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ABSTRACT

In the present study we aimed to find specific characteristic based on brain activity, that can be used to evaluate
attention and, thus, can be used in brain-computer interface. We introduced a characteristic based on prestim-
ulus beta-rhythm activity and proposed an approach to collaborative BCI aimed to enhance human-to-human
interaction while performing shared visual task. We also described general setup for such BCI and its possible
application in long task of classifying ambiguous visual stimuli with varying degrees of ambiguity by a group of
people.
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1. INTRODUCTION

The brain-computer interface (BCI) development is one of the novel multidisciplinary tasks in neuroscience,
physics and engineering. The BCI transforms characteristic features of operator’s brain activity into computer
commands for controlling software and/or hardware in real-time. Such modern technology can find applications
in various applied fields, including medicine, industry, robotics, etc.1–6 For example, BCIs can be used for
rehabilitation of patients with physical and mental injuries as well as for enhancing cognitive abilities of healthy
subjects.7–9

The latter concept led to proposal of the brain-to-brain interfaces (BBIs), that enable direct information
transfer between the brains of interacting humans and/or animals. The BBI can be used to enhance the perfor-
mance of two operators during the shared cognitive task with high mental load by adding interaction between
operators. The natural evolution in this direction is the concept of collaborative BCIs,10,11 which aimed to use
multi-brain computing to further enhance human performance.

Such collaborative BCI can be useful for improving the cognitive performance in the group of people subjected
to a shared work task that requires sustained attention and alertness. For example, pilots of military or civil
aircraft12 or operators of power plants,13 whose work is associated with a long monotonous activity and requires
high concentration of attention. Collaborative BCI can help a group of people to interact more effectively by
assessing and controlling their physical and/or neurophysiological condition. For example, the assessment of
alertness by the collaborative BCI can be used to redistribute the workload among all participants according to
their current physiological states to improve overall work efficiency of the group.

In this paper, we propose an approach to collaborative BCI aimed to enhance human-to-human interaction
while performing shared visual task. We also describe the setup for such BCI and its possible application in long
task of classifying ambiguous visual stimuli with varying degrees of ambiguity by a group of people.
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2. METHODS

Twelve healthy volunteers between the ages of 20 and 45 with normal or corrected-to-normal visual acuity
participated in the experiments. None of the subjects had been diagnosed with neurological diseases and did
not take medications. The participants were asked to maintain a healthy lifestyle for 48 h before starting the
experiment, including 8-hours night rest, refusal on excessive sport exercises, consumption of alcohol and caffeine.
The volunteers were informed about design of experiment, its goals, methods and possible inconveniences. They
were able to ask any related questions and to receive proper answers. All of the participants provided informed
written consent before the start of the experiment. The experimental studies were performed in accordance with
the Declaration of Helsinki 1964 and were approved by the local Research Ethics Committee of the Innopolis
University.

During the experiment electrical brain activity of subjects was recorded in the form of electroencephalogram
(EEG).14 For EEG recording we used electroencephalograph “Encephalan-EEGR-19/26” made by Medicom
MTD (Taganrog, Russia). EEG signals were recorded with special Ag/AgCl electrodes, placed on the subject’s
scalp. For better conductivity skin was treated with abrasive gel “NuPrep” and electrodes were placed with
the help of conductive gel “SuperVisc”. During the experiment impedances of EEG electrodes were monitored.
Common values of impedance were < 15 Ohm, which is acceptable for proper functioning of EEG electrodes. For
EEG recording we used total of 31 EEG electrodes, that were placed in accordance with international scheme
“10-10”. Ground electrode N was placed above the forehead and referents A1 and A2 were placed on the left
and right mastoids correspondingly.

