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Self-similarity in explosive synchronization of complex networks
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We report that explosive synchronization of networked oscillators (a process through which the transition to
coherence occurs without intermediate stages but is rather characterized by a sudden and abrupt jump from the
network’s asynchronous to synchronous motion) is related to self-similarity of synchronous clusters of different
size. Self-similarity is revealed by destructing the network synchronous state during the backward transition and
observed with the decrease of the coupling strength between the nodes of the network. As illustrative examples,
networks of Kuramoto oscillators with different topologies of links have been considered. For each one of
such topologies, the destruction of the synchronous state goes step by step with self-similar configurations of
interacting oscillators. At the critical point, the invariance of the phase distribution in the synchronized cluster
with respect to the cluster size is reported.
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I. INTRODUCTION

Networks of phase oscillators offer a benchmark description
in a large variety of natural systems, such as neurons in the
human brain, cardiac pacemaker cells, power grids, etc. [1]. On
the other hand, synchronization of such networked oscillators
is often the basis for the emergence of collective dynamics.
Synchronization is a universal nonlinear phenomenon [2] and
means the adjustment of rhythms of coupled oscillators due
to their interaction. It may be observed in different forms,
such as phase synchronization [3–5], generalized synchro-
nization [6–8], time scale synchronization [9], lag synchro-
nization [10–12], complete synchronization [13–16], etc. We
here concentrate on the phase synchronization regime, where
an entrainment of phases (and, accordingly, frequencies) of
chaotic signals takes place. Therefore, taking into account the
prominence of phase synchronization, the transition between
asynchronous and synchronous states is of fundamental impor-
tance for understanding some core mechanisms through which
interacting oscillators adjust their pace and phases [10,17,18],
and collective dynamics occurs [19–23].

From a thermodynamics point of view the passage from
asynchronous to synchronous oscillations (and vice versa)
can be considered as a phase transition. Phase transitions
to the synchronous state may be abrupt (as in the case of
explosive synchronization, resembling a first-order transition)
or continuous (like a second-order phase transition) [24].
Typically, smooth phase transitions take place when the
coupling strength between nodes grows and the asynchronous
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oscillatory motion becomes unstable [19,22,25]. However,
explosive synchronization (ES, where the network does not
pass through intermediate partial synchronization stages but
rather jumps suddenly from the asynchronous to the syn-
chronized motion and vice versa) can also be observed in
complex networks [26–28], including the case of the presence
of external fields [29].

ES has been observed for different network architectures,
including networks with all-to-all coupled elements [30],
random networks [31], networks with scale-free topology
[27,32,33] (including scale-free networks with time-delayed
coupling [34]), and networks of adaptively coupled oscillators
[35]. Furthermore, ES has been studied for many different
kinds of networked oscillators, from Kuramoto [36,37], to
modified Kuramoto oscillators [38], to chaotic piecewise
Rössler units [26]. Because of its ubiquity, ES can be
considered a general feature of coupled oscillator networks.
In ES, both the establishment (the forward transition) and the
destruction (the backward transition) of the synchronous state
are abrupt, and in several cases the overall scenario features
hysteretic loops, which are the hallmark of irreversibility.

We stress that a smooth (second-order-like) transition
is typical in complex networks, while abrupt jumps from
the asynchronous to asynchronous motion (and vice versa)
are rarer phenomena which may be observed under some
specific circumstances. For ES to be realized, certain specific
conditions (that are distinct for different network topologies)
must be fulfilled. For regular cliques ES may take place [38]
for specific realizations of a uniform distribution in the natural
frequencies [30]. In turn, in Ref. [28] certain constraints on
the frequency differences between each node and its neighbors
are imposed explicitly to avoid the formation of a clustering
process. As far as scale-free networks (namely, Barabási-
Albert network) is concerned, a correlation between the
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natural frequency of each oscillator and its degree, ωi = F (ki)
may support ES [27,32]. Additionally, also adaptive coupling
may enhance ES in networks [35]. Nevertheless, the several
observations of ES phenomena call for their generalities,
despite their rare manifestations.

A very relevant question is whether there are universal fea-
tures accompanying ES, i.e., situation which may be common
to different network topologies and/or dynamics. Stimulated
by this challenge, we here study the destruction mechanisms of
the synchronous state in networks with practically all typical
link topologies where ES is known to be observed: random
networks with evenly spaced natural frequencies (following
Refs. [36,37]), modified Kuramoto models (see Refs. [38,43]),
and scale-free networks described in Refs. [27,32]. Our results
show that, in all considered cases, ES is connected with
self-similarity in the stability loss of the synchronous clusters
of different size.

