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Artificial neural networks (ANNs) are known to be a powerful tool for data analysis. They are used

in social science, robotics, and neurophysiology for solving tasks of classification, forecasting,

pattern recognition, etc. In neuroscience, ANNs allow the recognition of specific forms of brain

activity from multichannel EEG or MEG data. This makes the ANN an efficient computational core

for brain-machine systems. However, despite significant achievements of artificial intelligence in rec-

ognition and classification of well-reproducible patterns of neural activity, the use of ANNs for rec-

ognition and classification of patterns in neural networks still requires additional attention, especially

in ambiguous situations. According to this, in this research, we demonstrate the efficiency of applica-

tion of the ANN for classification of human MEG trials corresponding to the perception of bistable

visual stimuli with different degrees of ambiguity. We show that along with classification of brain

states associated with multistable image interpretations, in the case of significant ambiguity, the

ANN can detect an uncertain state when the observer doubts about the image interpretation. With the

obtained results, we describe the possible application of ANNs for detection of bistable brain activity

associated with difficulties in the decision-making process. Published by AIP Publishing.
https://doi.org/10.1063/1.5002892

Nowadays, artificial neural networks (ANNs) are widely

used in different areas of science, engineering, and tech-

nology. In neuroscience, ANNs are able to classify motor-

related neural signals, pathological brain activity, and

psychiatric disorders. Although the problem of classifica-

tion of well-established brain states is already successfully

solved with ANNs, the ability of this tool to classify bista-

ble states, when uncertainties in the human brain result

in the uncertainties of input neurophysiological data, is

still poorly understood. In this research, we use the ANN

approach to classify bistable brain states which occur

during the perception of an ambiguous visual object. We

demonstrate that the ANN can distinguish states of cer-

tainty and doubt in the human brain and define features

of the decision making process.

I. INTRODUCTION

Artificial neural networks (ANNs) are a useful instru-

ment for complex and multivariate data analysis. From a

mathematical point of view, they represent a generalized

model of information processing inspired by a mammal’s

neural system.1 The ANN consists of a large number of

interconnected elementary computational units (artificial

neurons) which form a complex multi-layer network where

information is transferred from layer to layer. Each layer of

the network processes the input information embodying the

concept of multi-level human perception. Thus, the aim of

this simple mathematical model is to assimilate information

in a similar way as the human brain. The recent progress in

computational systems’ performance caused a huge interest

in the development of ANNs among the scientific commu-

nity and, therefore, initiated intensive research on effective

approaches to their architecture and widespread applica-

tions in different areas of science and technology (see Refs.

2–4 for review).

In the neuroscience area, ANNs are very promising for

the analysis of human brain activity and especially for cogni-

tive engineering.5 Recent scientific papers report on the

application of ANNs for the analysis of EEG6 and MEG7 sig-

nals, fMRI images,8 and other clinical data.9 One important

ANN application is the detection and classification of brain

states by analyzing neurophysiological data.10,11 The classifi-

cation of brain states is of great importance for the develop-

ment of brain-computer interfaces (BCIs), where effective

detection of neuronal activity is required.12,13 In this context,

ANNs are known to be able to classify motor-related neural

signals,14,15 detect pathological brain activity,16,17 psychiat-

ric disorders,18,19 etc.

The ANN approach to the analysis of neurophysiologi-

cal data can be described as follows. The ANN receives, as

an input, a set of EEG or MEG signals and converts them to

a binary output. The ANN being trained on some known data
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set to learn features of the input data associated with a cer-

tain brain state, becomes able to extract similar states from a

large amount of unknown input data. This is the advantage

of the ANN in the detection of highly reproducible events in

the human brain, e.g., motor-related activity, epileptic seiz-

ures, etc.

On the other hand, the application of ANNs in cases when

the brain is not able to select any stable long-term state and

exhibits multiple abrupt switches between different states is

much more challenging. This situation is common in decision-

making processes when a person lacks information and, as

a consequence, doubts about the decision.20 In this case,

two interesting questions arise: (i) How does the ANN, being

trained to identify brain states associated with firmly adopted

decisions, find a state of uncertainty in decision-making? and

(ii) How can the ANN be applied for detecting human uncer-

tainty in decision-making via EEG and MEG signals? The

answers to these questions are important for understanding

fundamental aspects of the brain’s cognitive activity and prac-

tical use of artificial intelligence and deep learning tools aimed

at the development of BCIs for improving human performance

in decision-making. Moreover, this ANN application for

decision-making in uncertain conditions is very promising for

intelligent robotics and information systems.

