this way, in accordance
with the ICA assumptions, we aim to suppress heart beat and ocular artifacts alone.
We also clean the same EEG using the wICA algorithm. Here we skip the manual
analysis of the components, but instead apply the automatic wavelet thresholding
(steps 2–4) followed by the signal recomposition (step 5). Figure 7.21b shows the
EEG corrected by wICA.

Visual inspection of the cleaned EEGs confirms that both methods effectively
suppress both artifact types. However, analyzing signals first at the frontal elec-
trodes within artifact-free epochs (outside of blinking episodes), we observe some
distortions introduced by the ICA method. The EEG signal cleaned by wICA gives
a good match with the artifact-free control signal (Fig. 7.21c). Quantifying the mean
squared error in the time domain, viz.,

MSE D E
h

xICA=wICA.t/ � xcontrol.t/

�2i
; (7.37)

we get, at FP1, 10.6 and 0:1 μV2 for ICA and wICA, respectively.
To characterize the quality of the heart beat correction by the two methods, we

reconstructed the heart beat artifact at the T5 electrode:

Aheart beat.t/ D xraw.t/ � OxICA=wICA.t/ : (7.38)

Figure 7.21d shows the artifact estimates provided by the two methods. The artifact
reconstructions by ICA and wICA retain about 4.1 and 0.5 μV2 of the cerebral
activity, respectively. We recall that this activity is lost in the corrected EEG. To
discard the possibility of a fault due to a particular realization of the ICA algorithm
or oddness of the data set, we repeated the same procedure using two different ICA
algorithms (Informax and FastICA) and with different EEG recordings (including
recordings where only ocular artifacts were present). Consistently with other
studies [13, 80], both ICA algorithms gave similar results when applied to different
recordings. Thus we conclude that ICA and wICA methods effectively suppress
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ocular and heart beat artifacts, but outside of the artifact episodes, wICA conserves
the cerebral activity much better.

7.8.6 Recovering Brain Signals in the Presence of Artifacts

Above we saw that ICA may alter brain signals, while wICA better preserves the
brain activity. Let us now quantify in the time domain the distortions introduced
by these methods when recovering brain signals in the presence of artifacts. We
generate semi-simulated EEG data by mixing joined preselected artifact-free epochs
from a real EEG of a healthy subject at rest, and two types of simulated artifacts:
ocular and heart beat. The mixture conforms to the artifact morphologies and spatial
distributions. Figure 7.22a shows an example of such a recording. The ocular
artifacts propagate through frontal sites, and the heart beat is mostly present in the
F8 channel.

Following the procedure discussed above, we calculate 19 independent
components (Fig. 7.22b), and identify the components numbered 1 and 3 as
artificial, due to eye blinking and heart beat, respectively. Note that, as mentioned
above, outside of the artifact episodes, the components comprise a considerable
amount of cerebral activity that also persists in them during the artifact episodes.
This persistent activity degrades the quality of cleaning by ICA, whereas
wICA allows one to recover this activity, thereby enhancing the signal cleaning
performance. Figure 7.22c illustrates zoomed cerebral activity, simulated artifacts,
and ICA/wICA recovered signals. As in Fig. 7.21c, we observe more prominent
signal distortion introduced by the ICA method as compared with wICA. This holds
for suppression of both ocular and heart beat artifacts.

