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Abstract—The problem of calculation of dynamical parameters of chaotic regimes of self-sustained oscilla-
tions using point processes is discussed. The “integrate-and-fire” model is used to exemplify the constraints
of the method for attractor reconstruction using a sequence of time intervals between the time instants of
pulse generation. The conditions of validity for calculation of the largest Lyapunov exponent and recommen-
dations for the most accurate determination of dynamical parameters for complex oscillatory regimes in
dynamical systems reconstruction using point processes are formulated.
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Point processes in which information on the system
dynamics is contained in time instants of occurrence
of some events (for example, single pulse generation
instants) are widely known in many fields of science
and technology [1]. One of the conventional models
of point pulse generation is the integrate-and-fire
model, which is capable of describing the dynamics
of systems of different nature: from delta–sigma con-
verters applied in communication engineering [2] to
the electric activity of neurons and their ensembles
[3–5]. The integrate-and-fire model implies integra-
tion of signal S(t) at the input of the threshold device,

 (1)

beginning from time instant Ti. When integral (1)
reaches fixed threshold value θ, a single pulse is gener-
ated and the integral value is set to zero. The time
intervals between the pulses Ii = Ti + 1 – Ti are the car-
riers of information on the input process, and, with
this information available, it is necessary to quantita-
tively describe the dynamics of the process S(t) at the
input of the threshold device. In the framework of the
dynamical systems theory, the problem of recon-
structing the attractor corresponding to the dynamical
regime S(t) can be solved based on intervals Ii [6–8],
and its metric and dynamical characteristics can be
calculated [8–10], including the correlation dimen-
sion, Lyapunov exponents, etc. Strict theoretical
results substantiating the fundamental possibility of
reconstruction were obtained in the framework of
Sauer’s theorem [11], which is a generalization of Tak-
ens’ theorem [12] to the case of point processes. This

theorem, however, holds only under the condition of
high pulse generation rate in the integrate-and-fire
model. In the case of low generation rate the possibil-
ity of attractor reconstruction can only be verified
numerically. Numerical studies performed for the
integrate-and-fire and other models of threshold sys-
tems established the possibility of diagnostics of cha-
otic and hyperchaotic dynamics regimes for point pro-
cesses [13–17]. The domain of their applicability for
the integrate-and-fire model, however, has not been
studied in detail.

In this letter, we discuss the capabilities and con-
straints of quantitative description of dynamical
parameters of complex oscillation regimes for point
processes of the integrate-and-fire model. For a high
pulse generation rate, integral (1) can be approxi-
mately calculated based on a simple variant of numer-
ical integration, the method of rectangles,

 (2)

If the pulse generation rate is high, i.e., Ii takes small
values (conditions of applicability of Sauer’s theorem
[11]), the accuracy of attractor reconstruction for the
point process is high. With decreasing generation rate,
approximate equality (2) does not hold any more. In
accordance with the mean value theorem, there exist
time instants Ti ≤  ≤ Ti + 1 for which the values of
the input process S( ) can be exactly reconstructed,
S( ) = θ/Ii. However, since information on the
dynamics between instants Ti is absent in the analysis
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of point processes, there appears uncertainty δ in
determining corresponding times  = (Ti + Ti + 1)/2 +
δi. Let us consider the consequence of this uncertainty
in calculation of the standard parameter of chaotic
oscillation regimes, the largest Lyapunov exponent.
Let us take the following input signal as an example:
S(t) = x(t), where x(t) is the coordinate of Rössler
model,

 (3)

for a = 0.15, b = 0.2, and c = 10. Threshold level θ
determines the pulse generation rate in the integrate-
and-fire model. The studies demonstrated that, in the
range θ < 0.53, which corresponds to approximately
four pulses per characteristic oscillation period, the
application of the reconstruction method [10] pro-
vides correct estimation of the largest Lyapunov expo-
nent (λ1). This can be performed, however, only for
appropriately chosen parameters of the algorithm for
calculating the largest exponent [18], first of all, the
domain of applicability of linear approximation (l) in
determining the average exponential rate of trajecto-
ries divergence (see figure). Our studies explain such
a dependence of the results on parameter l.

Let us first consider the case θ = 5, which corre-
sponds to generation of approximately 43 pulses per
characteristic period of chaotic oscillations. For such a
high pulse generation rate, signal x(t) is reconstructed
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using the point process with relatively low error. This
results in the applicability of Sauer’s theorem [11] and
the possibility of attractor reconstruction. Note that
these results practically coincide with λ1 calculated
using the signal x(t) (see figure, black circles). Depen-
dence λ1(l) decreases both for large l and small l. The
reason that dependence λ1(l) decreases for l ≥ 0.1 is
that this interval is beyond the domain of applicability
of linear approximation. If the distance between tra-
jectories in the phase space exceeds approximately
10% of the attractor size, the rate of trajectories diver-
gence is no longer exponential. As a consequence, the
value of λ1 is underestimated because the perturbation
vector becomes smaller than its expected value. The
corresponding constraints can be approximately
described as

 (4)

where t' is the time between renormalizations and c
and d are the constants (c @ d). These constraints
appear independently of the threshold level value,
including in calculation of Lyapunov exponent using
variable x(t) of model (3). It can be seen from the fig-
ure that they are approximately the same in all the
considered cases.

In the region of small values of l, the decreasing
character of λ1(l) in calculations using time realization
x(t) is connected with the errors of vector orientation
that arise in the case of very frequent renormaliza-
tions. One more factor limiting from above the esti-
mate of the Lyapunov exponent in analysis of point
processes is uncertainty δ in input signal reconstruc-
tion. If δ takes small values (as is in the considered case
θ = 5), λ1 calculated using the sequence Ii is almost the
same as that determined using the known realization
x(t) (see figure). With increasing δ, however, the value
of λ1 decreases. Let us consider for simplicity the case
of a similar uncertainty for the perturbation vector
before and after renormalization [18]; then, depen-
dence λ1(l) can be approximately estimated as

 (5)

where r is the initial chosen perturbation vector. The
larger δ, the more strongly λ1 is limited from above
(see figure). As a consequence, the range of l in which
the largest Lyapunov exponent can be correctly deter-
mined exhibits significant narrowing with increas-
ing θ. Thus, for θ = 30 (seven pulses per characteristic
oscillation period), it is noticeably smaller than for θ =
5, and for θ = 50 constraints (4) and (5) for λ1 result in
the fact that the interval corresponding to correct esti-
mates of λ1 = 0.087 is narrower by approximately a fac-
tor of 2, which illustrates the importance of choosing
parameter l.

Thus, in this letter, we elucidated the constraints of
the method for calculating dynamical parameters
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The largest Lyapunov exponent as a function of the
parameter defining the domain of applicability of linear
approximation for the pulse generation rates correspond-
ing to the threshold values θ = 5, 30, and 50. Black circles
show the results of calculation using the signal x(t) of
model (3). Constraints (5) and (4) are shown in insets 1
and 2. Dashed line shows the factor calculated using the
equations of model (3).
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using the point process of the integrate-and-fire
model. In our opinion, the calculation of the func-
tion λ1(I) and the maximum of this function (averaged
over variation of the algorithm parameters, the delay
time, and the dimension of the space of embedding) is
a method for very accurate determination of the
dynamical parameters of complex oscillatory regimes
in reconstructing dynamical systems using point pro-
cesses. This improvement of the method [10] increases
the reliability of estimates for the largest Lyapunov
exponent.
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