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Description of real-world systems of interacting units by the means of network model is an
effective method of research both in macro- and microscale. In addition, using the simple one-
layer networks with one type of connections between the nodes when describing real-world
networks is inefficiently because of their complex structural and dynamical nature. Besides,
presence of similar features in real networks that are fundamentally different by their nature
provided a wide spread of proposed model in many fields of science for the acquisition of new
fundamental knowledge about functioning of the real network structures. For this reason the
object of this article is modelling of multiplex network build on the basis of real data about
professional interactions in world-wide musical community. The changes in characteristics in
in proposed model reflects structural and dynamical features of real network, such as scale-free
connection structure and clusters formation. Results obtained for multiplex network shows that
after uniting the isolated systems their topologies undergo noticeable changes. In particular,
significant changes in centrality values and in cluster formation inside the network were ob-
tained. Besides, the correlations between the characteristics and dynamics of these correlations
in process of uniting the isolated systems in general network. Obtained results confirm the
effectiveness of multiplex network model for studying structural and dynamical processes of
many real systems.
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Interaction

Many phenomena characterized by interaction of a lot of elements coupled in any
way, may be described with the help of network models. There is an unlimited number
of such systems in macro- and microscales: brain neural networks [1–3], complicated
biological systems in separate cells, as well as in the whole organism [4, 5], transport
nets [6, 7], networks of wireless mobile communications [8], social networks [9], systems
of science works citation [10–12], computer nets [13], etc. The fact deserving special
attention is that in spite of global difference many real networks have some common
fundamental properties: freely scaled structure of elements coupling and the tendency of
nodes to unite into clusters [14, 15]. The first property means that a net contains some
nodes (i.e. hubs or concentrators), whose degree (a number of coupling) far exceeds the
degree of all the other nodes. This can be explained by the additivity effect in real systems,
i.e. the ability of high-degree nodes to attract more coupling than low-degree nodes.

The second property is connected with dynamical processes, which influence on the
net structure, and with homeostasis principle [16], which is known of social networks as
Dunbar’s number, i.e. a suggested cognitive limit to the number of people with whom one
can maintain stable social relationships [17–19]. All these processes lead to the association
of social network members by different common features. This results in appearance
of cluster structures (communities) in the network. The nodes inside the clusters are
connected closer than with the nodes of some other clusters (communities).

The description of real systems with the help of traditional single-layer network (in
which the nodes are coupled by the same type of connections) sometimes can’t consider
all the aspects of elements interaction [20]. The examples of such connections are dif-
ferent kinds of mutual relations between the network members: friendship, professional
collaboration, etc. If we try to model such processes as spreading rumors [21–24] or epi-
demics [25], considering the social system as a traditional single-layer network, then the
obtained results will be very different from real life. Thus the researches, who describe
real systems, usually apply the model of multiplex network which implies that the nodes
have a possibility to interact with each other on different levels. Every level can be con-
sidered as separate layer of multiplex network, which has an identical set of nodes, but its
own unique structure. Herewith every node has not only the relations inside its layer, but
also the connection with its «prefiguration» on other layers. The scheme of such network
is shown in Fig. 1.

In this work we are modelling the complicated social network based in statisti-
cal data concerning professional activity of musicians. The analysis of characteristics

Fig. 1. Schematic illustration of two-layer multiplex
network structure

of this network allows to highlight the de-
gree of influence of different types of re-
lations upon the peculiarities of social net-
work, which are principally important for
studying the mechanisms of distribution of
different processes in society and under-
standing of regularities of these processes:
spread of diseases; public opinion forma-
tion; communities formation, etc. Thus the
understanding of structural and dynamical
peculiarities of real systems is achieved.
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The researched data

As a private example of social interaction we chose the all-world musicians com-
munity. The statistical data was taken from Allmusic.com [26], the database containing
the largest musical archive with complete information about musical genres, composes
and performers. The obtained data had two sets of parameters. The first of them reflected
the performers’ genre attachment, where two elements were coupled if the corresponding
musicians had performed the compositions belonging to the same genres. The second
data set was the list of professional connections between individuals, i.e. if the musicians
had worked on one or more albums together. The initial data set concerning the genres
of the musicians contained 32377 nodes and 117621 connections, the data set concerning
collaboration contained 34724 nodes and 123082 connections. The further data process-
ing involved the selection of the network main component, i.e. the greatest set of related
nodes [27]. It was taken into account that every node could belong to the main component
(1) of the both layers, (2) to anyone of the layers, or (3) to none of them (Fig. 1). In
this work we considered only the nodes belonging to (1) and (2) groups. Deleting all the
other nodes from the sets we selected the main coupled component which consisted of
N = 8279 nodes in every layer, and worked with it. This approach is typical for studying
real network structures, including social ones. It allows to avoid distortions of system
characteristics caused by the large number of nodes without connections, without loosing
information about basic observed tendencies.