To quantify the quality of cerebral signal recovery, we calculate the mean
squared residual error between the reference (artifact free) EEG in channels FP1
and F8 and those obtained after ICA/wICA processing. Table 7.9 summarizes the
results. The presence of ocular and heart beat artifacts in the semi-simulated EEG
(not corrected)is characterized by 92.4 and 11.2 μV2 in the “recorded” signals
relative to the control for the FP1 and F8 electrodes, respectively. EEG cleaning by
ICA significantly reduces the presence of artifacts in the FP1 channel (by a factor
of about nine) and moderately in the F8 channel (by a factor of about one and a
half). This corresponds to a reduction of the ocular and heart beat artifacts by 19.4
and 3.5 dB, respectively. wICA further improves the quality of artifact suppression
and enhances the performance of ICA by a factor of 6 when separating the cerebral
activity from ocular artifacts and by a factor of more than three in the case of heart
beat artifacts. Thus for wICA, we have 35.2 and 13.7 dB reductions of the ocular
and heart beat artifacts, respectively.
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Fig. 7.22 Recovering the brain signal under artifacts on a semi-simulated EEG. (a) EEG segment
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FP1) and heart beat (right, F8) artifact episodes. Time courses of simulated artifacts are shown by
dashed gray curves. For both artifact types, ICA-corrected signals deviate considerably more from
the reference signals than the wICA-cleaned traces
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Table 7.9 Mean squared error for ICA- and wICA-corrected EEGs in the time domain. The first
row (not corrected) quantifies the composite strength of ocular and heart beat artifacts present
in channels FP1 and F8. The columns show the error in the corresponding channel after artifact
suppression by ICA and wICA

FP1 channel [μV2] F8 channel [μV2]

Not corrected 92:4 11:2

ICA 9:9 7:5

wICA 1:6 2:3

7.8.7 Power Spectrum Distortion

We now consider real EEG recording distortions in the power spectrum of the
cerebral activity introduced by artifact suppression. The signal distortions quantified
above (see Table 7.9) will generally have an effect on the power spectrum of the
cerebral signal:

Pxx.!/ D Prr.!/C�P.!/ ; (7.39)

where Prr is the reference power spectrum of the artifact free signal, Pxx is the
spectrum of the signal processed either by ICA or wICA, and P is the spectrum
distortion introduced by the methods as a side-effect, which ideally should be equal
to zero.

Assuming that the artifacts are expressed in the first independent component (as
shown in Fig. 7.20), the power spectrum distortion of the signal introduced by ICA
at the j th electrode is given by

�Pj .!/ D �m2
j1Pnn.!/ ; (7.40)

where mj1 is the corresponding weight from the mixing matrix M , and Pnn is the
spectrum of the cerebral activity persisting in the independent component (7.30).
According to (7.40), the power spectra at all electrodes of the ICA-corrected
EEG are underestimated with the same spectral function Pnn, but with different
factors m2

j1. Since m2
j1 decays with j for ocular artifacts (Fig. 7.20c), the spectral

distortions are higher at the frontal sites. The wICA algorithm drastically reduces
the residual cerebral activity in the artifactual component, and hence significantly
decreases Pnn, thereby providing a potentially better approximation to the power
spectrum of artifact-free EEGs.

To quantify the degree of spectral distortions introduced by the artifact suppres-
sion methods across different frequency bands, we calculate the mean power density,
averaging over ten epochs, and convert it to decibels, for the control (reference)
segments before and after ICA and wICA artifact suppression. We repeat the same
procedure, changing the length of the data segments used for ICA decomposition,
but keeping the same time boundaries for the control epochs. Table 7.10 summarizes
the results. The spectrum distortion by ICA (difference between the power densities
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Table 7.10 Mean power density in the FP1 channel, evaluated for the control and after artifact
suppression by ICA and wICA using the same data epochs

Segment length
Power density Artifact rejection Power density [dB]

Frequency band [dB] control method 4 s 8 s 10 s 15 s 25 s

Theta (4–8 Hz) 21:0 ICA 18:8 16:7 16:6 15:9 15:5

wICA 20:5 20:4 20:3 19:8 18:9

Alpha (8–13 Hz) 17:9 ICA 16:4 14:2 14:1 13:4 13:2

wICA 17:8 17:7 17:7 17:6 17:5

Beta (13–30 Hz) 16:1 ICA 13:2 11:7 11:8 10:5 10:3

wICA 16:1 16:0 16:0 16:0 15:9

Gamma (>30 Hz) 8:6 ICA 5:2 3:6 3:8 2:4 2:1

wICA 8:6 8:7 8:7 8:7 8:6

evaluated over ICA-corrected and artifact-free signals) increases with the length of
the data segment used to estimate the mixing matrix and independent components.
Regarding frequencies, the Theta and Alpha bands are less affected, while Beta and
Gamma suffer more. wICA preserves the signal better within the artifact-free time
windows, and achieves a considerably lower error in the spectrum estimates. Slight
distortions are observed in the Theta band, while in the other bands spectral densities
are very close to the control values.