According to the above motivation, in this paper, we

apply, for the first time to the best of our knowledge, ANNs for

detection and recognition of human uncertainty in decision-

making. For this purpose, we consider the human MEG trials

corresponding to the perception of ambiguous visual stimuli.

The perception of such stimuli is associated with a multistable

decision-making process, since the same object can be inter-

preted in different ways. While the interpretation of most bista-

ble objects is random, there are some bistable stimuli for

which the degree of ambiguity can be easily controlled, and

this allows the selection of one or another interpretation. One

of these stimuli is the Necker cube.21 This is a 2D cube projec-

tion with transparent faces and visible edges [see Fig. 1(a)].

The contrast of the three middle lines centered in the left mid-

dle corner is defined by the parameter I 2 ½0; 1� used as a con-

trol parameter. Bistability in the cube perception consists in

the interpretation of this 2D-object as a 3D-object which can

be oriented in two different ways, left-oriented or right-

oriented. One can see from Fig. 1(a) that the cubes with I¼ 0.1

and I¼ 0.9 can easily be interpreted as left-oriented and right-

oriented, respectively. However, the Necker cubes with I
’ 0:5 cannot be unambiguously interpreted, especially if the

decision time is too short.

Our MEG experiments carried out with five volunteers

demonstrated that the level of uncertainty in the Necker cube

interpretation significantly increased for I ’ 0:5 due to strong

image ambiguity. Figure 1(b) shows the level of uncertainty,

WðIÞ, in interpretation of the bistable image, defined as

WðIÞ ¼
2PRðIÞ; I < 0:5;

2PLðIÞ; I � 0:5;

(

where PRðIÞ and PLðIÞ are probabilities for the right-oriented

and left-oriented cube perception, respectively. As expected,

a high degree of uncertainty (WðIÞ > 0:8) is observed for

I ’ 0:5. We suppose that an ANN trained to identify brain

states associated with left-oriented and right-oriented inter-

pretations is able to describe the decision-making process

and detect the degree of uncertainty. This would allow to

detect doubts during the decision-making process.

The structure of the paper is as follows. In Sec. II, we

describe the materials and methods used in our neurophysio-

logical experiments on the MEG recording, subjects, and the

procedure of mathematical processing using ANN algo-

rithms and statistical analysis. The results on the MEG data

processing and classification of the brain states using ANN

are presented and discussed in Sec. III. Finally, the results

are summarized in Sec. IV.

II. MATERIALS AND METHODS

A. Experimental setup

Neurophysiological data was acquired by using a 306-

channel (102 magnetometers and 204 planar gradiometers)

Vectorview MEG system (Elekta AB, Stockholm, Sweden)

placed inside a magnetically shielded room (Vacuum Schmelze

GmbH, Hanau, Germany) at the Laboratory of Cognitive and

Computational Neuroscience of the Center for Biomedical

Technology of the Technical University of Madrid (Spain).

The head shape was obtained by using a three-dimensional

Fastrak digitizer (Polhemus, Colchester, Vermont). Three fidu-

cial points (nasion, left and right preauricular points) and at

least 300 points on the scalp surface were acquired for each

subject. In addition, four head position indication (HPI) coils

were placed on the subject’s scalp, two on the mastoids, and

two on the forehead. The HPI coils position was also acquired

using the Fastrak device, and continuous head position

FIG. 1. (a) Ambiguous images of the Necker cube with different edges

intensity I, presented to subjects during the experiments. The cubes with

I< 0.5 and I> 0.5 are usually interpreted as left-oriented and right-oriented,

respectively. (b) Typical level of uncertainty in the Necker cube interpreta-

tion by a subject.
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estimation was used during the recording in order to track head

movements. A vertical electrooculogram of the left eye was

used to capture blinks and eye movements. The MEG data

were acquired using a sampling rate of 1000 Hz and an online

anti-alias bandpass filter between 0.1 and 330 Hz.

B. Participants

Five healthy unpaid subjects, males and females, between

26 and 30 years old with normal or corrected-to-normal visual

acuity participated in the experiments. All of them provided

written informed consent before participating in the experi-

ment. The experimental studies were performed in accordance

with the Declaration of Helsinki at the Center for Biomedical

Technology of the Technical University of Madrid.