Mathematical model

For the purposes of study we have constructed a model of multi-layer network.
The first layer is based on data of musicians genre (further G – genre), the second layer
represents the collaboration between them (further C – collaboration). The distributions of
nodes degree (dotted lines in Fig. 2) indicate that the network structure has the property
of free scaling: the dependencies may be approximated by the law P (D) = D−γ, where
D is the node degree, γ ≈ 2.4. (In Fig. 2 the approximation is shown by lines). Thus
the properties of the constructed network agree with really existing systems, which is an
important criterium of authenticity of the results, which are obtained with the help of this
system.

Fig. 2. Degree distribution for the networks G (a) and C (b) in logarithmic scale
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To study the network structure peculiarities and their mutual influence, we have
calculated several characteristics for unconnected layers and in presence of inter-layer
connections. These characteristics are: firstly, the nodes degrees for both cases, i.e., the
quantity of the connections of every node. Secondly, an important characteristic is the
betweenness centrality Bk, which represents the node loading and is equal to the quantity
of the shortest ways from every node to all the other nodes passing through the considered
node [28].

Bk =
∑

i̸=k ̸=j

σij(k)
σij

, (1)

where σij is the main quantity of the ways from node i to node j, and σij(k) is the
quantity of the ways passing through the considered node k.

One of the interesting network properties is the ability of its nodes to form groups –
clusters or modules. Detection of such structures in the network has an important practical
meaning in different areas of science, including the possibility to track the formation
of groups and communities in real social networks [29–31]. In order to characterize
the degree of attachment of a node to tightly bounded group, we use local clustering
coefficient.

Ci =
ti

qi(qi − 1)/2
, (2)

where i is the considered node, qi is the number of nearest neighbours of this node,
ti is the number of connections between the neighbours. This parameter characterizes
the possibility that two nearest neighbours of the considered nodes are also the nearest
neighbours for each other. The number ti is interpreted as total number of triangles
attached to the node i, and qi(qi − 1)/2 is the maximum possible number of triangles.
The clustering coefficient is equal to zero if the neighbouring nodes can’t have such
connection – the example of such structure is hierarchical tree. If all the neighbours of the
considered element have connections, then the clustering coefficient is equal to one.

However, to determine the number of mesoscopic structures in every layer and there
characteristics with the appearance of inter-layer connections, we have calculated a more
complex parameter, namely, network modularity [32]

M =
1

2m

∑
ij

(
Aij − γ

kikj
2m

)
δgigj , (3)

where m is the total network connections; Aij is the adjacency matrix; δgigj denotes the
Kronecker delta and is the indicator of equality of the groups gi and gj , to which the i
and j elements belong; ki is the i node degree and γ is the parameter denoting the value
of the communities and their number.

As one more characteristic we considered the Ei eigenvector centrality – another
type of centrality, defining the influence of the node upon the network [33]. Each node is
given an estimate based on the assumption that its connections with high-centrality nodes
contribute into its estimate more than the connections with low-centrality nodes. Thus,
the eigenvector centrality depends not only from the number of node connections but also
from the centrality of the connected nodes. This allows to pick out a small group of nodes
which has a significant impact on the network as a whole. At the same time, we exclude
from this group the nodes, which have a big number of connections, but whose influence
on the network does not extend beyond their own neighbors, i.e., isolated clusters with
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no impact in the scale of whole network. Thus, the eigenvector centrality represents the
eigenvector corresponding to the largest eigenvalue of the adjacency matrix

Ei =
1

λ

∑
j∈M

wijEj . (4)

Looking ahead it’s worth noting that because of their specificity, the values of this
parameter will be very different for the cases of connected and isolated layers.

Results of the analysis of the model network of professional relations

During the study we have analysed correlation relationships between all the param-
eters of the net. In this section we discuss only those dependencies, which most clearly
reflect the structural features of the system.

The characteristics shown in the previous section have been firstly calculated sepa-
rately for each network and then were united into a multiplex network for each layer of the
derived structure. This approach allows to determine how the layers within one complex
network affect on structural and dynamical characteristics of each other.