EEG signals were recorded with sampling rate of 250 Hz and preprocessed. We filtered recorded EEG signals
with 50-Hz notch filter and band-pass filter with cutoff frequencies of 1 Hz and 70 Hz. Band-pass filter was
implemented to avoid low-frequency and high-frequency noise components related, for instance, to breathing or
bad EEG electrode contact. Notch filter was used to remove influence of electric power grid. Additionally, EEG
signals were preprocessed with methods of Independent Component Analysis (ICA), since frequency bands of
some physiological artifacts (such as cardiac rhythms or eye-movement) overlap informative frequency band of
EEG signal. We used ICA to decompose EEG signals into the set of independent components, find components
with artifacts, remove them and reconstruct EEG signals with the rest of the components.

All subjects participated in visual task that consisted in classification of the series of sequentially presented
ambiguous (bistable) images. We used the Necker cube15 as the model for bistable visual stimulus and perceptual
decision-making.16,17 The Necker cube is a 2D projection of 3D image of a cube with transparent faces and visible
ribs. Regular observer sees the Necker cube as a 3D object because of the defined position of the cube edges.
Ambiguity in the perception of this cube lies in interpretation of its orientation. The cube can be perceived
as left- or right-oriented depending on the contrast of the various internal edges of the cube. This contrast
parameter g ∈ [0, 1] can be treated as the degree of complexity of cube’s classification and, thus, it can be used
as the control parameter. The Necker cubes with a value of g close to 1 or 0 can be easily interpreted as a left-
or right-oriented while g ∼ 0.5 corresponds to the cube with the highest complexity of classification.

EEG signals were analyzed with the help of continuous wavelet transform (CWT).18,19 The CWT is computed
as convolution of EEG signal x(t) with wavelet basis ϕs,τ :

Wn(s, τ) =
1√
s

∫ ∞
−∞

xn(t)ϕ∗s,τ (t)dt, (1)

where n = 1, 2...N is the number of EEG channel and “*” stands for complex conjugation.

Here we used complex Morlet mother wavelet since it has recommended itself in studies on neurophysiological
data:20,21

ϕ0(η) = π−
1
4 ejω0ηe−

η2

2 , (2)

where parameter ω0 = 2π is the central frequency of Morlet wavelet, η = t−t0
s .

The common way to interpret CWT results is to consider wavelet energy:
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E(f, τ) = |W (f, τ)|2 (3)

Wavelet energy spectrum can also be analyzed in specific frequency band by averaging wavelet energy across
this band:

EF (t) =
1

∆fF

∫
f∈fF

E(f, t)df, (4)

where ∆fF — width of investigated frequency band.

Averaged wavelet energy EF (t) can be additionally averaged over some time interval T :

eF =
1

∆T

∫
t∈T

EF (t)dt, (5)

where ∆T — width of investigated time interval.

In the present study EEG signals were analyzed in alpha (8–12 Hz) and beta (15-30 Hz) frequency ranges
during 2-second interval preceding the stimulus presentation and corresponding wavelet energies eα and eβ were
calculated for each presented stimulus (see Eq. 4,5). Wavelet energies were additionally averaged over EEG
channels of parietal area.

3. RESULTS

In the present study we aimed to find specific characteristic based on brain activity, that can be used to evaluate
attention and, thus, can be used in BCI.

According to multiple reports both α- and β-rhythms are relevant to attention, including visual stimuli
processing.22–24 It is well-known that attention modulates the prestimulus α- and β-band power25,26 and affects
decision accuracy. Thus, either medium or low α- and high β-band power during the prestimulus period is
beneficial for sensory perception.27,28 Thus, to evaluate brain activity related to attention we can use wavelet
energies eα and eβ (see Eq. 4,5). On the other hand, as objective source of information about participant’s
attention and efficiency in visual task we can use behavioral characteristic — reaction time RT , that reflects
time interval between stimulus presentation and subject’s response.

In our work we investigated the presence of correlation between eα and reaction time RT and between eβ and
reaction time RT . For this we calculated corresponding Pearson’s correlation — results for one of the subjects
are shown on Fig. 1.

