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Abstract—A method of identification of the phases of synchronous and asynchronous intervals in the time
realizations of interacting chaotic systems representing elements of a network with complex coupling topology
in the state of transition to the generalized synchronization regime is proposed. The method allows determin-
ing the duration of the phases of synchronous and asynchronous dynamics, which potentially allows analyz-
ing the statistical characteristics of the intermittent behavior of the discussed systems.

DOI: 10.1134/S1063785017040113

The generalized synchronization regime is one of
the most interesting known types of chaotic synchro-
nization [1], such as phase synchronization, lag syn-
chronization, and complete synchronization [2–4].
Originally, the concept of generalized synchronization
was introduced for two unidirectionally coupled oscil-
lators [2], and it was extended later to include mutually
coupled oscillators and complex networks [5–7]. Dif-
ferent dynamic systems can play the role of interacting
oscillators. In so doing, the interacting oscillators can
have different dimensions of the phase space [4].

Currently, the phenomenon of generalized syn-
chronization is being investigated in detail for a wide
range of interacting systems, such as unidirectionally
and mutually coupled discrete time systems [8, 9],
along with unidirectionally [10, 11] and mutually [5]
coupled f low systems (including spatially distributed
systems [12]). Analysis of networks of nonlinear ele-
ments exhibiting complex coupling topology [13] rep-
resented the next step in the investigation of the effect
of generalized chaotic synchronization. In particular,
the process of setting up the generalized synchroniza-
tion regime upon transition from an asynchronous
dynamics to a synchronous one in a small network of
logistic maps has been studied in [14].

The processes of setting up a synchronous regime
with increasing intensity of coupling between the
interacting systems are important for understanding
the nature of chaotic synchronization. It is well known
that the transition from the asynchronous behavior to
the synchronous regime in two coupled chaotic oscil-
lators is accompanied by an intermittence wherein the

intervals of synchronous dynamics (laminar phases)
are interrupted by intervals of asynchronous behavior
(turbulent phases) in time realizations of the discussed
systems at a fixed value of the coupling parameter. In
so doing, specific types of intermittence correspond to
different kinds of the chaotic synchronization [15–18]. It
is known that, in the case of two unidirectionally cou-
pled oscillators, the transition to the generalized cha-
otic synchronization regime is accompanied by “on–
off” intermittence [17]. At the same time, it is obvious
that setting of the generalized chaotic synchronization
regime in a substantially more complex system, such
as a network of coupled oscillators, can have a differ-
ent scenario or, at least, different characteristics of the
intermittent behavior, although setting up the general-
ized chaotic synchronization regime in networks with
complex coupling topology through “on–off” inter-
mittence cannot be ruled out. As of today, this ques-
tion remains completely open.

Determination of the type of the intermittent
behavior is largely based on the analysis of the statisti-
cal characteristics, such as the dependence of the aver-
age length of the laminar phases on the supercriticality
parameter or the distribution of the length of the lam-
inar behavior intervals at fixed values of control
parameters [19]. However, it turns out to be impossi-
ble to distinguish between the intervals of synchronous
and asynchronous behavior by means of the tradi-
tional method [17] based on using an auxiliary system
[4] in the case of setting up the generalized chaotic
synchronization regime in the networks with complex
coupling topology, because this method cannot be
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used when the system contains mutually coupled
oscillators [5]. Correspondingly, the key problem in
the investigation of transition to the generalized syn-
chronization regime in the network of nonlinear oscil-
lators consists in creation and approbation of the
method of identifying the characteristic intervals of
synchronous and asynchronous dynamics (laminar
and turbulent phases) in the time realizations of the
interacting systems.

Thus, this work aims at developing a method of dis-
tinguishing between the characteristic phases of
behavior in complex networks in the vicinity of the
generalized synchronization regime boundary.

