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Abstract—In the present study we implemented machine learn-
ing approach to detect seizures on epileptic EEG data. We aimed
to propose a method for preliminary EEG marking, that can
possibly find application in clinical decision support system.
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I. INTRODUCTION

Epilepsy is a group of neurological disorders character-

ized by recurrent seizures, that vary from brief undetectable

episodes to long periods of vigorous shaking [1], [2]. Accord-

ing to global statistics, epilepsy is one of the most common

neurological diseases [3]. Seizures are accompanied by invol-

untary movement and state of incapacity, that can be dangerous

for patients and surrounding people. Additionally, patients

with epilepsy are more prone to cognitive and behavioral

deficits [4]. Thus, epilepsy affects the professional, social and

everyday life of a patient, and antiepileptic treatment is critical.

Seizures can be controlled — up to 70% of patients could

become seizure-free with the appropriate use of antiseizure

medicines [5]. However, 80% of people face problems in

receiving proper antiepileptic treatment [6]–[8], which leads

to necessity of practical and accessible methods for epilepsy

diagnostics. Epileptic discharges are poorly predictable and

require advanced mathematical techniques for analysis [9]–

[11]. This makes it difficult to develop non-drug cures for

epilepsy, such as those based on the brain-computer interfaces

[12]–[14].

The epilepsy diagnostics faces many problems: epilepsy

can occur due to various reasons (brain injury, stroke, tumor,
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congenital disabilities, etc) and exact underlying cause is

usually unknown [15]–[17], which results in high variability

of epileptic activity — for example, focal and generalized

seizures [18]. One of the most common approaches to epilepsy

diagnostics is electroencephalogram (EEG) study: the patients

are monitored for a prolonged period with occasional func-

tional trials to stimulate the arousal of epileptiform activity

[19]. The method is fairly reliable, but its main issue is the

necessity of manual EEG data deciphering. The common way

of doing this is visual EEG analysis, however, it requires much

effort and involves human factor. Therefore, this direction of

epilepsy diagnostics is in dire need of automation. While fully

automated detection of epileptic seizures seems very attractive,

even the modern methods in this field still possess a high

chance of misdiagnosis. Such a mistake can have a heavy

impact on the patient’s physical and mental health and require

its own treatment and rehabilitation. The probable solution

here is partial automation in epilepsy diagnostics — some

algorithm performs data analysis and provides preliminary

results, but the expert makes the final decision. This principle

lies in the foundation for Clinical decision support system

(CDSS) development [20].

One of the most promising approaches to automated epilep-

tic seizure detection is machine learning (ML) [21]. A wide

variety of ML techniques have been applied to this task,

including support vector machine (SVM) [22], [23], k-nearest

neighbor (KNN) [24], deep learning [25]. However, epileptic

data can be variable and heavily under-represented leading to

a non-robust EEG footprint of an epileptic pattern. Epileptic

pattern can differ greatly between patients and even between

seizures of the same patient since there are many types of

epilepsy and disease can progress with time [16].
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This issue leads to situation where direct application of

ML classifier to raw EEG dataset may not produce enough

sensible patterns. ML approach requires use of informative

input features, that are commonly derived from time and fre-

quency domains of EEG data [26]. For example, repeatability,

regularity (periodicity), synchronicity and amplitude variation

of EEG can be considered as major time-domain features

able to differentiate epileptic seizure from normal activity

[27]. Different types of transformation techniques are used

for the extraction of significant statistical features including

discrete wavelet transformation (DWT), continuous wavelet

transformation (CWT), Fourier transformation (FT) [28], [29].

Many researchers proposed time-domain based features —

for example, line length, frequency and energy in works of

Logesparan et al. [30] and Guerrero-Mosquera [31]. However,

it is crucial to analyze obtained feature space in order to find

the most important features and perform feature reduction

procedure. In this work, we aimed to propose ML-based

approach to epileptic EEG marking that uses specific set of

features instead of raw EEG signals.

II. MATERIALS AND METHODS

A. Dataset

The experimental dataset was provided by National Medical

and Surgical Center named after N. I. Pirogov of Russian

Healthcare Ministry (Moscow, Russia). The dataset includes

anonymized long-term EEG and video-monitoring data of 30

patients, who were treated in the Department of Neurology

and Clinical Neurophysiology between 2017 and 2019. The

data were collected during routine medical procedures and

include continuous EEG and video monitoring during every-

day activity. During the monitoring, patients kept a regular

daily routine with occasional standard physiological trials

such as photic stimulation and hyperventilation. Length of the

monitoring varied from 8 to 57 hours and depended on the

patient’s condition and diagnosis. Each patient had from one

to five epileptic seizures during the time of the monitoring.

While all the patients were subjected to physiological trials,

none of the seizures was triggered by photic stimulation or

hyperventilation; i.e., all epileptic seizures were spontaneous.

The long-term EEG and video-monitoring data of the patients

were analyzed by the experts from the Center. All 30 patients

were diagnosed with focal epilepsy, and all epileptic seizures

were marked on the data.

