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ABSTRACT

In this paper we study the spiking behaviour of a neuronal network consisting of 100 Rulkov elements coupled
to each other with randomly chosen coupling strength. We find periodical grouping forming in the signal from
all neurons in the network. We discovered the phenomenon of coherent resonance when signal-to-noise ration
takes the maximum value at certain values of such parameters as number of neurons in the system, number of
stimulated neurons, amplitude of external stimulus and amplitude of internal noise.
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1. INTRODUCTION

As all real systems, the neural systems are noisy. Noise can lead to increase or decrease of order in the dynamical
systems under noise.1–3 To be mentioned here are the effects of noise induced order in chaotic dynamics,4–6 syn-
chronization by external noise,7,8 and stochastic resonance.9–13 Also, noise has been shown to play a stabilizing
role in ensembles of coupled oscillators and maps.14,15 Especially interesting is the phenomenon of stochastic
resonance, which appears when a nonlinear system is simultaneously driven by noise and a periodic signal.16–19

At a certain noise amplitude the periodic response is maximal.

The interest in mathematical modeling of neuronal synchronization has significantly increased after neu-
robiological experiments with two electrically coupled neurons,20 where various synchronous states have been
identified. Nowadays the interest of brain investigation is really high.21–26

In order to simulate cooperative neuron dynamics, numerous models based on either iterative maps of differ-
ential equations in various coupling configurations have been developed.20 Depending on the coupling strength
and synaptic delay time, coupled neurons generate spike sequences that are matching in their timings, or bursts
either with lag or anticipation.27 When three or more oscillators are accounted for a large number of coupling
configurations can be realized. In the theory of graphs or complex networks, these basic configurations are called
network motifs.

We explore a simple neural model, the Rulkov map.28,29 Although this model is not explicitly inspired by
physiological processes in the membrane, it is capable of generating extraordinary complexity and quite specific
neural dynamics (silence, periodic spiking, and chaotic bursting), thus replicating to a great extent most of
the experimentally observed regimes,20 including spike adaptation, routes from silence to bursting mediated by
subthreshold oscillations, emergent bursting, phase and antiphase synchronization with chaos regularization,28

and complete and burst synchronization.30
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2. THE MODEL

Each neuron-like Rulkov element is described by the following system of equations with synaptic coupling:29

xn+1 = f(xn, xn−1, yn + βn), (1)

yn+1 = yn − µ(xn + 1) + µσ + µσn + µAξξn, (2)

where x is a fast variable associated with membrane potential, y is a slow variable which has some analogy with
gating variables, the parameters α, σ and 0 < µ ≤ 1 control individual dynamics of the system, ξ is a Gaussian
noise with a zero mean and standard deviation that equals 1, Aξ is noise amplitude. βn and σn are related to
external stimuli, f is a piecewise function defined as

f(xn, xn−1, yn) =



α/(1 − xn) + yn, if xn ≤ 0

α+ yn, if 0 < xn < α+ yn and

xn−1 ≤ 0

−1, if xn ≥ α+ yn or

xn−1 > 0

(3)

It is constructed in a way to reproduce different regimes of neuron-like activity, such as spiking, bursting and
silent regimes.

The parameters βn and σn are defined as

βn = βeIextn + βsynIsynn , (4)

σn = σeIextn + σsynIsynn . (5)

Coefficients βe and σe are used to balance the effect of external current Iextn . βsyn and σsyn are coefficients of
synaptic coupling. Isynn is a synaptic current:

Isynn+1 = γIsynn − gsyn ∗

{
(xpostn − xrp), spikepre,

0, otherwise,
(6)

where gsyn is the strength of synaptic coupling, gsyn ≥ 0. Indexes pre and post correspond presynaptic and
postsynaptic variables respectively. The first condition in (6) corresponds to the presynaptic impulse (spike)
generation time moments and defined as xpren ≥ α+ypren +βpren . Parameter γ is a relaxation time of the synapse,
0 ≤ γ ≤ 1. It defines the part of synaptic current which preserve as in the next iteration. xrp is a reversal
potential that determines the type of the synapse: inhibitory or excitatory.

