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The phenomenon of generalized synchronization
(GS) in dynamic systems [1, 2] is a partial case of cha�
otic synchronization [3]. GS is an interesting nonlin�
ear phenomenon that is encountered in many systems
[4–6]. In recent years, the interest of researchers
expanded from studying chaotic synchronization in
separate oscillators to synchronous behavior in com�
plex networks of chaotic oscillators [7–10], including
the GS regimes in such systems [11–13]. Evidently, in
the presence of many interacting oscillators, the situa�
tion becomes more complicated as compared to the
case of two coupled oscillators, in particular with
respect to the diagnostics and description of this par�
ticular type of synchronous behavior (see, e.g., [12]
and references therein). At the same time, it can be
expected that the main mechanisms responsible for
the establishment of GS [2] in a system of two coupled
oscillators will also play a determining role in a more
complicated structure of interacting oscillators, while
this complexity will determine specific features of the
appearance of GS regime.

The present work is devoted to the establishment of
GS regime and the character of the boundary of these
regimes on the plane of control parameters in the par�
ticular case in which a driven oscillator is under the
action of two master oscillators, which only differ by
the values of their control parameters and are not
mutually coupled.

Let us consider the dynamics of a system of three
chaotic Rössler oscillators (1)–(3), two of which
(indicated by subscripts 1 and 2) are independent mas�
ter oscillators unidirectionally coupled with the third
(driven) oscillator (indicated by subscript r):

(1)

(2)

(3)

where ω1, ω2, and ωr = 0.95 are the parameters deter�
mining eigenfrequencies of the corresponding oscilla�
tors; a = 0.15, p = 0.2, and c = 10 are the control
parameters; and ε1 and ε2 are the parameters of cou�
pling between the driving and driven subsystems.

If the eigenfrequencies of driving oscillators coin�
cide (ω1 = ω2), the behavior of system (1) can be
reduced (with a certain error) to the well�known case
of interaction between two unidirectionally coupled
oscillators with coupling parameter ε = ε1 + ε2.
Indeed, according to [2], the mechanism of synchro�
nization between two coupled oscillators can be
explained by introducing a modified system. Accord�
ing to this approach, a term describing the dissipative
coupling of systems is split into two so as to separately
consider the external action of the driving subsystem
and the additional dissipation that plays a key role in
establishment of the GS regime. Indeed, the GS
appears when an increase in the coupling parameter
introduces additional dissipation into the system,
which is sufficient to suppress intrinsic chaotic
dynamics in the modified system (see [2]). By analogy,
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it is possible to introduce a modified system in the case
of three interacting oscillators under consideration. In
the case of identical frequencies of the driving oscilla�
tors (ω1 = ω2), an increase in coupling parameter ε to
certain critical value εc leads to the passage of the mod�
ified system to a periodic regime and the establishment
of GS regime in the driven subsystem. Accordingly, the
boundary of GS regimes on the plane of parameters
(ε1, ε2) for system (1) is determined by the relation ε2 =
εc – ε1 and represented by a straight line.

However, if the parameters (and eigenfrequencies)
of driving oscillators (1) and (2) do not coincide, the
situation becomes different because the appearance
and breakage of GS is determined not only by the
additional dissipation related to coupling, but also by
the external action that can (in contrast to dissipation)
excite the intrinsic chaotic dynamics in the modified
system, thus breaking the synchronous regime. It is the
external action that accounts for a specific character of
the boundary of GS regimes in the case of interaction
between two unidirectionally coupled chaotic oscilla�
tors [12]. Since this boundary reflects the influence of
a driving action on the excitation of intrinsic chaotic
dynamics in the driven subsystem, this factor plays an
important role in the case of three interacting oscilla�
tors under consideration.

Figure 1 shows the GS boundary for two unidirec�
tionally coupled Rössler oscillators (see also [14, 15]).
Calculations were performed using the auxiliary sys�
tem method [16] with additional refinement of
Lyapunov exponents of the systems under consider�
ation. As can be seen, the plane of control parameters
(ωd, ε) contains several characteristic regions.
In region B, the establishment of GS regime requires

a relatively large value of the coupling parameter. In
regions A and C, the GS regime is established at signif�
icantly lower ε values. A significant difference of εc val�
ues corresponding to the GS boundary in region B is
related to the excitation of chaotic oscillations in the
driven subsystem [14].

