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Abstract—A new method for the removal of physiological artifacts in the experimental signals of human elec-
troencephalograms (EEGs) has been developed. The method is based on decomposition of the signal in terms
of empirical modes. The algorithm involves EEG signal decomposition in terms of empirical modes, search-
ing for modes with artifacts, removing these modes, and restoration of the EEG signal. The method was
tested on experimental data and showed high efficiency in the removal of various physiological artifacts in
EEGs.
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Currently, a considerable interest in the study of
the oscillatory activity in the brain’s neural networks is
observed. The main sources of information on cere-
bration are experimental methods of brain-activity
registration, for example, electroencephalograms
(EEGs) [1]. The EEG signal has a complex composi-
tion with a number of characteristic rhythms and pat-
terns that are of interest to researchers in both the
study of pathologies (e.g., epilepsy) and in analysis of
cognitive processes [2, 3].

In radio-physics, a number of methods of analysis
of nonstationary signals have been developed, e.g.,
window Fourier transformation and continuous wave-
let analysis [4], which are very effective in EEG anal-
ysis [5, 6]. However, in most cases, studying EEG sig-
nals is complicated by the presence of spurious pat-
terns—noises and artifact–which are caused by both
external signal sources and processes occurring in the
body itself, for example, eye movements, cardio-
rhythms, the activity of facial and neck muscles, etc.
[7, 8].

Most artifacts in EEGs have a significant ampli-
tudes and cover three important EEG low-frequency
ranges—δ, θ, and α [1, 2]. The presence of artifacts
and their variability complicate the EEG-signal anal-
ysis greatly, making preprocessing and filtering an
important step of any EEG study.

A number of different methods are used to filter
artifacts from EEGs: on the basis of a visual search of
artifacts [9, 10], independent-component analysis [3,
11, 12], regression analysis [13], and the Gram–
Schmidt transformation [14]. Most methods cause
EEG signal distortion [15] or require the joint analysis
of EEG with other signals, which may not always be
recorded during the experiment.

The development of methods of filtering EEG sig-
nals without distorting their structure and requiring
the recording of additional physiological signals is an
important task. In this paper, a new method for
removing artifacts in EEGs based on decomposition
in terms of empirical modes (EMs) [16, 17] is pre-
sented.

Signal decomposition in EMs is a modern method
of time–frequency analysis of nonstationary nonlin-
ear signals and allows us to represent the analyzed sig-
nal in the form of a set of amplitude-modulated com-
ponent with a zero mean—so-called “empirical
modes.” In expansion on EMs, basis functions are
determined from the signal itself, with their parame-
ters depending directly on the studied signal. This
characteristic makes decomposition on EMs a highly
adaptive tool for signal analysis. Research has shown
[18] that, in many cases, time–frequency analysis and
the allocation of specific oscillatory patterns (includ-
ing artifacts) can be reduced to the analysis of one or
more EMs of an EEG signal.
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This feature is illustrated in Fig. 1, which depicts
the experimental signal of human EEG (a) with sev-
eral oculomotor artifacts, as well as the first three EMs
for it (Figs. 1b–1d). Additionally, in Fig. 1, wavelet
spectra constructed with Morlet wavelets, which are
used to represent a frequency–time signal structure,
are shown. On the basis of the wavelet surface in
Fig. 1a, it can be seen that the original EEG signal
contains various rhythms in the range of 0.5−50 Hz,
whereas artifacts occur in the range of 0.5−5 Hz. The
wavelet spectrum of the first EM (Fig. 1b) exhibits the
highest frequencies, which correspond to the informa-
tive components of an EEG signal. Figures 1c and 1d
contain the second and third EMs of an EEG signal
together with their wavelet spectra, which mainly con-
sist of low frequencies (∼0.5−5 Hz) and correspond to
the background EEG activity and oculomotor arti-
facts. Thus, in this case, oculomotor artifacts can be
localized in the second and third EMs, while the first
EM corresponds to the EEG signal that has been
cleaned from artifacts. This localization procedure of
an artifact on an EEG was used as a key element in the
development of a new method of filtering EEG sig-
nals.

The algorithm of the proposed method is as fol-
lows.

1. Decomposition of the investigated EEG signal
into a set of EMs.

2. Finding EMs containing physiological artifacts.

3. Deletion of EMs containing physiological arti-
facts.

4. Restoration of the EEG signal from the remain-
ing EMs.

In the first stage of the algorithm, decomposition
of the EEG signal on EMs is carried out and the total
number of EMs is determined. In the second stage of
the algorithm, modes containing artifacts are sought
among the EMs under investigation. This is done by
comparing the wavelet spectra of the EEG original
signal and EMs. From EEG studies, it is known that a
large part of physiological artifacts has specific fre-
quency-time characteristics, which collectively create
a distinctive image in the wavelet spectrum for each
artifact type. In the proposed method, the artifact
images are first determined on the wavelet spectrum
of the EEG original signal, with the wavelet spectra
of each individual EM then being analyzed. In the
third stage of the algorithm, all EMs on the wavelet
spectra of which artifact images were found are
removed from consideration. The fourth stage is
EEG-signal reconstruction by summing up of the rest
of the EMs. The proposed method results in a restored
EEG signal from which physiological artifacts have
been removed.

