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ABSTRACT

We consider two small-world networks of Hodgkin-Huxley neurons interacting via inhibitory coupling. We found
that synchronization indices (SI) in both networks oscillate periodically in time, so that time intervals of high
SI alternate with time intervals of low SI. Depending on the coupling strength, the two coupled networks can be
in the regime of either in-phase or anti-phase synchronization. We suppose that the inherent mechanism behind
such a behavior lies in the cognitive resource redistribution between neuronal ensembles of the brain.
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1. INTRODUCTION

Perhaps one of the most exciting network theory applications is to describe collective neuronal activity underlying
particular brain functions. One way of doing so would be to develop a mathematical model build on existing
knowledge about the functioning of a single neuron and its interaction with the others. In this respect, advances
in chemistry and biology allow the creation of neuron-like models reflecting the basic principles of the single
neuron activity. Among them one can highlight the integrate-and-fire,1 Morris-Lecar,2 FitzHugh-Nagumo,3,4

Hindmarsh-Rose,5 Hodgkin-Huxley.6 The Hodgkin-Huxley neuron (HH) is one of the most complex bio-inspired
models describing the initiation and propagation of action potentials in neurons and taking into account the
majority of biological processes. The spiking activity produced by this model coincides with the one generated
by the real neuron.7

Investigation of dynamics of spiking neural networks has attracted much attention in recent years.8–12 Al-
though there is bulk information about certain aspects of neuronal dynamics, the features of collective neuronal
activity remain poorly understood. At the same time, it plays an essential role in the functioning of brain
neuronal networks. Study of brain activity is a very important task at the present time.13–17 According to the
functional magnetic resonance imaging (fMRI) studies, the whole-brain network activity is generated through the
interaction of multiple functional subnetworks during either a resting state or task accomplishing. These func-
tional subnetworks include a dorsal attention network, a fronto-parietal network, an executive control network,
a default mode network, etc.18

The collective processes resulted from the functional interaction between the remote populations of the
cortical neurons subserve the cognitive performance during the demanding tasks. For instance, when the task
complexity is high brain engages the additional resource by involving multiple neuronal populations. In the
visual processing tasks, the small amount of the sensory information can be processed by the occipito-parietal
network, while increasing information complexity requires additional activation of the prefrontal regions.19,20

Finally, collective neuronal activity underly cognitive performance during prolonged cognitive tasks. In this
case, the brain dynamically redistributes the cognitive load among the multiple cortical regions.

The current view on neuronal communication highlights a vital role of the phase coherence in functional
interaction between remote neuronal ensembles. Let us consider the interaction between a pair of neurons. A
presynaptic neuron fires the neurotransmitter as a result of an action potential entering its axon terminal. A
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postsynaptic neuron receives the neurotransmitter and may experience an action potential if the neurotransmitter
is strong enough. In the brain, a postsynaptic neuron receives input signals from several presynaptic neurons
simultaneously. At the same time, it responds primarily to those neurons with which it is coherent. In the absence
of coherence, input signals come to postsynaptic neuron at random phases of its excitability cycle, having a low
connectivity efficiency. Thus, effective communication between the neurons requires the phase synchronization
of their spiking activity.

We consider two small-world networks of Hodgkin-Huxley neurons interacting via inhibitory coupling. We
found that synchronization indices (SI) in both networks oscillate periodically in time, so that time intervals of
high SI alternate with time intervals of low SI. Depending on the coupling strength, the two coupled networks
can be in the regime of either in-phase or anti-phase synchronization. We suppose that the inherent mechanism
behind such a behavior lies in the cognitive resource redistribution between neuronal ensembles of the brain.

2. NUMERICAL MODEL

We consider the network of N = 100 Hodgkin-Huxley neurons. The time evolution of the transmembrane
potential of the HH neurons is given by6

Cm
dVi
dt

= −gmaxNa m3
ihi(Vi − VNa)− gmaxK n4i (Vi − VK)−

− gmaxL (Vi − VL) + Iexi + Isyni

(1)

where Cm = 1µF/cm3 is the capacity of cell membrane, Iexi is an external bias current injected into a neuron in
the network, Vi is the membrane potential of i-th neuron, i = 1,...,N , gmaxNa = 120mS/cm2, gmaxK = 36mS/cm2

and gmaxL = 0.3mS/cm2 receptively denote the maximal sodium, potassium and leakage conductance when all
ion channels are open. VNa = 50mV , VK = −77mV and VL = −54.4mV are the reversal potentials for sodium,
potassium and leak channels respectively. m, n and h represent the mean ratios of the open gates of the specific
ion channels. n4 and m3h are the mean portions of the open potassium and sodium ion channels within a
membrane patch. The dynamics of gating variables (x = m,n, h) are given:

dxi
dt

= αxi
(Vi)(1− xi)− βxi

(Vi)xi, x = m,n, h (2)

αx(V ) and βx(V ) are rate functions, described by21

αm(V ) =
0.1(25− V )

exp[(25− V )/10]− 1
(3)

βm(V ) = 4 exp(−V/18) (4)

αh(V ) = 0.07 exp(−V/20) (5)

βh(V ) =
1

1 + exp[(30− V )/10]
(6)

αn(V ) =
0.01(10− V )

exp[(10− V )/10]− 1
(7)

βn(V ) = 0.125 exp(−V/80) (8)

Isyni is the total synaptic current received by neuron i. We consider coupling via chemical synapses. The
synaptic current takes the form22

Isyni =
∑

j∈neigh(i)

gcα(t− tj0)(Erev − Vi) (9)

where the alpha function α(t) describes the temporal evolution of the synaptic conductance, gc is the maximal
conductance of the synaptic channel and tj0 is the time at which presynaptic neuron j fires. We suppose α(t) =
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e−t/τsynΘ(t), there Θ(t) is the Heaviside step function and τsyn = 3ms. The initial conditions of all neurons
correspond to the oscillatory basin of attraction of individual neuron.