B. Data acquisition and preprocessing

A “Micromed” encephalograph (Micromed S.p.A., Italy)

was used for EEG recording. EEG signals were recorded for

25 channels according to the international “10–20” system

with a ground electrode placed on the forehead and reference

electrodes placed at the ears. EEG signals were recorded with

sampling rate of 128 Hz. A video-monitoring system was used

to monitor patients’ states for easier analysis and segmentation

of experimental data.

Experimental EEG data can be contaminated by various

external noises (for example, power grid or cellphone interfer-

ence) as well as physiological artifacts (heartbeat, breathing,

muscle activity), especially during prolonged recording [32],

[33]. To restrain these noise components we applied bandpass

filter with cutoff frequencies of 1 and 60 Hz and 50-Hz notch

filter. Some artifacts like blinking can interfere with effective

frequency range of EEG signals (1 − 30 Hz). To remove

these artifacts, we used the standard procedure based on an

Independent Component Analysis (ICA) [34].

To prepare the data for further feature analysis we per-

formed a time-frequency analysis of EEG signals using con-

tinuous wavelet transform (CWT) with Morlet mother wavelet

function [35], [36]. We considered wavelet power (WP) in

range 2− 30 Hz [37]:

Wn(f, t) = |wn(f, t)|, (1)

where n = 1, 2...N is the number of EEG channel (N = 25
for the considered dataset), f and t are the frequency and time

point, wn(f, t) are the coefficients of CWT.

Then we “downsampled” the data. At first, we averaged

WP over the 25 EEG channels. This step can be explained by

the features of the analyzed data. During focal seizures, few

EEG channels near the focus demonstrate distinct activity, so

even after averaging over the channels WPs for normal and

pathological activity differ drastically. Thus, we calculated WP

averaged over EEG channels (AWP) as:

E(t) =
1

N

N
∑

n=1

Wn(f, t)df, (2)

Then we divided each EEG recording into 60-second inter-

vals Tm, where m = 1, 2...M , M = L//60, L — the length

of EEG recording in seconds, “//” stands for integer division.

The choice of such interval length is justified by the average

duration of an epileptic seizure — from 30 to 120 s [38]. AWP

values were calculated for each time interval m and averaged

over the whole length of the interval to obtain downsampled

AWP (DAWP):

em =
1

∆T

∫

t∈Tm

E(t)dt, (3)

where ∆T is the length of each interval Tm (∆T = 60 s).

C. Feature extraction and machine learning

We have chosen downsampled averaged wavelet power in

range 2 − 30 Hz as a basic feature. Then we introduced

additional features based on seizure behavior in EEG data. It is

well-known that epileptic seizures demonstrate distinct activity

on EEG signals [2], so we considered some standard measures

that can help to detect this activity — Mean and V ariance.

Additionally, in our recent works [23], [39] we showed that

during the seizure WP differs between low frequency (2 − 5
Hz) and high frequency (5−30 Hz) ranges. According to this

observation we considered difference between DWPs averaged

over low and high frequencies as another feature (FreqDiff ).

If we consider DWP spectrum in each time interval Tm as a
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vector, then we can introduce cosine similarity between two

spectra. Cosine similarity is often used to assess similarity

in data, and it is especially popular in ML methods [40],

[41]. For our research we used two cosine similarity-based

features. The first feature (SimToMean) was introduced as

cosine similarity between DWP spectrum at given time interval

Tm and mean DWP spectrum for the patient. We suppose that

this feature can additionally emphasize the peculiar behavior

of seizure in contrast to normal EEG. The second feature

(SimToNeighbours) was introduced as mean cosine simi-

larity between DWP spectrum at given time interval Tm and

each DWP spectrum from neighboring intervals (Tm−3, Tm−2,

Tm−1, Tm+1, Tm+2, Tm+3). This feature is aimed to help in

detection of “sudden” epileptic behavior.

Thus, we derived five new features from the data: Mean,

V ariance, SimToNeighbours, SimToMean, FreqDiff .

We aimed to use them along with original DWP spectra to

construct ML model. However, each DWP spectrum contains

many features — spectrum was calculated in 2− 30 Hz range

with 0.1 Hz step. Large number of features negatively affects

time for ML model training. Moreover, DWP on neighboring

frequencies, such as 2.1 and 2.2 Hz, are highly correlated,

which leads to data redundancy. To lower the dimensionality

of feature set we used Principal Component Analysis (PCA)

[42]. The analysis showed that first two components (PCA0
and PCA1) contain 97.18% of all information from the

initial data. Additionally, correlation analysis showed high

correlation between Mean and PCA0, so we decided to

remove Mean from the feature set. In the end, for constructing

ML model we used six features: PCA0, PCA1, V ariance,

SimToNeighbours, SimToMean, FreqDiff .

We considered several candidates for ML model, including

RandomForest [43], ExtraTrees [44] and GradientBoosting

[45] Classifiers. We chose XGBoost Classifier [46] since it

commonly provides exceptional classification.

In training ML model we used custom cross-validation

function. In our case the model is trained on 29 patients and

tested on the one remained patient. This approach imitates

situation in medical practice when we have ML algorithm

trained on K patients and we need to diagnose a new, K+1-

th, patient, after that we can retrain the algorithm on K + 1
patients and prepare it for K + 2-th patient etc.