In studying the influence of two driving Rössler
oscillators on the third (driven) oscillator, let us con�
sider various cases of frequency detuning between
these subsystems:

(i) parameters ωi of both driving oscillators occur in
regions A or C;

(ii) parameter ωi of one driving oscillator falls in
region B, while ωi of another driving oscillator occurs
in region A or C; and

(iii) both ωi values of driving oscillators belong to
region B.

Figure 2a shows the boundaries of GS regimes in
the first case. As can be seen, the GS boundaries on the
plane of coupling parameters (ε1, ε2) are close to the
diagonal. This is especially clear for curve 4, which
corresponds to close values of ω1 and ω2 (and the
eigenfrequencies of two driving oscillators) and,
hence, close values of the coupling parameters neces�
sary for the establishment of GS. However, it should be
emphasized that the GS boundary is also close to the
diagonal when ω1 and ω2 of the driving oscillators
belong to different regions (A and C). This situation is
close to the case of two identical driving oscillators:
since each separate oscillator has almost the same crit�
ical value of the coupling parameter for the appear�
ance of GS, these oscillators are also equal in respect
of both introducing additional dissipation and exciting
intrinsic chaotic dynamics in the driven subsystem.

A different behavior is observed when parameter ωi
of one of the two driving oscillators belongs to
region B, while ωi of another driving oscillator falls
in region A or C. In this case (Fig. 2b), the GS bound�
ary is far from the diagonal. On the whole, these com�
binations of frequencies are characterized by “bend�
ing” of the GS boundary on the (ε1, ε2) plane, which
can be subdivided into two approximately linear
regions with different slopes. Comparison of Figs. 2a
and 2b leads to the conclusion that the character of GS
boundary in this case depends not only on the differ�
ence of frequencies of the driving oscillators, but also
on the difference of their coupling parameters in Fig.
1. The bending of the GS boundary is explained by dif�
ferent properties of the driving oscillators, which lead
to the excitation of intrinsic chaotic oscillations in the
driven subsystem. For nearly the same coupling
parameters εi, both driving oscillators introduce
approximately equal additional dissipation in the
driven subsystem, but the driving oscillator with ωi in
region B will excite the intrinsic chaotic dynamics to a
greater extent.

In the third important case (Fig. 2c), the ωi values
for both driving oscillators belong to region B. Pro�
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Fig. 1. GS boundary for two unidirectionally coupled
Rössler oscillators [14], which reveals regions A, B, and C
with different characteristic values of the coupling param�
eter necessary for the establishment of a GS regime (see
text for explanations).
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ceeding from the modified system approach and tak�
ing into account the above considerations, it would be
logical to expect that the GS boundary in this case
must also be close to the diagonal (as in Fig. 2a), but
the observed pattern is different. It should be noted
that the GS boundary exhibits bending and one can
even distinguish three approximately linear segments
rather than two segments as in Fig. 2b. This behavior is
again explained by different values of εi at which
intrinsic chaotic dynamics is excited in the driven sub�
system (for more detail, see [14]) for various ωi values,
even although these values are close and belong to the
same region (B).

On the whole, it is concluded that, in the case of
two identical unidirectionally coupled Rössler oscilla�
tors with different eigenfrequencies acting on the third
(driven) oscillator, the GS boundary on the plane of
coupling parameters can be far from the diagonal
observed in the case of coinciding frequencies of the
two driving oscillators. In the case in which control
parameters of both driving oscillators occur in regions A
or C, the GS boundary is actually close to the diagonal.
When the parameters of both systems belong to
region B, the situation changes and the boundary
acquires a rather complicated character even despite
quite close frequencies. In the case when parameter ωi

of one of the two driving oscillators belongs to region B,
while ωi of another driving oscillator falls in region A
or C, the GS boundary can be subdivided into two
approximately linear regions with different slopes
depending on the particular frequencies. In this case,
there are no significant differences between oscillators
with the parameters in regions A and C.
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