C. Visual stimuli

The ambiguous image was the Necker cube21 frequently

used in experimental22–25 and theoretical studies.23,26,27 This

image is seen as a cube with transparent faces and visible

edges; an observer without any perception abnormalities per-

ceives the Necker cube as a 3D-object due to the specific

position of the cube’s edges. Bistability in the cube percep-

tion consists in the interpretation of the Necker cube as being

oriented in two different ways, i.e., left-oriented or right-

oriented. The contrast of the three middle lines centered

in the left middle corner, I 2 ½0; 1�, was used as a control

parameter. The values I¼ 1 and I¼ 0 correspond, respec-

tively, to 0 (white) and 255 (black) pixels’ luminance of the

middle lines. Therefore, the contrast parameter in the 8-bit

grayscale palette was defined as I¼ y/255, where y is the

brightness level of the middle lines. Visual stimuli were pre-

sented with the help of Cogent (a graphics toolbox for

MATLAB) and the contrast parameter of the presented stim-

uli was controlled by a software specially developed for this

study.

D. Experimental design

Each subject took part in two experimental sessions.

The structure of both sessions was the same except for one

feature: in the first session, the subject was instructed to

press either a left or right key depending on his/her interpre-

tation of the Necker cube in each demonstration, while in the

second session, the button pressing was excluded. The data

obtained in the first session were analyzed after the key press

to estimate the participant’s uncertainty level based on the

experimental results [a typical level of uncertainty can be

seen in Fig. 1(b)]. The aim of the second session was to col-

lect the MEG data for a further analysis using ANN trained

on the data of the first session. The MEG data recorded in

the second experimental session were not associated with the

motor-related brain activity and therefore suitable for the

analysis of the cognitive activity involved in the decision-

making process.

The structure of each session was as follows. (i) First,

background MEG activity was recorded for 2 min, while the

subject was sitting comfortably with open eyes. (ii) Then, a

set of Necker cubes with different wireframe contrasts were

presented during approximately 20 min. (iii) Finally, another

2-min background MEG was recorded while the subject was

sitting comfortably with closed eyes. As a result, the whole

session took about 25 min.

In this experiment, we used 15 Necker cubes with ran-

domly chosen contrast parameters from the set I¼ (0.1, 0.15,

0.3, 0.4, 0.47, 0.48, 0.49, 0.5, 0.51, 0.52, 0.53, 0.6, 0.7, 0.85,

0.9). Each contrast was presented 15 times. Each image was

presented to the participants for a short period of time, ran-

domly chosen between 0.8 s and 1.2 s. It is known from the

literature that the mean duration of a visual percept can vary

from one second to several minutes depending on individual

features of the observer and stimulus conditions,28 while the

mean response times are rather consistent and vary only by a

few hundred milliseconds.29 The most common experimental

length for each perception of the Necker cube was found to

be approximately 1 s.30 Therefore, in order to fix the first

impression of the person and avoid switches between two

possible percepts, the image exhibition in our experiments

was limited to � 2 ½0:8; 1:2� s.

The short duration of stimulus presentation is also

needed to reduce the stabilization effect.31 Indeed, the proba-

bility of the configuration persisting until the subsequent pre-

sentation is known to be highly dependent on how long it

was seen before the stimulus was removed.31 Only when the

perceptual configuration was consistently seen for a rela-

tively long time before the stimulus disappeared, there was a

high probability of it persisting to the next stimulus presenta-

tion. Since the required time for consistent observation of the

Necker cube is about 1 s,31 the stimulus exhibition for a

shorter time diminished the “memory” effect. The random

sequence of the Necker cubes with different values of the

control parameter I also prevented the appearance of the per-

ception stabilization. Finally, to draw away the observer’s

attention and make the perception of the next Necker cube

independent of the previous one, different abstract pictures

were randomly exhibited for about g 2 ½4:20; 5:25� s between

demonstrations of the different Necker cube images.

E. MEG signals pre-processing

Figure 2(a) shows the block diagram illustrating the

main steps for the MEG data analysis. First of all, we col-

lected an entire MEG dataset obtained during the described

experiment. Afterwards, the MEG signals were pre-processed

via filtration and artifact removal techniques. Finally, the

pre-processed MEG recordings were normalized and fed to

trained ANN. In further subsections, we provide a detailed

description of the above-mentioned data analysis steps.

