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Abstract—Automated seizure detection is a complex task in
epilepsy diagnosis, mainly due to the rarity of seizures. Automatic
solutions often lead to a high number of false positives. This
study proposes a two-stage approach that combines iterative
refinement algorithms and convolutional neural networks to
minimize false positives in seizure detection task. The method was
tested on a real-world EEG dataset using epilepsy-specific metrics
and demonstrated a significant reduction in false positives,
demonstrating the potential of the method for use in clinical
decision-support systems.

Index Terms—Epileptic seizure detection, cascade approach,
convolutional neural network, continuous wavelet transform,
EEG

I. INTRODUCTION

Epilepsy is a neurological disorder that manifests itself in
the form of repeated seizures. These manifestations signifi-
cantly affect the quality of life of any subject and require
accurate and early diagnosis for effective treatment. Also,
through the early detection and appropriate management of
this disease, the majority of patients can attain a state of
remission [1].

Electroencephalography (EEG) is a primary tool for
epilepsy diagnosis which captures brain electrical activity.
Although with the help of an experienced doctor, seizures can
be precisely identified it is still a very time-consuming process
due to the fact that EEG recording can last for several days
during monitoring.

In recent years, artificial neural networks (ANNs) and, es-
pecially, convolutional neural networks (CNNs) have attracted
the attention of researchers around the world and have been
applied to a wide range of tasks, demonstrating impressive
results [2]–[4]. Obviously, the seizure detection field is not an
exception [5], [6]. Nevertheless, these approaches still struggle
with high false positive rates due to data imbalance. In the
field of classical ML, cascade algorithms occupy a dominant
position [7], [8], the idea of which gradually penetrates into
the field of deep learning (DL) [9], [10].

This research was funded by Academic Leadership Program PRIOR-
ITY’2030 of Immanuel Kant Baltic Federal University of the Ministry of
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This study, inspired by the cascade algorithms widely used
in classical ML, proposes a CNN-based cascade algorithm to
improve seizure detection targeting the FP problem specif-
ically. The proposed algorithm consists of two stages: first
training a CNN model on the original dataset and then using
its errors to train a second, more precise CNN model. To
demonstrate the potential of this approach we compared its
performance with the standard CNN-based method.

II. MATERIALS AND METHODS

A. Dataset

The real EEG dataset used in this study contains recordings
from patients with focal epilepsy, provided by the National
Medical and Surgical Center named after N. I. Pirogov of
the Ministry of Health of the Russian Federation (Moscow,
Russia). The recordings were carried out in the period from
2017 to 2019. The dataset in total includes recordings from 83
patients, however, after excluding recordings with an excessive
amount of artifacts, the final dataset consists of 67 recordings.
Each recording, whose duration ranged from 8 to 84 hours,
was manually reviewed and labeled by an epileptologist. The
ratio of the normal activity to the epileptic activity is more
than 200:1 which indicates a strong data imbalance, which,
however, aligns with the rare nature of seizures. The data was
recorded at a 128 Hz sampling rate with N = 25 channels
according to the ”10—20” montage [11].

B. Seizure detetion with CNN

EEG signals {xn}Nn=1 were analyzed using continuous
wavelet transform (CWT) to construct a feature space for
CNN models [12]–[15]. The wavelet power (WP) in the 1–
40 Hz range was used as the main characteristic [16], [17].
Since CNNs can’t handle arbitrary long recordings directly, all
EEG recordings were segmented into 10-second long intervals
for further classification with CNN. Moreover, classification
networks usually work with normalized images, therefore,
mimicking such behavior the WP data was normalized in the
following way:

wln
n =

ln(wn)− µ(ln(wn))

σ(ln(wn))
, (1)
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where n = 1, 2, . . . N – number of the channel, wn – WP of
a signal xn, µ(·) – mean value, σ(·) – standard deviation.

For the classification of 10-second normalized segments,
we used a CNN-based classifier of ResNet-18 architecture
[18], whose main feature lies in residual layers which make
smoother loss surface. We modified ResNet-18 architecture,
originally designed not for binary classification. First of all,
we replaced the first convolutional layer designed for 3 chan-
nels RGB images with a convolutional layer that accepts
25-channel input (representing the WP spectrum). Second,
we modified the final fully connected layer to produce a
single output. The total architecture consists of 18 layers with
approximately 11.3 million parameters.

To train CNN models we can’t use all 10-second segments
because of the strong data imbalance mentioned earlier. As
a workaround, we sampled 100 segments per patient each
epoch with approximately 50% of them containing seizure
activity. This approach can be seen as a form of oversampling
and undersampling [19]. Except sampling process, there were
no other specific tricks and the model was trained using the
following hyperparameters:

• augmentations: random flip, SpecAugment [20],
• loss function: binary cross-entropy (BCE),
• number of epochs: 10,
• learning rate: 0.001,
• batch size: 4,
• optimizer: Adam.