The approach proposed for identifying the laminar
and turbulent phases of behavior of the network of
interacting oscillators is based on the nearest-neighbor
method [2, 20]. Let us analyze two oscillators of the
network under consideration, e.g., the ones with num-
bers i and j. It is necessary to choose control point 
on the attractor in the phase space of one of the oscil-
lators (e.g., the ith one); find N of its nearest neighbors

, such that ||  – || < δ for the chosen
control point; and fix the corresponding to them
images of the nearest neighbors,  and ,
in the phase space of the jth oscillator [2, 20]. Average
distance S between the images of the control point
and the nearest neighbors in the phase space of the jth
oscillator should be considered as the quantitative
characteristic of the degree of synchronism (in the
sense of generalized chaotic synchronization) of the
ith and  jth oscillators under consideration. If we
define its value as

(1)

the character of dynamics for two nodes of the net-
work (synchronous/asynchronous) at the moment of
time corresponding to the ith system location at
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selected control point  can be determined based on
the relation between the value of  and some prelim-
inarily specified threshold value Sc (larger/smaller).
Covering the attractor of the ith oscillator by a large
number of control points  with a high cover-
age density and using interpolation, it becomes possi-
ble to get an idea as to what dynamics characterizes
interaction of the selected network oscillators at any
point of the attractor. Such an approach allows esti-
mating the average distance between the images of
nearest neighbors S(t) at any moment of time and,
correspondingly, determining the instant phase of the
dynamics of interaction of the two oscillators and
identifying the intervals of synchronous and asynchro-
nous dynamics for the two discussed network nodes.

To illustrate the method, in the present work, we
chose a model system in the form of a network of cou-
pled f low systems consisting of K = 5 mutually cou-
pled Ressler oscillators. The evolution of the nth net-
work element (n = 1, …, K) is described by the follow-
ing set of equations:

(2)

where a = 0.15, p = 0.2, and c = 10 are the control
parameters; ε is the coupling parameter; and C = {Cij}
is the matrix characterizing the coupling topology
between the network oscillators (Cnm = 0 corresponds
to the absence of action of the mth element on the nth
oscillator, Cnm = 1 corresponds to the presence of
action of the mth element on the nth oscillator, and
Cnn = ). To ensure that there is a mismatch

between the interacting oscillators, the parameters
responsible for the eigenfrequencies of oscillation of
the partial systems were chosen as follows: ω1 = 0.95,
ω2 = 0.9525, ω3 = 0.955, ω4 = 0.9575, and ω5 = 0.96.
The type of coupling between the network elements
was chosen to be bidirectional in the “each-to-each”
form, i.e., Cnm = 1 (n ≠ m). We chose the first (n = 1)
and the second (n = 2) nodes of the described network
for illustration of the method. The set of control points

 was specified for the second oscillator, for

which points  were found in the first oscil-

lator. After that, we determined the values of ,
which were used, in turn, to interpolate the values
of S(t).
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Fig. 1. Coverage of the chaotic attractor of the second

oscillator by control points .
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The coverage of the chaotic attractor of the second

oscillator (n = 2) by control points  is illus-
trated in Fig. 1. Information about the regions of the
chaotic attractor in which synchronous dynamics
already takes place allows detecting the beginning and
the end of the interval of synchronous behavior of the
discussed oscillators. Part of the time dependence of
the average distance S(t) between the images of the
nearest neighbors is presented in Fig. 2. Regions “T”
correspond to the intervals of asynchronous dynamics,
in which the condition S(t) > Sc is fulfilled. In turn, the
regions marked by the symbol “L” correspond to the
synchronous behavior regime.

Thus, the proposed method allows distinguishing
between the intervals of characteristic laminar and
turbulent behavior in the system exhibiting a complex
intermittent dynamics, which will allow analyzing the
transition to the generalized synchronization regime
in a network of oscillators through intermittence in the
future.
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Fig. 2. The time dependence of the average distance S(t)
between the images of the nearest neighbors. Symbols “T”
mark the regions of asynchronous dynamics of the first
and second oscillators (“turbulent phase”), while sym-
bols “L” mark the regions of synchronous behavior (“lam-
inar phase”).
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