We also observe a small decrease in the performance with the increase in segment
length used for evaluation of the independent components. To keep this under
control, we suggest using segments lasting no more than 15 s. Fixing the length at
10 s (the recommended value for ICA decomposition), we find the absolute values
of the spectral distortion, viz.,

ˇ̌
�P

ˇ̌ D ˇ̌
PICA=wICA � Pcntr

ˇ̌
; (7.41)

to be 4.4, 3.8, 4.3 and 4.8 dB for ICA, and 0.7, 0.2, 0.1, and 0.1 dB for wICA,
over the Theta, Alpha, Beta and Gamma bands, respectively. Note that, as predicted
in (7.40), the spectrum of the ICA-corrected EEG is always lower than the control
spectrum.

7.8.8 Artifact Suppression and Non-local Characteristics
Derived from EEG

We now investigate the way artifact suppression affects inferences drawn about
the interaction (circuitry) between different sites. In the simplest case, synchrony
between different electrodes can be picked up by evaluation of spectral and partial
spectral coherences (SC and PSC).
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Fig. 7.23 Spectral coherence for a pair of electrodes FP1 and F7 evaluated for the control, and
after ICA and wICA artifact suppression. Gray curves depict levels of statistical significance. The
ICA-corrected EEG shows an overestimated coherence

Figure 7.23 shows an example of the SC evaluated for the pair of electrodes
FP1 and F7 under control conditions (using artifact-free epochs), and after ICA and
wICA artifact suppression. In each graph, we also plot the level of statistical signifi-
cance obtained through the surrogate data test. Coherence in a given frequency band
above the surrogate level is considered significant and we conclude that there is a
functional association between these channels. The coherence calculated over the
ICA-corrected EEG is significantly higher than the control over all frequency bands
(Fig. 7.23a, b). This overestimation may lead to a spurious hyperconnectivity, i.e., to
a false positive conclusion regarding the interaction between the corresponding
cortical areas. Artifact suppression by the wICA algorithm involves fewer amplitude
and phase distortions of the cerebral part of the EEG and we obtain a coherence
estimate very close to the control conditions (Fig. 7.23a, c).

We now test how the results of artifact suppression affect the identification
of connectivity patterns between EEG signals. To conclude positively regarding
the presence of a connection between a pair of sites, we evaluate the elevation
of the PSC above the level of statistical significance provided by the surrogate
data test, just as it is shown for ordinary coherence in Fig. 7.23. If positive, this
value quantifies the degree of synchrony between the cortical sites, taking into
account the dynamics observed at the other electrodes. Figure 7.24 shows the
degree of synchrony calculated for the ICA- and wICA-corrected EEG relative to
the coherence level under control conditions. No line connecting two cortical sites
means perfect concordance with control conditions, whereas red or blue links point
to hyper- or hypoconnections compared with control conditions, respectively. ICA
data processing generally leads to hyperconnectivity over all frequency bands (see
also Fig. 7.23). Application of wICA significantly improves predictions, providing
only a few spurious links in the Theta and Alpha bands.

To gain insight into the problem of hyperconnectivity biasing after ICA artifact
suppression (Fig. 7.24), we consider a case where neural signals rj .t/ and rk.t/
from two electrodes are statistically unrelated, and consequently have vanishing
cross-correlation and coherence. We assume the signals to be corrupted by ocular
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Fig. 7.24 Relative degree of coupling between cortical areas evaluated using partial spectral
coherence (PSC). As a reference (zero level), we use the coherence evaluated under control
conditions. Red and blue lines show spurious hyper- and hypocoherence links, respectively. The
link width defines the strength of the relative association between corresponding sites

artifacts A.t/. An application of ICA gives

Oxk.t/ D rk.t/ �mk1n.t/ ; Oxj .t/ D rj .t/ �mj1n.t/ ; (7.42)

where, as in (7.31), hatted variables correspond to ICA-corrected EEG signals,
rj;k.t/ are the artifact-free signals, and n.t/ D s1.t/ � A.t/ is the neural activity
persisting in the independent component due to artifacts. From (7.42), we imme-
diately see that, although the artifact-free signals rj .t/ and rk.t/ are uncorrelated,
their ICA counterparts Oxj and Oxk correlate due to the presence of the common term
n.t/. Hence we have nonvanishing, spurious coherence:

ˇ̌
SC.!/

ˇ̌ D mk1mj1Pnnp
P Oxk OxkP Oxj Oxj

	 0 : (7.43)

Thus when the residual neural activity in the component identified as corresponding
to artifacts does not vanish, the spectral coherence (and also the partial spectral
coherence) can be overestimated after ICA artifact suppression (Fig. 7.24). The
wICA algorithm recovers the neural activity persisting in the component, thereby
improving the results of the coherence estimate.

7.8.9 Conclusion

In this section we have pursued two complimentary goals:

• To study quantitatively how suppression of artifacts in EEG data distorts the
underlying cerebral activity and affects the quality of derived local and non-local
characteristics.
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• To discuss a method that enhances the performance of the conventional ICA by
reducing the EEG distortions due to artifact removal.

First, we have shown that ICA-corrected EEGs may partially lose the record of
cerebral activity. Indeed, ICA decomposes the EEG into components of artificial
and neural origins and rejects the former. Such a separation is valid for independent,
linearly mixed sources when their total number does not exceed the number of
recording electrodes [6]. In practice these assumptions can be violated leading
to a “leak” of the cerebral activity into components deemed artificial. Complete
rejection of such a component thus involves a partial loss of the neural signal. To
reduce the distortions in corrected EEGs, we have proposed a wavelet enhanced ICA
(wICA) method that allows one recover the cerebral activity leaked into the artificial
components.

The wICA method is based on ICA signal decomposition and includes the
wavelet thresholding of the independent components as an intermediate step. This
step recovers the low amplitude, broad band neural activity persisting in the
components identified as responsible for artifacts. Thus, the subsequent deletion
of only the artifactual part of the components does not distort the underlying
neural activity in the wICA-corrected EEG. Note that wICA not only recovers
the cerebral activity outside of the artifact episodes, but it also allows substantial
recovery of the neural signal in the presence of artifacts. Another advantage of wICA
is its automation. No laborious, ambiguous visual inspection of the independent
components is required. Instead, all components are passed through the thresholding
procedure, whence only the high magnitude artifacts (e.g., from eye blinking) are
cut out. At this point we recall that the proposed use of wavelet analysis, not on raw
EEG, but on the independent components has the following important advantage.
Artifacts are concentrated in a few components, where the ratio of artifact magnitude
to cerebral activity magnitude is much higher than in the artifact-affected electrodes.
This greatly improves the quality of artifact detection, and also simplifies the
application since fine tuning of the threshold value is not required.

Second, we have quantified the performance of the ICA and wICA artifact
suppression methods in the time and frequency domains using semi-simulated and
real EEG recordings. Note that quantification of the quality of signal recovery
refers to an artifact-free control EEG. In the time domain, we have shown that ICA
effectively (by 19.4 dB) eliminates the presence of ocular artifacts and moderately
reduces the heart beat artifacts (by 3.5 dB). wICA offers significant improvements,
reducing the presence of ocular and heart beat artifacts by 35.0 and 13.7 dB, respec-
tively. In the frequency domain, we have shown that ICA tends to underestimate
the EEG power spectrum over all frequency bands. We have estimated the power
spectrum loss theoretically and shown that it is a product of the spectrum of the
persistent neural activity and the corresponding weight of the mixing matrix. This
means, for instance, that spectral loss for ocular artifact suppression is higher in
the frontal sites. Calculating the absolute value of the spectral distortion at the FP1
electrode, we found 4.4/0.7, 3.8/0.2, 4.3/0.1 and 4.8/0.1 dB in the Theta, Alpha, Beta
and Gamma bands, respectively, for ICA/wICA.
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EEG recording is a multichannel technique that provides a natural basis for the
study of non-local cerebral dynamics and cortical circuitry. For the first time we
have addressed the question of how artifact suppression affects the evaluation of
the simplest non-local characteristics, i.e., spectral and partial spectral coherences.
Our results suggest that ICA-corrected EEGs may exhibit an overestimated level
of coherence, while wICA overcomes this problem, approaching the coherence
level found under control conditions. This overestimation may lead to erroneous
conclusions regarding the presence of spurious couplings (associations) between the
corresponding cortical areas. Indeed, we have shown that the connectivity pattern
provided by partial spectral coherence evaluated over ICA-corrected EEG is much
denser than under control conditions. wICA solves the problem, showing practically
the same connectivity pattern as under control conditions.
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Chapter 8
Conclusion