The structure of our paper is the following. In Sec. II we
consider (both analytically and numerically) the destruction
process of the fully synchronized state in random network
of Kuramoto oscillators, and we reveal the core self-similar
properties of the abrupt transition from the synchronous to
asynchronous dynamics. Section III is devoted to report on
ES in the modified Kuramoto model, whereas the scale-free
network case is considered in Sec. IV. The final summary and
remarks are given in Sec. V.

II. RANDOM NETWORKS

We start with a random network of Kuramoto oscilla-
tors [36,37] whose dynamics is given by

ϕ̇i = ωi + λ

N

N∑
j=1

aij sin(ϕj − ϕi), (1)

where N is the number of coupled oscillators, ϕi and ωi are
the instantaneous phase and natural frequency of ith oscillator,
respectively, λ is the coupling strength, and {aij } are the
elements of the adjacency matrix that uniquely defines the
nodes’ interactions (aij = aji = 1 if oscillators i and j are
connected with each other and zero otherwise). The natural
frequencies ωi are supposed to be different and, therefore,
the synchronized motion appears only above some coupling
strength threshold λc. We consider the case of evenly spaced
natural frequencies,

ωi = −� + �

N
(2i − 1), (2)

where � = 0.5, i = 1, . . . ,N , just in the same way as it
was done in Refs. [36,37]. In other words, the frequency
distribution g(ω) should be considered as symmetric and
centered at zero:

g(ω) =
⎧⎨
⎩

1

2�
for |ω| � �

0 for |ω| > �.

(3)

The adjacency matrix of an Erdös-Rényi (ER) random
graph [39] has been obtained by the well-known algorithm
which consists in connecting each couple of nodes with
a probability 0 < p < 1 [1]. For p = 1, network Eq. (1)
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FIG. 1. The fraction of synchronous oscillators in the network,
� = N /N (whereN is the synchronous cluster size), vs. the coupling
strength λ. Results are obtained for Erdös-Rényi random networks
of size N = 103 (curve 1), N = 3 × 103 (curve 2), and N = 5 × 103

(curve 3), p = 0.5.

becomes a clique, which was studied in Ref. [30]. In our work,
we have used N = 5 × 102, 103, and 5 × 103 elements, with
probabilities p = 0.3, 0.5, 0.9, and all numerical calculations
have confirmed our findings.

By examining the backward transition, it is seen that the
synchronous state loses its stability abruptly at λN

c (see Fig. 1).
Above λN

c , all network oscillators are synchronized, and the
entire network can be considered as a unique, giant cluster of
size N [40]. At the coupling threshold (or, more precisely, just
below it, i.e., for λ → λN

c −), the synchronous cluster starts
being destroyed, with a sudden collapse of the synchronous
state taking place. The symbols N andN are used to denote the
size of the network and of synchronous cluster, respectively, as
well as we denote by ki (kNi ) the total number of links, or node
degree (the links to oscillators in the synchronous cluster) of
the ith network’s element.

Under the assumption of a large number of network
oscillators, N → ∞ (in fact, in the thermodynamic limit of
an infinite population), the evolution law of the oscillators
Eq. (1) at critical point λN

c within the synchronous cluster of
size N may be rewritten in the form

ϕ̇i = ωi + λN
c κi�

∫ π/2

−π/2
RN (ψ) sin (ψ − ϕi) dψ, (4)

where RN (ϕ) is the probability distribution of phases of
synchronized oscillators, 0 � κi � 1 is the normalized number
of links that the ith node forms with synchronized oscillators,
κi = kNi /N , and � = N /N is the portion of synchronized
oscillators in the network. At the critical point λc, one can
consider two groups of oscillators: the synchronous and the
asynchronous (drifting) ones. If one further suppose that the
destruction of the synchronous cluster develops in time more
slowly than the drift of the asynchronous oscillators, only
the contribution of the synchronized oscillators should be
accounted for in Eq. (4).