First of all we have analysed the dependencies between the nodes characteristics
inside the isolated layers, which are shown in Fig. 3. In the result of calculations it
has been found that the nodes betweenness centrality is in inverse correlation with the
clustering coefficient as in the network G, so as in the network C (see Fig. 3, a, b). This
indicates that if there are many shortest paths passing through the node, then the node has
a low clustering coefficient, i.e., is beyond the structure cluster. We can observe similar

Fig. 3. Correlations of nodes characteristics for layer G (a, c, e) and C (b, d, f ). Figures show the corre-
lations between clustering coefficient and betweenness centrality (a, b), node degree (c, d) and eigenvector
centrality (e, f )
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dependance between the node degree and its clustering coefficient (see Fig. 3, c, d).
This indicates that the cluster elements has a limited number of connections with their
neighbours.

At the same time the nodes having larger betweeness centrality and situated beyond
the clusters, can be considered as structure hubs. From the point of realistic view we have
two variants. At first, the more genres a musician performs, the less of his neighbours
play in one genre. This conclusion is logical, because there are too mane different genres
among the musicians, connected with the considered musician. At second, the more
active is the communication of the considered performer with the other ones, the less is
the communication of his neighbours with each other.

The inverse correlation between eigenvector centrality and clustering coefficient
(see Fig. 3, e, f ) indicates the presence of a large number of clusters, having a limited
number of inside links and showing a strong influence on the network because of large
eigenvector centrality of the included nodes. This result points to a heterogeneous structure
of a network, in which nodes with a high clustering coefficient are outside the central
cluster.

Now let’s discuss the characteristics of a network after combining it into a multi-
layer network P. Here the network of genres G is considered as the first layer and the
collaboration network C – as the second layer of network P.

In Fig. 4 one can see the changing of mediation centrality and eigenvector centrality
within the transition from isolated layer (y-axis) to multilayer network (x-axis). We can

Fig. 4. Correlation between centralities of the networks G (a, b) and C (c, d) before and after uniting of
the network; B1

p , B2
p , E1

p и E2
p – centralities of the nodes of first and second layer of multiplex network P,

respectively
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Fig. 5. Probability density for modularity parameter before uniting in general network (a) and after (b).
1 – modularity of the network G, 2 – modularity of the network C. X-axis and Y-axis are marked with
calculated communities and the values of probability density function, respectively

mark that for both layers the mediation centrality doesn’t demonstrate any changes within
the transition to multiplex network. (see Fig. 4, a, b). It indicates that, in spite of very
different criteria of layers construction, the same set of nodes has the largest mediation
centrality. Nevertheless, if we look at eigenvector centrality (see Fig. 4, c, d), we find
out that after the transition to multilayer network the value of this characteristic greatly
reduced for nodes that are in the genre layer. It is mostly connected with the specificity of
calculation of this characteristic. In the case of multiplex network such dynamics indicates
optimal structure of collaboration layer.

In Fig. 5 one can see the curves for probability density ω(M) for modularity pa-
rameter M . The probability density function means that the probability that the node q
belongs to the community m is equal to the square of the figure bordered by the interval
[m − 1,m] and the curve ω(M). Thus, the more is y-coordinate in the point, the more
numerous is the corresponding community.

The graphs show noticeable changes in the formation of communities within net-
works: whereas in the isolated case, strong heterogeneity of structure elements is clearly
visible, the appearance of interlayer connections leads to the formation of connections be-
tween clusters intersecting at different layers of a multiplex network. As a consequence,
the network structure becomes more homogeneous.

Conclusion

In our study, we have built a multiplex network model on the basis of real sta-
tistical social data concerning professional interaction of musicians. The main structural
characteristics have been calculated both for isolated networks and for each layer of a
multiplex network. For two isolated networks certain similarities in the obtained depen-
dencies between the characteristics have been found, which indicates that there are general
regularities in the processes of network topologies formation.

The results obtained for multiplex network, indicate that when isolated networks are
combined, the characteristics of their nodes undergo noticeable changes. In particular, we
have carried out the changes in the nodes centrality values and in the formation of com-
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munities within the network. These results confirm the efficiency of using the multiplex
network model for studying structural-dynamic processes in many real-world systems.

The work is supported by the grant of the President of Russian Federation for
leading science schools (project НШ-2737.2018.2).
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