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INTRODUCTION

At present, exploiting the terahertz frequency
range (0.3–10 THz) is one of most important prob�
lems of modern science. One promising line in the
development of terahertz�range devices involves using
semiconductor nanostructures with periodic modula�
tion of the conductivity band, i.e., superlattices.

Similar structures were proposed by L. Esaki and
R. Tsu [1, 2] in 1970 as objects for studying quantum�
mechanical phenomena. However, the possibility of
using Bloch oscillations in a semiconductor superlat�
tice made it a promising instrument for creating
devices that function in the mode of generating and
amplifying terahertz�range frequencies [3, 4]. At the
same time, the use of the Bloch oscillations in practice
turns out to be problematic, since the applied potential
difference leads to instability and the formation of
domains (regions with increased concentrations of
charge carriers) drifting along the superlattice [5, 6].
The inhomogeneities in the distribution the electric
field, also associated with the formation of domains,
are disastrous for coherent Bloch oscillations [7, 8].
However, the rate of domain repetition in semicon�
ductor superlattices can reach several tens of giga�
hertz, and this phenomenon can be also used to create
microwave devices [9]. Studies in this field are directed
toward raising the velocity of domain motion and
reducing the voltage necessary for the development of
instability. Major problems are determining the criti�
cal voltage and estimating the rate of charge domain
repetition from the parameters of the semiconductor’s
structure. Similar estimates can be obtained via
numerical simulations [10], but finding them by
means of analytical theory is of special interest.

In this work, the stability of a strongly coupled
semiconductor superlattice was analyzed by consider�
ing the behavior of small perturbations in the reference
state.

INVESTIGATED SYSTEM

To describe the dynamics of a strongly coupled

semiconductor sublattice,
1
 we traditionally use the

semiclassical approach in [11] that enables us to
describe the dynamics the electron position and wave
vector under the action of external electric and mag�
netic fields F and B, respectively.

Using the semiclassical approach and disregarding
diffusion, the collective dynamics of charge carriers in
a semiconductor superlattice can be described using a
self�consistent system of differential equations that
include continuity equation (1) describing the change
in electron concentration over time, and Poisson
equation (2) describing the distribution of the electric
field along the superlattice. In dimensionless quanti�
ties, these are written in the form

(1)

(2)

System of equations (1)–(2) is solved with respect
to dimensionless quantities n(x, t) and F(x, t), where
n(x, t) is the volumetric density of charge carriers,
F(x, t) is the distribution of the electric field, x and t are

1 Superlattices are strongly coupled if their barrier width is much
less than the characteristic inverse electron wave number inside
the barrier [12]. Similar structures function in the mode of elec�
tron transport through minibands and can be described using a
semiclassical approach.
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a dimensionless coordinate and time, and β = 0.03074
and ν = 15.769 play the role of governing parameters.
The transition to dimensional quantities occurs
through the relations

(3)

where d ' = 8.3 nm is the superlattice’s period, L' =
115.2 nm is its length,  = 3 × 1022 m–3 is the equilib�
rium electron concentration determined by the dop�
ing level, e > 0 is the electron charge, and ε0 and εr =
12.5 are the electric constant and relative dielectric
permittivity of the material, respectively.

 V/m is the normalization value of

the electric field. Parameters  and

 characterize the scattering of electrons in the
superlattice and depend on the times of elastic  and
inelastic  scattering. Here, τ' = 250 fs, δ = 1/8.5. The
dimensional parameter values correspond to the semi�
conductor superlattices used in other experimental
works [11].

The dependence of the electron drift velocity 
on the electric field strength in Eq. (1) plays an impor�
tant role in the model described above. This depen�
dence contains information on the spatial structure
(period d') and the energy characteristics of the semi�

conductor nanostructure, external magnetic field
2
 B'

and temperature T '. Although such parameters as the
width of the miniband Δ' (in our case, Δ' = 19.1 meV),
the vector of magnetic induction B', and temperature Т '
are not explicitly included in Eqs. (1) and (2) describ�
ing the dynamics of the charge domains, they consid�
erably affect the dependence of the drift velocity on
electric field strength  and, as a consequence, the
dynamic modes in the semiconductor superlattice.

In this work, we consider a case in which tempera�
ture T ' is close to zero, and there is no tilted external

magnetic field.
3
 The dependence can be obtained ana�

lytically [1]:

(4)

Assuming that the contacts on the emitter and collec�
tor are ohmic and the density of the current flowing

2 A tilted external magnetic field can dramatically change the
character of electron motion; under certain conditions, elec�
trons in the superlattice are subject to chaotic oscillations that
arise as a result of resonance between the electron cyclotron and
Bloch oscillations; this in turn considerably changes the charac�
teristics of generation [11, 13].