Wavelet analysis remains a somewhat exotic method in contemporary neuroscience
and neurophysiology. It seems that new mathematical or experimental methods,
despite all their benefits and technological advantages, need time to become
accepted as a convenient tool for routine applications. It is particularly noticeable in
the clinical and biological sciences, where novel mathematical tools must undergo
a thorough examination, adaptation, and verification, and only then can they be
accepted for practical use. In this context, it should be emphasized that wavelet
analysis is suitable for time–frequency analysis of neurophysiological signals, and
can also be incorporated into more complex algorithms for experimental data
processing that increase the efficacy of data analysis in neurophysiological studies.
We believe that the wavelet-based analysis will naturally evolve into a family of
standard methods for signal processing in biology and medicine. This does not mean
replacement of the conventional by new techniques, but improvement of existing
approaches to make wavelet analysis more widely applicable in experimental
neuroscience.

The present monograph addresses just a few problems that are frequently encoun-
tered in neuroscience and neurophysiology. Even this brief review demonstrates
several beneficial ways and promising perspectives for using wavelet analysis in
neurophysiological research. Applications of the powerful mathematical analysis
of nonlinear dynamics to neuronal systems, both at the micro- and macrolevels of
the central nervous system, opens new perspectives for the study of the extremely
complex mechanisms of brain functions. At the same time, interpretation of results
obtained by this interdisciplinary approach is difficult in the context of neurophys-
iology due partly to the extreme complexity of the explored object (the nervous
system of living organisms), and partly to the difficulty in identifying the appropriate
physiological meaning of results obtained by such sophisticated mathematical
methods. Here we would like to quote A.M. Ivanitskii and A.I. Lebedev, who
commented that “[: : :] the integration of mathematics and physiology gives the best
result when the application of a specified mathematical transform is underlain by a
fruitful physiological idea” [1]. Indeed, success in developing new data-processing
technologies in any interdisciplinary field including contemporary neuroscience
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depends on the introduction of new neurophysiological ideas and clearly defined
goals, along with appropriate ways to achieve them.

There can be little doubt that the number of neurophysiological studies using
wavelet-based methods will continue to grow, because it provides a solution
for many challenging problems, such as the principles of information coding
and presentation. Further progress in understanding the functions of the central
nervous system requires not only the development of experimental research facilities
(where considerable progress has been made in the last few decades), but also
the introduction of new mathematical methods for decoding neural signals. The
extraordinary complexity and intricacy of brain processes make it impossible to
decipher neural signals using only the methods of statistical analysis. From the
viewpoint of nonlinear dynamics, the adaptation of living systems (organisms
and their neural systems) to the environment is accompanied by changes in their
dynamics, whereupon neurophysiological signals recorded at this time should be
considered as time series of nonstationary processes produced by dynamical systems
with an unlimited number of degrees of freedom. If we ignore this fact, we may miss
important information about the neural system, whereas understanding adaptive
processes facilitates the study of the basic principles of neural activity.

Wavelet analysis can be expressed by the metaphor of a “mathematical micro-
scope”, highlighting the fact that we need to use appropriate magnification in
order to disclose certain hidden features that cannot be detected by the naked (or
inadequately armed) eye. There is still great (yet hidden) potential for this research
tool. The present monograph describes some modifications to the mathematical
processing of experimental data and addresses some problems of neural system
dynamics, but also tries to inspire the reader by describing the promising new
prospects for wavelets in neurophysiological applications. In the coming years,
wavelet analysis should become an effective research tool that will help to improve
the quality of research in the field of neuroscience.
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