After a successful completion of the experiment, MEG

signals recorded by magnetometers (102 sensors) were pre-

pared for subsequent analysis and classification via ANN. To

extract the magnetic field activity generated by the brain and

remove undesired components from the entire MEG signals,

we applied band-pass filtration in the frequency range from 5

to 30 Hz. Thus, we removed low-frequency artifacts (< 5 Hz)

and high-frequency oscillations (> 30 Hz), not related to cog-

nitive brain activity. Also, undesired MEG artifacts associ-

ated with breathing, heartbeat, eye movement, and blinking

033607-3 Hramov et al. Chaos 28, 033607 (2018)



were removed using the temporal signal-space separation

(tSSS) method by Taulu and Hari.32 Finally, the MEG signals

were normalized and scaled to the [–1, 1] range for each

channel separately.

F. Artificial neural network

ANN is a data-processing tool which operating principle

is adopted from human brain mechanisms of information proc-

essing. Like the human brain, the ANN consists of a large

number of interconnected neurons, which play a role of ele-

mentary computing units. The simplest and most widely used

ANN architecture is a multilayer perceptron (MLP). MLP rep-

resents a feed-forward neural network, where information sig-

nal X is fed to an input layer of the network and sequentially

travels towards an output layer, which generates output signal

Y. MLP was successfully applied for classification and pattern

recognition in neuroscience and biomedical applications.6–8,33

In our study, we use MLP for classification of different human

brain states emerging during the perception of ambiguous

images. MLP was implemented through the Neural Network

Toolbox of MATLAB. Here, we describe an instantaneous

human brain state as an N-dimensional column vector

Xj ¼ x1 tjð Þ; x2 tjð Þ;…; xN tjð Þð ÞT ; (1)

an instantaneous signal from N¼ 102 MEG sensors at time

tj. We analyze the multivariable MEG signal

X ¼ Xjf gj1000
j¼1 (2)

for 1 s after the Necker cube demonstration, with time discre-

tization step Dt¼ 1 ms as a discrete sequence of 1000 instan-

taneous brain state vectors [Eq. (1)].

The MLP scheme used throughout our work is shown in

Fig. 2(b). One can see that the time series from the 102-

dimensional input layer, according to the dimension of infor-

mation vector Xj, are fed into each computational unit or node

(artificial neuron) of the first hidden layer with h1¼ 15 nodes.

Then, the h1-dimensional output vector from the first hidden

layer is applied to the second hidden layer with h2¼ 5 compu-

tational units. Afterwards, the h2-dimensional output vector

from the second hidden layer is applied to the output layer,

which produces a whole neural network reply Yj to the input

information vector X
j. Since we need to classify only two brain

states corresponding to the perception of either left- or right-

oriented Necker cube (state “0” or state “1,” respectively), the

output layer of the MLP consists of only one computational

unit, which calculates binary output value Yj. So, feeding MLP

with input discrete sequence [Eq. (2)], we get the MLP

response in the form of discrete time series as

Y ¼ Yjf g��1000

j¼1
: (3)

Each MLP layer processes the input vector according to

the following equation:

u ¼ f Wxþ bð Þ; (4)

where u is the output layer vector, x is the input layer vector,

W is the weight matrix, b is the bias, and f ðxÞ is the logistic

transfer function defined as

f xð Þ ¼ 1

1þ e�x
: (5)

Taking into account the architecture of MLP, presented in

Fig. 2, the final response of neural network Yj to input vector

X
j is calculated as follows:

Yj ¼ f Woutf WH2
f WH1

Xj þ bH1

� �
þ bH2

� �
þ bout

� �
:

We suppose that MLP outputs Yj < 0:5 and Yj > 0:5 detect

instant perception of the presented Necker cube as left-

oriented (brain state “0”) and right-oriented (brain state “1”),

respectively.

The optimization of the MLP parameters, namely,

weight matrices WH1
; WH2

; Wout and biases bH1
; bH2

; bout

was provided during the learning process by minimizing the

mean squared error (MSE):

MSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

K

XK

k¼1

dk � Ykð Þ2
vuut ; (6)

FIG. 2. (a) Block diagram illustrating main procedures carried out to prepare multivariate MEG signals for ANN processing. (b) Structure of the feed-forward

multilayer perceptron (MLP) neural network. One can see typical input MEG trials Xn (blue curves), corresponding to brain activity after demonstration of

left-oriented Necker cube and typical MLP response Y (red curve). The subscripts of Xn indicate the MEG channel number (n¼ 1,…,102).
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where K is the number of samples in the training dataset, Yk

is the value of the MLP response to each k sample from the

entire dataset, and dk is the value of a desired MLP response

which we wish the MLP learns during the process. It should

be noted that the learning procedure was performed separately

for each volunteer. We applied the Levenberg-Marquardt

algorithm (LMA) to provide accurate training of the MLP.34

The LMA was chosen to obtain better convergence of the

MSE-function, however, it required significantly long compu-

tational time to precisely define the unknown parameters.