3 If necessary, the effect of the temperature and magnetic field on
the drift velocity can be included numerically using the method
described in [14].
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through the emitter J(0, t) is determined by the con�
ductivity of the contact, according to the Ohm law we
have the boundary condition

(5)

where  = 17.6511 corresponds to the
dimensionless conductivity of the emitter, and σ' =

3788 S–1. Dimensionless value  of the
voltage applied to the superlattice can be found from
the condition

(6)

where integration is performed over the length of the
system.

ANALYZING STABILITY

To analyze stability, let us consider a perturbed state
of the system: 

 where n0(x,t) and F0(x,t) are

steady states,   and
 . The evolution of the spatially distributed

perturbations is described by linearized equations of
mathematical model (1) and (2),

(7)

Introducing  =  and  =
where σ = λ – iω, we obtain from the first equation of
system (7)

(8)

Here, dependence υd(F0) is given by relation (4), and
the expression describing the distribution of the elec�
tric field for voltage USL, F0(x), can be found from
Eqs. (1) and (2) under the condition  The
solution to Eq. (8) is thus a set of spatially distributed
perturbations of electric field  characterized by
increment of growth/decay λ and frequency ω. Note
that the reduced voltage on the superlattice remains
constant; consequently, only perturbations of the elec�
tric field can exist in system for which the following
condition holds:

(9)

As was noted above, applying voltage to the super�
lattice leads to instability and the formation of drifting
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charge domains. At the moment when the steady state
becomes unstable, a perturbation characterized by
positive increment of growth λ appears in the system.
Consequently, condition λ = 0 for this perturbation is
fulfilled directly upon bifurcation. In Eq. (8),
Re(σ) = 0, and its solution at a given USL is a set of
perturbations characterized by different frequencies
ω = Im(σ). Introduced boundary condition (9) allows
us to choose the perturbations from this set that occur
in the superlattice at a given value of governing param�
eter USL. Figure 1 shows the values of integral (9) for
perturbations with a zero increment of growth and dif�
ferent frequencies ω. The solid line represents a case in
which the voltage on the superlattice corresponds to

critical  = 1.25. The dashed and dashed�and�dot�
ted lines describe cases in which the voltage is lower
(USL = 1.14) and higher than (USL = 1.55) the thresh�
old value, respectively. It can be seen that at the onset
of instability in the system, there is a perturbation for
which condition (9) holds. The frequency of perturba�
tion oscillation ω = 0.0125.

The results from numerical simulations of Eqs. (1)
and (2) show that current oscillations are generated in

the superlattice at voltage  ~ 1.25, which agrees
with the results obtained by means of analytical theory.
It should be noted that the frequency of the oscilla�
tions of current flowing through the superlattice is
equal to that of the considered perturbation.

The above analysis enables us to find the value of
the increment of growth and the frequency of oscilla�
tion for the perturbation at any given value of the
applied voltage. Similar dependences found for the
above perturbation are shown in Fig. 2. It can be seen
in Fig. 2a that the perturbation’s increment of growth
reaches its maximum as the voltage on the superlattice

rises, and then falls to zero at  ~ 9.00. The results
from numerical simulations in this case indicate the

*
SLU

*
SLU

**
SLU

termination of generation in the system. Figure 2b
shows the dependences of the perturbation’s fre�
quency of oscillation (solid line) and the frequency of
the current’s generated oscillations (dots) on the
applied voltage. It can be seen that the frequency of the
generated oscillations remains close to the perturba�
tion’s frequency of oscillation over a wide range of USL

values. The proposed approach thus allows us to find
the voltage necessary for the development of genera�
tion by considering the dynamics of perturbations in
the reference state, and to estimate the frequency of
current oscillations in a semiconductor superlattice.

CONCLUSIONS

The stability of the steady state of a strongly cou�
pled semiconductor superlattice described using a
semiclassical approach was considered. By introduc�
ing a small perturbation of the reference state, it was
shown that the development of instability is associated
with the appearance of a perturbation characterized by
a positive increment of growth. The voltage at which
such perturbations (and thus generation) appear in the
system was found. It was established that the frequency
of current oscillations was equal to the perturbation’s
frequency of oscillation. The approach proposed in
this work was applied to study the dependence of the
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Fig. 1. Dependence  for when the voltage on the
superlattice is less than the critical value (dashed line,
USL = 1.14), corresponds to the critical value (solid line,

 = 1.25), and lies above the critical value (dash�dotted
line, USL = 1.55).
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Fig. 2. Dependences of (a) the increment of growth and
(b) the oscillation frequency of a perturbation on the
applied voltage. The dots in (b) show the frequency of
oscillations for a current flowing through a superlattice,
calculated numerically.
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frequency of oscillation and the increment of growth
of the obtained perturbation when the applied voltage
exceeds the critical value. It was found that the incre�
ment of growth reaches its maximum when the voltage
rises and then falls to zero. Numerical integration of
the system’s dynamics at a certain value of the govern�
ing parameter showed that generation in the system
then terminates. The results from numerical integra�
tion also indicate that the frequency of oscillations in
a current flowing through the superlattice remains
close to the perturbation’s frequency of oscillation
over the zone of generation.
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