In our modeling we take values of the parameters α = 3.65, σ = 0.06 and µ = 0.0005 so that each neuron
being autonomous demonstrates silent regime dynamics. Also we assume βe = 0.133, σe = 1.0, βsyn = 0.1,
σsyn = 0.5 and xrp = 0.0. Investigation system is a motif of N neurons coupled to each other with a random
coupling strength gsyn and relaxation time γ. The values of them are randomly chosen from 0.0 to 0.1 and from
0.0 to 0.5 respectively. In the investigating system we apply an external stimulus to Na neurons. Stimulus is a
current impulse of the following form: from the start it equals to 0, at the moment ts when we apply it current
starts equal to A. The values of variables are chosen so that without the external stimulus each neuron is in a
silent regime but with starting the application of stimulus excited neurons start periodically generate spikes.
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3. THE RESULTS

From the system we take signals as time series of the fast variable x from all neurons. In figure 1 one can see
signals from all 100 neurons for different number of stimulated neurons. On them one can see phenomenon of
grouping. It consists in periodically spiking unexcited neurons so that one can see areas of time on time series
where all unstimulated neurons spike and areas where they all are silent and these areas periodically follows one
by one. As one can see for small and relatively big number of stimulated neurons the phenomenon of grouping is
not exist. For N = 1 there is only one group forming. For N = 20 one can see the time intervals of silent regime
of all unstimulated neurons are decreasing and for bigger Na for all time period of stimulation all neurons starts
chaotically generate spikes without forming groups.

We analyse influence of external stimulus amplitude. In figure 2 one can see the dependence of time series of
x from this parameter. Increasing the stimulus amplitude leads to increasing frequency of grouping and grouping
durations and decreasing time range between them. Also we can see decreasing of signal amplitude x with
increasing A.
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Figure 1. Time series of membrane potential x for all neurons in the network of N = 100 neurons when we apply external
stimulus only on Na = 1(a), Na = 5(b) and Na = 20(c) neurons, A = 1.0, Aξ = 0.1. Amplitude of x is defined by color.

For analyse phenomenon of periodical grouping we calculate dependencies of signal-to-noise ratio (SNR) from
number of neurons in the system N , number of stimulated neurons Na, amplitude of external stimulus A and
amplitude of internal noise A Aξ. SNR measured from power spectra of average signal in dB as an excess of
main frequency amplitude over background noise.31,32 Average signal we calculate as follows:

xavr =
1

N

N∑
i=1

xi (7)

where i is an index of neuron, N = 100 is the number of neurons in the network.

In figure 3 (a) one can see the dependence of SNR from the number of stimulated neurons for the system of
100 neurons. There are two strong peaks, when Na = 7 and Na = 12. For this values of Na SNR takes the
highest values. Moving away from it to Na = 0 and Na = 30 signal-to-noise ratio value decreases to 0.
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Figure 2. Time series of membrane potential x for all neurons in the network of N = 100 neurons when we apply external
stimulus only on Na = 10 with amplitude A = 0.5 (a), A = 1.0 (b) and A = 1.5 (c), Aξ = 0.1. Amplitude of x is defined
by color.
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Figure 3. (a) Signal-noise ratio (SNR) versus number of stimulated neurons Na for Aξ = 0.1, A = 1.0, and N = 100; (b)
SNR versus network size N for Aξ = 0.1, A = 0.1, and Na = 10, (c) SNR versus stimulus amplitude A for Aξ = 0.1,
Na = 10, and N = 100, (d) SNR versus internal noise amplitude Aξ for A = 1.0, Na = 10, and N = 100

In figure 3(b) one can see dependence of SNR from number of neurons in the system when we excite 10 of
them. At small values of N(< 38) signal-to-noise ratio is small too but for increasing N from 38 leads to rapid
increasing SNR from 5 to 30 and then it stays near of this level until N = 110 when SNR starts rapidly increase
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and reaches the maximum value for N = 120. With further increasing the network size SNR rapidly decreases
and starting from N = 138 it slowly decreases. So for Na = 10 we have optimal values of N = 130 at which
SNR takes the highest value.

Figure 3(c) shows signal-to-noise ratio dependence from external stimulus amplitude, on which one can see
the phenomenon of coherent resonance when for a certain values of external stimulus amplitude (A = 1.3 − 1.6)
SNR takes the maximum value. For A > 1.6 signal-to-noise ratio doesn’t change. Decreasing external stimulus
amplitude from 1.3 to 0 leads to decreasing SNR.

In figure 3(d) we can see influence of internal noise amplitude to signal-to-noise ratio. For Aξ = 0.6 SNR
takes the maximum value and decreases to 4 with decreasing Aξ.

4. CONCLUSION

From the signals from all neurons in the network of 100 coupled to each other Rulkov neurons with presence of
internal noise and external stimulus we have observed the phenomenon of periodical grouping when all unexcited
neurons start spiking periodically during the time interval. Changing such parameters as number of neurons in
the system, number of stimulated neurons, amplitude of external stimulus and amplitude of internal noise we’ve
discovered phenomenon of coherent resonance when at the certain values of these parameters signal-to-noise ratio
takes the maximal values.
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