III. FALSE POSITIVES SUPPRESSION

A. Error-aware CNN

The proposed model to reduce the number of false positive
predictions is called error-aware CNN. For this model we
modified the training procedure with an error-aware approach,
inspired by cascade algorithms, which involves two steps. In
the first step, we train the baseline CNN model according to
the procedure described in the previous section. This baseline
model allows us to identify examples that are difficult for
CNN to classify correctly, namely those on which it made
an error. In the second step, we train another model of the
same architecture from scratch, focusing on these difficult
examples, thereby improving the model’s overall performance.
This second model is called an error-aware CNN.

Technically speaking, the major difference between the
error-aware and baseline model lies in the sampling of training
examples. For the error-aware CNN, half of the samples were
selected similarly to the baseline but the other half were chosen
from the examples where the baseline model made a mistake.

B. Postprocessing

It’s worth mentioning that FP can be reduced not only with
the modification of CNN architecture and training procedure.
We also applied postprocessing for the same goal. During
an exploratory data analysis (EDA) we noticed a significant
number of short predictions from the baseline CNN model.
After the analysis of the lengths of true seizures, we found out
that the average seizure duration is about 100 seconds, while

many CNN predictions were much shorter, which is a signal
of false positives. Another insight from an EDA - predictions
of the class often were grouped together or ”almost together”
(separated by one or more segments of the other class).

The results of an EDA led us to two types of post-processing
techniques:

1) We use a median filter with a kernel size of K = 7 to
smooth CNN outputs and reduce the number of lonely
short predictions

2) To handle grouped predictions we merged neighboring
segments of the same predicted class into a single longer
segment. In addition to it, positive predictions separated
by a single negative prediction were merged into a single
positive segment

C. Evaluation procedure

Model evaluation typically employs standard metrics such
as recall, precision, and F1. However, these traditional met-
rics may be unsuitable for CDSS due to the rarity of seizures
in EEG data. To take into account the specific requirements
of the task, we have adjusted the way TP , FP , and FN are
calculated. More specifically, if one or more predictions occur
within a T -second neighborhood of a true seizure, they are
all considered as a single TP prediction. Predictions outside
a T -second neighborhood of any true seizure are treated as
FP predictions. Finally, if there are no predictions within a
T -second neighborhood of a true seizure then we have a FN
prediction. In this study, the parameter T = 60 s acknowledges
possible imperfections of expert labels.

Important to note that, before metrics computations, raw
predictions are transformed into binary predictions using
thresholding. We choose a threshold automatically by maxi-
mization of precision while maintaining decent recall > 0.8
on a validation set. Such an approach aligns with the goals of
the CDSS to detect the most possible seizures, despite higher
false positives.

IV. RESULTS

In this section, we evaluated the proposed CNN model for
epileptic seizure detection comparing the Baseline CNN and
the Error-aware CNN performance. The results, at different
processing steps, are provided in Table I. Each model’s per-
formance is evaluated at three different stages: raw predictions
with 10-second segments, after applying filtration to 10-second
segments, and after merging with arbitrary long segments.

It can be seen, that for the Baseline model, the precision
improves from 0.0638 at the raw prediction stage to 0.1462
after filtration, and slightly decreases to 0.1273 after merging.
The recall starts at 0.7169, increases to 0.7339 post-filtration,
and dramatically rises to 0.9608 after merging. Consequently,
the F1 score follows a similar trend, starting at 0.1171,
improving to 0.2438, and then slightly dropping to 0.2248.
The Error-aware model shows significant improvements across
all metrics at each stage in comparison with a baseline. The
precision improves from 0.2763 to 0.4567 after filtration
and finally to 0.5366 after merging. The recall shows an
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TABLE I
RESULTS OF THE PERFORMANCE EVALUATION OF THE PROPOSED CNN MODEL FOR EPILEPTIC SEIZURE DETECTION: COMPARISION OF THE BASELINE

CNN AND THE ERROR-AWARE CNN

Model Step precision recall F1 FN FP TP

Baseline
raw preds 0.0638 0.7169 0.1171 167 6212 423
filtration 0.1462 0.7339 0.2438 157 2529 433
merging 0.1273 0.9608 0.2248 2 336 49

Error-aware
raw preds 0.2763 0.5559 0.3692 262 859 328
filtration 0.4567 0.5271 0.4894 279 370 311
merging 0.5366 0.8627 0.6617 7 38 44

increase from 0.5559 to 0.5271 and peaks at 0.8627. These
results indicate substantial overall performance enhancement
with each successive step.

V. CONCLUSION

In this paper, we proposed a cascade model for epileptic
seizure detection, based on ResNet-18 architecture that utilizes
the information about the errors made by the baseline model.
The proposed approach effectively reduces false positives in
seizure detection. The error-aware CNN consistently outper-
forms the baseline CNN, improving precision and F1-score.
Techniques like median filtering and segment merging further
enhance performance by reducing the number of false positive
predictions and simplifying evaluation. Despite the promising
results, future research should focus on optimizing CNN
architecture, reducing computational demands, and improving
model interpretability for real-world applications.
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