Now, for large N (assuming also Np � 1), the degree
distribution may be approximated by a Dirac function as
G(k) = δ(κ − 〈κ〉), where 〈κ〉 = p. The quantity 〈κ〉 may be
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substituted for κ in Eq. (4), and the density of synchronized
nodes with phase ϕ,RN (ϕ) may be found as

RN (ϕ) = gs(ω)
dω

dϕ
, (5)

where gs(ω) is the frequency distribution of the synchronous
oscillators. As for synchronized oscillators ϕ̇ = 0, Eq. (4) gives

ω + λN
c 〈κ〉�

∫ π/2

−π/2
RN (ψ) sin (ψ − ϕ) dψ = 0, (6)

or

dω

dϕ
= λN

c 〈κ〉�
∫ π/2

−π/2
RN (ψ) cos (ψ − ϕ) dψ = 0. (7)

As a consequence, the relation for RN (ϕ) is

RN (ϕ) = gs(ω)λN
c 〈κ〉�

∫ π/2

−π/2
RN (ψ) cos (ψ − ϕ) dψ. (8)

At λc, a part of the oscillators starts moving asynchronously,
and the coherent structure of size N is replaced by a
smaller cluster [consisting of N (t) synchronous oscillators,
N (0) = N ]. Note that the integral Eq. (8) remains valid for
any number of synchronous oscillators N . At the time at
which the destruction of the synchronous cluster starts, the
integral Eq. (8) may be written for the whole network (i.e.,
N = N, gs(ω) = g(ω), κ = k/N, � = 1, λN

c = λN
c ),

R(ϕ) = �

∫ π/2

−π/2
R(ψ) cos (ψ − ϕ) dψ, (9)

where � = �N = λN
c 〈k〉/(2N�), R(ϕ) = RN (ϕ). Equation

(9) is a homogeneous Fredholm integral equation of the second
kind and admits solution only for

� = �c = 2

π
(10)

(see Ref. [41]), which in our case takes the form

R(ϕ) = 1
2 cos ϕ. (11)

In other words, Eqs. (10) and (11) describe the state of network
at λc, i.e., at the beginning of the abrupt transition from
synchronized to asynchronous dynamics.

According to Eq. (10), the synchronous state loses its
stability at

λN
c = 4N�

π〈k〉 = 4�

pπ
, (12)

since 〈k〉 = Np, and the density of the synchronized oscillators
with the phase ϕ is given by Eq. (11). For the chosen
parameter values (� = 0.5, p = 0.5, N = 5 × 103), one has
λN

c ≈ 1.273. In the limit of p → 1, Eq. (12) coincides
with the critical value obtained for the all-to-all connected
network [30], as well as with the value where the incoherent
solution becomes unstable according to the classical result [42]
for all unimodal distributions, λc = 2/πg(0).

When the fully synchronized state starts to be destroyed,
several oscillators begin drifting. One can suppose that the syn-
chronous cluster loses first the oscillators whose frequencies
are closer to the boundaries ±�. In other words, the fully
synchronized state starts being replaced by a synchronous

cluster consisting of N oscillators whose frequencies are
bounded by ±� (� = ��) and distributed as

gs(ω) =
⎧⎨
⎩

1

2�
for |ω| � �

0 for |ω| > �.

(13)

The criticality properties of the newly formed clus-
ter of size N are also described by Eq. (9) with
� = �N = λN

c 〈κ〉�/(2�), R(ϕ) = RN (ϕ). Remarkably, the
quantity �N does not depend on N , and it is invariant for all
configuration of the synchronous oscillators, i.e., �N = �N .
As a consequence, the arisen synchronous cluster of size N
also becomes unstable at λN

c = λN
c = λc, with the probability

distribution of synchronized network oscillators, RN (ϕ), being
governed by the same regularity Eq. (11).

In other words, when the abrupt transition from the
synchronization to asynchronous dynamics takes place, the
coherent cluster of synchronous oscillators passes sequentially
through different self-similar configurations of size N (t), with
all of them becoming unstable at once, at the same critical point
λc. The probability distributions RN (ϕ) of the instantaneous
phases ϕ also demonstrate the same self-similarity properties.
The profile of the phase distributions for synchronized nodes
remains unchanged at the fixed value of the coupling strength
λ → λc−, i.e.,

RN (ϕ) = RN (ϕ) = R(ϕ), ∀N � N, (14)

where R(ϕ) is governed by Eq. (11), for the considered case
of random networks and given frequency distribution Eq. (3).
Importantly, Eq. (14) reflects a self-similarity property and, in
fact, is the marker of the abrupt transition from synchronous
to asynchronous network state. If a smooth, second-order-like
transition occurs (as, e.g., for the case when the distribution of
frequencies g(ω) is not compact), Eq. (14) does not hold, and a
self-similar behavior of synchronous clusters is not observed.