The developed method was tested on the example
of removal of the physiological artifacts of two types
from the experimental signals of a human EEG. The
EEG signals were recorded using the standard scheme

Fig. 1. An example of decomposition in terms of empirical modes: an EEG signal with (a) several oculomotor artifacts and (b, c,
d) the first three empirical modes; for each of the signals, a wavelet spectrum that illustrates the frequency–time structure of the
signal is given; the artifacts are shown as darkened frames.
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of electrode arrangement, the 10–20 international sys-

tem [19]. All experiments included standard physio-

logical tests and were carried out for 15 healthy men

and women 18 to 40 years of age.

During the experiments, two types of artifacts were

discovered on the EEG recordings: oculomotor and

cardiorythm. Both artifacts are similar in form and

appear as short high-amplitude bursts of activity.

An example of the proposed method is shown in

Fig. 2, in which the experimental signals of a human

EEG containing (a) oculomotor and (b) cardiorythm

artifacts are given. Figure 2 also shows the EEG signals

after filtering. It is seen that, in each case, both arti-

facts and the low-frequency envelope of the EEG sig-

nal, which does not contain useful information, were

removed. Thus, the proposed method can be used not

only to remove different types of artifacts in EEGs, but

also for filtering the noise component.

The efficiency of the developed method was

demonstrated on the example of the removal of ocu-

lomotor artifacts from experimental recordings of

human EEGs with a duration of 600 s and with

95 artifacts having an amplitude from 1 to 4 V. The

criterion for the removal of artifact was its amplitude

reduction after filtering to the level of the average

amplitude of the EEG signal (in this, case 0.6 V).

Eighty-eight artifacts were removed from the EEG

recording during filtering, and the accuracy of the

developed method was ∼92%. In addition, the

amplitudes of the artifacts that were not removed

completely were significantly reduced (up to 70% of

the original amplitude), which is also useful for

EEG-signal filtering.

In the analysis of the method’s efficiency, the

quantitative characteristic of the signal spectrum dis-

tortion was calculated before and after filtration M.

For this, the wavelet spectra in the range of Δf = 5–

15 Hz were calculated for the original and filtered

EEG signals and M was calculated as

(1)

where W(f, t0) and WEM(f, t0) are the wavelet spectrum

amplitudes of the EEG signal before and after filtra-

tion, respectively, and τ is the EEG-signal length. It

was obtained that M < 10–2, and, thus, the EEG-signal

distortion during artifact removal can be considered

negligible.

Thus, in this paper, a new method for filtration

and removal of physiological artifacts from experi-

mental EEG signals has been proposed. A method

algorithm based on the use of signal decomposition

by empirical modes has been developed. The method

was tested using the example of the removal of two

types of artifacts from EEG signals and showed high

efficiency.
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Fig. 2. An example of EEG-signal filtering from the arti-
facts of two types: (a) oculomotor and (b) cardiorythm
artifacts; the EEG signals before filtering are shown on the
left part of the figure, the signals after filtering on the right;
the artifacts are marked with darkened frames.

1
 V

2
 V

1
 V

0
.5

 V

2 s

(a)

(b)

2 s

1 s

1 s



622

TECHNICAL PHYSICS LETTERS  Vol. 43  No. 7  2017

GRUBOV et al.

9. C. Zhang, L. Tong, Y. Zeng, et al., Biomed. Res. Int.
2015, 720450 (2015).

10. J. A. Uriguen and B. Garcia-Zapirain, J. Neural Eng.
12, 031001 (2015).

11. A. J. Bell and T. J. Sejnowski, Neural Comput. 7, 1129
(1995).

12. C. A. Joyce, I. F. Gorodnitsky, and M. Kutas, Psycho-
physiology 41, 313 (2004).

13. G. Gratton, Instrum. Comput. 30, 44 (1998).

14. A. A. Koronovskii, A. E. Khramov, O. I. Moskalenko,
and V. V. Grubov, RF Patent No. 2560388 (2015).

15. P. A. Merinov and M. G. Belyaev, in Proceedings of the
39th Interdisciplinary School-Conference of Kharkevich
Institute for Information Transmission Problems RAS on

Information Technologies and Systems 2015 (Inst. Prob-
lem Peredachi Inform. im. A.A. Kharkevicha RAN,
Moscow, 2015), p. 313.

16. N. E. Huang, Z. Shen, S. R. Long, et al., Proc. R. Soc.
A 454, 903 (1998).

17. A. N. Pavlov, A. E. Filatova, and A. E. Hramov,
J. Commun. Technol. Electron. 56, 1098 (2011).

18. V. V. Grubov, E. Yu. Sitnikova, A. N. Pavlov, et al.,
Proc. SPIE 9448, 94481Q (2015).

19. M. R. Nuwer, C. Comi, R. Emerson, et al., Electroen-
cephalogr. Clin. Neurophysiol. 106, 259 (1998).

Translated by N. Petrov