III. RESULTS

To assess the efficiency of classifier we considered several

characteristics derived from a confusion matrix [47]. Any

binary confusion matrix uses the four kinds of results (true

positives, false negatives, false positives, and true negatives)

along with the positive and negative classifications. In our

research epileptic episodes are referred as “positive” cases

and normal activity episodes are referred as “negative” cases.

According to this labeling:

• True Positive (TP) — number of correctly identified

epileptic seizures.

• True Negative (TN) — number of correctly identified

episodes of normal EEG.

Table1. Results of data analysis with ML classifier
Patient # TP TN FP FN recall precision F1 score

1 3 1708 0 0 1 1 1

2 1 371 0 0 1 1 1

3 2 3427 0 0 1 1 1

4 1 325 0 0 1 1 1

5 1 321 0 0 1 1 1

6 2 236 0 0 1 1 1

7 1 409 0 0 1 1 1

8 1 428 0 0 1 1 1

9 2 395 0 0 1 1 1

10 1 1 0 0 1 1 1

11 1 426 0 0 1 1 1

12 5 2981 0 0 1 1 1

13 0 412 0 1 0 0 0

14 1 1154 0 0 1 1 1

15 4 3205 0 1 0,8 1 0,89

16 1 311 0 0 1 1 1

17 1 341 0 0 1 1 1

18 2 431 0 3 0,4 1 0,57

19 1 438 0 0 1 1 1

20 1 157 0 0 1 1 1

21 1 419 0 0 1 1 1

22 2 318 0 1 0,67 1 0,8

23 2 1633 0 0 1 1 1

24 3 2005 0 0 1 1 1

25 1 396 0 0 1 1 1

26 4 349 0 0 1 1 1

27 1 191 0 0 1 1 1

28 1 420 0 0 1 1 1

29 1 424 0 0 1 1 1

30 4 367 0 0 1 1 1

mean 0,929 0,966667 0,942

SE 0,039504 0,033333 0,036136

• False Positive (FP) — number of wrongly identified

epileptic seizures, i.e. episodes of normal EEG identified

as seizures.

• False Negative (FN) — number of missed epileptic

seizures, i.e. seizures identified as episodes of normal

EEG.

Using these characteristics, we evaluated the efficiency of

our algorithm in terms of recall, precision and F1score,

where

recall =
TP

TP + FN
, (4)

precision =
TP

TP + FP
, (5)

and F1score is the harmonic mean of the precision and

recall.
For the analyzed dataset the ML algorithm provided the

following results (see Table 1).

As one can see from Table 1, the classifier provides:

recall = 0.93 ± 0.04 (mean ± standard error), precision =
0.97± 0.03, F1score = 0.94± 0.04.

IV. CONCLUSION

In this work, we proposed ML-based approach to epileptic

EEG marking. We analyzed raw EEG data and derived a set of
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features from it. We trained ML model with custom approach

that imitates application of such classifier in medical practice.

The algorithm demonstrated high efficiency in classifying

epileptic EEG data, especially taking into account high vari-

ability of patients’ diagnoses. We suppose that developed

approach could be used in CDSS, where the classifier is used

for preliminary EEG marking.
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Makarov, A. N. Pavlov, E. Sitnikova, A. N. Pisarchik, J. Kurths, and
A. E. Hramov, “Statistical properties and predictability of extreme
epileptic events,” Scientific reports 9(1), pp. 1–8, 2019.

[40] C. Luo, J. Zhan, X. Xue, L. Wang, R. Ren, and Q. Yang, “Cosine
normalization: Using cosine similarity instead of dot product in neural
networks,” in International Conference on Artificial Neural Networks,
pp. 382–391, Springer, 2018.

[41] K. Park, J. S. Hong, and W. Kim, “A methodology combining cosine
similarity with classifier for text classification,” Applied Artificial Intel-

ligence 34(5), pp. 396–411, 2020.

[42] H. Abdi and L. J. Williams, “Principal component analysis,” Wiley

interdisciplinary reviews: computational statistics 2(4), pp. 433–459,
2010.

104



[43] G. Biau and E. Scornet, “A random forest guided tour,” Test 25(2),
pp. 197–227, 2016.

[44] A. Sharaff and H. Gupta, “Extra-tree classifier with metaheuristics ap-
proach for email classification,” in Advances in computer communication

and computational sciences, pp. 189–197, Springer, 2019.
[45] S. Peter, F. Diego, F. A. Hamprecht, and B. Nadler, “Cost efficient gra-

dient boosting,” Advances in neural information processing systems 30,
2017.

[46] T. Chen, T. He, M. Benesty, V. Khotilovich, Y. Tang, H. Cho, K. Chen,
et al., “Xgboost: extreme gradient boosting,” R package version 0.4-

2 1(4), pp. 1–4, 2015.
[47] S. V. Stehman, “Selecting and interpreting measures of thematic clas-

sification accuracy,” Remote sensing of Environment 62(1), pp. 77–89,
1997.

105