To illustrate the obtained results, we have simulated numer-
ically the process of the destruction of the synchronous state.
The control parameters of the model have been selected as
N = 5 × 103,� = 0.5, p = 0.5, λ = λc = 1.273. The abrupt
transition from coherence to incoherence is shown in Fig. 2,
where the evolution of the distributions of the synchronized os-
cillators over frequencies [Fig. 2(a)] and phases [Fig. 2(b)] are
reported. The size of the synchronous cluster N (t) decreases
linearly with time [except for the small final stage of cluster
destruction (t > 700); see Fig. 2(c)]. One can see that the
synchronous oscillators are distributed evenly and uniformly
over frequencies ω ∈ [−�(t),�(t)] until the very end of the
process of the synchronous cluster destruction [see Fig. 2(a)],
whereas the profile of the phase distribution, Nϕ(ϕ,t), remains
practically unchanged with only its amplitude decreasing [see
Fig. 2(b)].

To prove the invariance of the probability distribution of the
synchronized oscillators Eq. (14) we have calculated RN (t)(ϕ)
at different moments of time. The results are reported in
Fig. 3. One can see that probability density for synchronized
oscillators is indeed invariant, and well agrees with the
analytical curve Eq. (11) confirming the theoretical prediction
Eq. (14).

Summarizing the results described so far, we have to stress
two core features:
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FIG. 2. (a) Nω(ω,t), (b) Nϕ(ϕ,t), and (c) N (t) during the process
of destruction of the synchronous state. N = 5 × 103, p = 0.5, λc =
1.273.

(A) The backward transition is associated with a well-
defined self-similar behavior: when the transition from syn-
chronization to incoherence takes place, the coherent cluster of
synchronous oscillators passes sequentially through different
self-similar configurations of size N (t), with all of them
starting being destroyed at once and at the same critical point
λc. It is this feature that makes possible a first-order-like phase
transition in the network. If indeed only one of the newly
formed synchronous clusters of sizeN would have been stable,
an abrupt transition would have been impossible and, instead, a
smooth second-order-like transition would have been realized.

(B) All configurations of the synchronized oscillators
that arise and disappear through the abrupt transition are
characterized by a self-similar (invariant) probability density
that may be formalized with the help of self-similarity
condition Eq. (14).

These two features are likely to appear also for different
network architectures where ES is possible. Statement (A)
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FIG. 3. RN (ϕ) (see text for definition), calculated at eight
different moments in time (from the very beginning till the very
end of the backward transition). N = 5 × 103, p = 0.5, λc = 1.273.
The theoretically predicted distribution, R(ϕ), given by Eq. (11) is
shown by a bold solid (red) curve, the numerically obtained data are
shown by points: t = 100—symbols “ ”, t = 200—“ ”, t = 300—
“ ”, t = 400—“ ”, t = 500—“ ”, t = 600—“–”, t = 700—“ ”,

t = 800—“♦”.

explains clearly the mechanisms underlying the abrupt char-
acter of the transition, statement (B) gives a tool to check
the presence of self-similarity in cases when an analytical
examination is not possible.

III. MODIFIED KURAMOTO MODEL

The modified Kuramoto model proposed in Ref. [43] and
studied in detail in Ref. [38] completely confirms our findings.
The evolution of the network is now governed by

ϕ̇i = ωi + λ|ωi |
N

N∑
j=1

sin(ϕj − ϕi), i = 1, . . . ,N, (15)

where the frequency distribution has been taken to be uniform
and even, according to Ref. [38]. This model displays ES with
hysteresis, at variance with the random network considered
in the previous Section, with the forward and backward
transitions being distinct. We here concentrate again on the
backward transition.

The modified Kuramoto model allows for an analytical
treatment of both the forward and backward transitions. The
backward phase transition is known to take place at λc = 2,
which depends on neither the size of network nor the type of
the frequency distribution [38].

Without loss of generality, the phase distribution of the
oscillators for λ > 2 may be described by

R(ϕ) = 1
2 [δ(ϕ − 
) + δ(ϕ + 
)], (16)

where δ(·) is the Dirac δ function. In other words, the
synchronous oscillators are split evenly into two symmetric
clusters located at ϕ± = ±
. With the decrease of the coupling
strength λ, these two clusters move gradually towards to
critical phases ϕc± = ±π/4 and at the critical point λc the
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FIG. 4. The instantaneous phases, ϕ, vs. ω and time, during
the process of destroying the synchronous state in the generalized
Kuramoto model Eq. (15). N = 5 × 103, λc = 2.

synchronous state of network starts being destroyed, with

 = π/4 (see Ref. [38] for details).