To investigate synchronization inside each network we calculate synchronization index as follows:23,24

S =

√√√√ 1

T

T∑
n=1

ξn, (10)

where ξn is the standard deviation given as

ξn =
1

N

N∑
i=1

(
x(i)n

)2
−

(
1

N

N∑
i=1

x(i)n

)2

. (11)

where T is a number of iterations, N is a number of neurons in the network. The smaller S, the better the
synchronization; S = 0 means complete synchronization. We apply filtering in [0.004,0.015] Hz frequency band.

To investigate correlation between synchronization indexes S(1) and S(2) of N1 and N2 networks respectively
we calculate Pearson’s linear correlation coefficient as follows25

r =

∑T
n=1(S

(1)
n − S

(1)
)(S

(2)
n − S

(2)
)√∑T

n=1(S
(1)
n − S

(1)
)2
√∑T

n=1(S
(2)
n − S

(2)
)2

(12)

where T is a number of iterations. The value r = 1 means a perfect positive correlation and the value r = −1
means a perfect negataive correlation.

3. RESULTS

We investigate the dynamics of the network presented on Fig. 1. The external stimulus of constant current with
amplitude A is applied to the input network of Nex = 5 neurons. All of them are connected to each other
with the coupling strength chosen randomly from the range [0,0.15]. This network is connected to the two other
networks of N1 = N2 = 50 neurons by one-directional excitatory couplings with coupling strength gc = 0.05

A

0 t
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stimulus

N
 
 = 50

N
2
 = 50

Nex = 5
SW, g
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c

in

Figure 1. Network model. The external stimulus with amplitude A is applied to the input network of Nex = 5 neurons.
The network is connected to the two other networks of N1 = N2 = 50 neurons by one-directional excitatory couplings.
The networks N1 and N2 are connected to each other by two-directional inhibitory couplings with coupling strength gexc
and probability p = 30%. Inside N1 and N2 networks neurons are connected to each other according to “small-world”
(SW) topology with coupling strength ginc .
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Figure 2. Correlation of synchronization indexes S(1) and S(2) versus coupling strength between the networks gexc for
different values of the strength of inside couplings ginc = 1.0 (black line), 0.9 (blue line) 0.8 (red line), 0.7 (green line), 0.6
(yellow line), 0.5 (purple line).

and probability p = 30%. The networks N1 and N2 are connected to each other by two-directional inhibitory
couplings with coupling strength gexc and probability p = 30%. Inside them neurons are connected to each other
according to “small-world” (SW) topology with coupling strength ginc .

We analyse neural dynamics of N1 and N2 networks. Excitatory coupling inside each network leads to
synchronization of these neurons. Since networks are interconnected via an inhibitory coupling, depending on
the coupling strength an anti-phase dynamics in the activities of them can be achieved. To investigate it we
calculate synchronization index (Eq. 10) for networks N1 and N2 and apply filtering in [0.004,0.015] Hz frequency
band corresponding to the low-frequency modulation of macroscopic signal of each network.

Fig. 2 illustrates the dependencies of synchronization indexes correlation on the coupling strength between
the networks for different values of the strength of inside couplings. Without connection between the networks,
when gexc = 0, correlation r is close to 0.15. Changing the coupling strength towards negative values at first leads
to small increasing of correlation up to 0.2 – 0.4. Then, with further decrease of gexc synchronization indexes
correlation goes to the negative values and reaches -0.8 value for gexc ≈ −0.3. After that, decrease is replaced by
growth, and r reaches 0.9 for gexc ∈ [−0.055,−0.07] depending on ginc . At last, correlation decreases and reaches
-0.8 value again for gexc ≈ −0.095. The less the coupling strength inside the networks the less the coupling
strength between the networks is needed to reach the maximal and minimal values of the correlation.

Figure 3 illustrates time series of synchronization indexes S(1) and S(2) for the networks N1 (a) and N2 (f)
and time-space diagrams of membrane potential for gexc = −0.1 (a-e) and gexc = −0.07 (f-j) sorted by the sums of
coupling strength of internal couplings gin (k,l) and external couplings gex (m,n). First 50 neurons correspond
to N1 network, second ones correspond to N2 neurons. Black color illustrates the inhibition of neurons of one
network by other neurons. Yellow color corresponds to spike generation, and one can see that thickness of
yellow lines of each network changes through time which is connected to the synchronization of neurons. The
thickness of yellow line and synchronization index are well correlated with each other: lower thickness means
better synchronization, hence lower S.

4. CONCLUSION

Having summarized, we have investigated the dynamics of complex network of Hodgkin-Huxley neurons. It
consists of 2 sub-networks. The input small network Nex receives external signal which is transferred into a
spike sequence. Then it is transmitted to two small-world N1 an N2 networks interacting via an inhibitory
coupling and working together to process the signal.

We have observed that the synchronization index in both networks periodically changes in time: the time
intervals with the high SI alternate with the time intervals where SI is low. We have calculated correlation
between them and found that when adjusting the strength of the inhibitory coupling one can observe SI in these
networks changes either in phase or out of phase.
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Figure 3. (a,f) Time evolution of synchronization indexes S(1) and S(2) for the networks N1 and N2 respectively. (b-e,g-j)
Time-space diagrams of membrane potential V and (k-n) corresponding to them sums of coupling strength of internal
couplings gin (left) and external couplings gex (right) versus the number of neuron i. 1 ≤ i ≤ 50 corresponds to N1

network, 51 ≤ i ≤ 100 corresponds to N2 network. For the left column (a-e) gexc = −0.1, for the right column (f-j)
gexc = −0.07.
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