From Fig. 1a we can see, that there is no significant correlation between eα and reaction time RT , however,
correlation is more pronounced between eβ and reaction time RT (see Fig. 1b). This result suggests that wavelet
energy eβ averaged in 2-second prestimulus time interval and over EEG channels of parietal area can be used as
a characteristic to assess subject’s attention during long classification visual task.

Results, obtained in the present work and our previous studies29 allow us to propose a design for collaborative
BCI aimed to enhance human-to-human interaction while performing shared visual task. The proposed design
is illustrated by Fig. 2.

A group of subjects (I — total number of subjects in group) participate in the experiment with such BCI.
Each subject have an assigned personal computer for visual stimuli presentation and EEG-recording hardware for
data recording, while all client computers are connected to the server that performs all data analysis and overall
control on the experimental procedure. Visual stimuli are presented simultaneously for all subjects using specially
made software running on the corresponding client computers. According to the value g all the presented stimuli
(the Necker cubes) in range g ∈ [0, 1] can be divided into several groups, that would correspond to different
complexity of visual classification task.

Recorded EEG data from each client computer is transmitted to the server, where it is analyzed. The char-
acteristic eβ of each operator is estimated using his/her stimulus-related brain activity preceding each stimulus,
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Figure 1. Correlation between eα and reaction time RT (a), eβ and reaction time RT (b).
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Figure 2. General scheme of experimental setup of brain-to-brain interface.

Proc. of SPIE Vol. 11847  118470Q-5
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 07 May 2021
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



then eβ,i of all subjects are compared (i = 1, 2...I — subjects, number). According to the result of this compar-
ison the server redistributes stimulus complexity between subjects, i.e. the subject with the highest cognitive
performance receives stimuli with the highest ambiguity, while subject with the lowest cognitive performance
receives stimuli with the lowest ambiguity.

4. CONCLUSION

The presented results contributed in the multidisciplinary field of science, especially, in physics and collaborative
BCI development. We found specific characteristic based on brain activity in beta-frequency band, that can be
used to evaluate attention. We proposed an approach to collaborative BCI using this characteristic. We also
described the setup for such BCI and its possible application in long task of classifying ambiguous visual stimuli
with varying degrees of ambiguity by a group of people.
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Hramov, A. E., and van Luijtelaar, G., “Absence seizure control by a brain computer interface,” Scientific
Reports 7(1), 1–8 (2017).

[6] Hramov, A. E., Grubov, V., Badarin, A., Maksimenko, V. A., and Pisarchik, A. N., “Functional near-infrared
spectroscopy for the classification of motor-related brain activity on the sensor-level,” Sensors 20(8), 2362
(2020).

[7] Teo, W.-P. and Chew, E., “Is motor-imagery brain-computer interface feasible in stroke rehabilitation?,”
PM&R 6(8), 723–728 (2014).

[8] Maksimenko, V. A., Hramov, A. E., Grubov, V. V., Nedaivozov, V. O., Makarov, V. V., and Pisarchik, A. N.,
“Nonlinear effect of biological feedback on brain attentional state,” Nonlinear Dynamics 95(3), 1923–1939
(2019).

[9] Frolov, N. S., Pitsik, E. N., Maksimenko, V. A., Grubov, V. V., Kiselev, A. R., Wang, Z., and Hramov,
A. E., “Age-related slowing down in the motor initiation in elderly adults,” Plos one 15(9), e0233942 (2020).

[10] Wang, Y. and Jung, T.-P., “A collaborative brain-computer interface for improving human performance,”
PloS one 6(5), e20422 (2011).

[11] Yuan, P., Wang, Y., Wu, W., Xu, H., Gao, X., and Gao, S., “Study on an online collaborative bci to
accelerate response to visual targets,” in [2012 Annual International Conference of the IEEE Engineering
in Medicine and Biology Society ], 1736–1739, IEEE (2012).

[12] Sallinen, M., Sihvola, M., Puttonen, S., Ketola, K., Tuori, A., Härmä, M., Kecklund, G., and Åkerstedt, T.,
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