The abrupt transition from synchronous to asynhcronous
state is shown in Fig. 4. One can see clearly the sequence
of self-similar synchronous clusters that appear sequentially,
whose size N decreases in time. The phases of the oscillators
arranged in the synchronous clusters are ϕ = ±π/4 ± 2πn,
(n ∈ N) (except for the very short transient episodes when one
synchronous structure is replaced by another one). Once again,
both features (A) and (B) are revealed during the backward
transition.

IV. SCALE-FREE NETWORK

The next point is revealing the presence of features (A)
and (B) for ES in a scale-free topology. In this latter case,
following Refs. [27] and [32], we consider a modified version
of the Kuramoto network, where the natural frequency of
each node is taken to be equal to its node degree, i.e., ωi =
ki . As a consequence, the frequency distribution coincides
with the degree distribution. A scale-free topology of links
is considered, implemented with the help of the approach
proposed by Barbási and Albert [44] with N = 103 nodes
and 〈k〉 = 6. The degree distribution is governed by a power
law, P (k) ∼ kγ , with γ = −3. The frequency distribution is
therefore g(ω) ∼ ωγ .

The backward transition takes place at λc ≈ 1.28. The
distribution of the phases ϕ as a function of the degree k

for a Barbási-Albert network is given in Refs. [32]. As a
consequence, the relationship between frequency and phase
of each Kuramoto oscillator my be rewritten in the form

ω = 〈k〉
1 − λr sin ϕ

, (17)

where r is the order parameter [45,46]. Therefore, using Eq. (5)
and taking into account that at the critical point one has λcr =
1, the critical probability density may be written as

R(ϕ) = 1
2 (1 − sin ϕ) cos ϕ. (18)
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FIG. 5. The probability densities of the synchronized oscillators,
RN (ϕ), calculated for the different moments of time (from the
very beginning till the very end of the destruction process) for the
abrupt collapse of the synchronous state of scale-free network of
Kuramoto oscillators, N = 103, p = 0.5. The theoretically predicted
probability distribution, R(ϕ), governed by Eq. (18) is shown by the
bold solid (red) curve, the numerically obtained data are shown by
points.

The obtained density Eq. (18) obeys the normalization condi-
tion ∫ π/2

−π/2
R(ϕ) dϕ = 1. (19)

Remarkably, it does not depend on the mean degree of
the network, 〈k〉, i.e., R(ϕ) is invariant for all scale-free
networks with γ = −3. Therefore, to seek for the presence
of criterium (B), one has to compare RN (ϕ), calculated at
different moments of time (from the very beginning till the very
end of the destruction process) and estimated at λc, together
with the theoretical prediction Eq. (18), just in the same way
as it was done in Fig. 3.

The comparison is shown in Fig. 5, where an excellent
agreement between theoretical and numerical data is obtained.
The numerically calculated distributions fit the analytical
curve, and start deviating only at the end of the destruction
process when the number of synchronous elements becomes
too small. In other words, the probability densities for all
configurations that arise and disappear during the backward
transition are invariant, and the features (A) and (B) are also
observed in this case.

V. CONCLUSIONS

In summary, we have shown that explosive synchronization
in complex networks of oscillators is connected with self-
similarity of the synchronous clusters of different size. More
precisely, we have shown that the destruction of the graph’s
synchronous state goes step by step with self-similar con-
figurations of synchronous clusters of interacting oscillators,
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with the self-similarity condition Eq. (14), which takes place
at the critical point of coupling strength. All newly formed
synchronous clusters of smaller size start being destroyed at
once and at the same critical point for an abrupt transition to be
realized. If this requirement is not satisfied and even one arisen
synchronous cluster would be stable, a smooth transition would
be realized. From the mathematical point of view it means that
the self-similarity condition Eq. (14) is not valid for the case
of a smooth transition.

The invariance of the phase distribution in the synchronized
cluster with respect to the cluster size at the critical point has
been revealed both theoretically and numerically. Our results
are specified with Kuramoto oscillators for practically all

known network examples where the explosive synchronization
takes place, but we expect that the same mechanisms should
be observed in networks of other oscillator models as well as
other topologies of links and frequency distributions. These
findings provide a fresh and novel insight into the mechanisms
of explosive synchronization, and are of value for both the
theory of complex networks and the practical applications of
ES in a wide spectrum of human activities.
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