For the learning process, we prepared training datasets

containing MEG trials and desired answers which we wanted

the ANN to learn. It should be noted that in the second experi-

mental session the participants did not press a key, and there-

fore, the information about the interpretation of the ambiguous

images was unknown. Nevertheless, the results of the first

experimental session have shown that all participants inter-

preted correctly the orientation of the evident Necker cube

image with intensities I¼ 0.1 and I¼ 0.9. In other words, the

presentation of the evident Necker cube image excited the

well-defined brain states “0” and “1” corresponding to the left-

and right-oriented cubes, respectively. Therefore, it was possi-

ble to align MEG trials after evident cube demonstrations with

desired answers. Based on this observation, we composed train-

ing datasets for each participant from 20 MEG signals of 1-s

duration (for total 20 000 samples taken with a 1-kHz sampling

frequency) recorded from each subject after demonstration of

clearly left- and right-oriented Necker cubes (see Subsec. II D).

The validation dataset was composed of 10 remaining trials

(10 000 samples).

The results of the training and validation processes are

given in Fig. 3. We first checked MLP performance using only

the set of 32 signals taken from MEG sensors, corresponding

to the occipital lobe [Figs. 3(a) and 3(b)]. We found that classi-

fication accuracy in this case was sufficiently small (of the

order of 63%). However, the account for the signals from all

102 MEG sensors [Figs. 3(c) and 3(d)] provided a significant

increase in the MLP classification accuracy. One can see that

the trained MLP handled accurate classification of instanta-

neous brain states corresponding to the left- and right-oriented

cube interpretations (�86%). Based on this accuracy test, we

conclude that the consideration of processes in the occipital

lobe only, associated with low-level visual representation is

not enough for precise detection of brain states related to the

decision-making process. Actually, several studies of bistable

images using event-related potentials, EEG trials, and fMRI

showed that visual perception was accompanied by activation

of specific brain areas and deactivation of others.35–37 In partic-

ular, a chain of event-related potential components was found

during observation of a Necker cube lattice which led to spon-

taneous perceptual reversals.37 Our results show that significant

changes in the event-related potentials observed in the occipital

cortex provide accurate classification of brain states related to

the decision-making process. One should also take into account

the brain activity in different brain areas due to the fact that

the decision-making is a complex higher-level process which

includes the information transfer over the whole cortex net-

work with activation of frontal, parietal, and occipital areas.

G. ANN output analysis

In order to find trends and general features of the

decision-making process and highlight the most significant

brain areas, we carried out the MLP response analysis over

experimental sessions individually for each participant.

Let YI
nðtÞ be the MLP response to the MEG signals taken

during the observation of the Necker cube image with edges

intensity I during the n-th experimental session. Then,

hYIi tð Þ ¼ 1

N

XN

n¼1

YI
n tð Þ (7)

is the averaged MLP response to the MEG signals taken dur-

ing the observation of a Necker cube image with edges inten-

sity I over N experimental sessions, and

rI tð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

n¼1

YI
n tð Þ � hYIi tð Þ

� �2

vuut (8)

is the standard deviation of the MLP responses over N ses-

sions. We suggest standard deviation r to be a measure of

decision-making uncertainty.

We suppose that the interpretation process of identical

images should proceed in approximately the same way. Thus,

the MEG traces corresponding to certain decisions about

observed image interpretation should be characterized by a

FIG. 3. Illustration of MLP validation accuracy and comparison of its value

for different sets of MEG channels. Here and below, purple boxes and

curves correspond to left-oriented Necker cube interpretation (brain state

“0”) and green boxes and curves to right-oriented cube (brain state “1”).

Panel (b) shows the value of MLP accuracy calculated by taking into

account only signals from 32 MEG sensors corresponding to occipital lobe

[scheme (a)]. In contrast, panel (d) illustrates MLP accuracy while consider-

ing signals from all MEG sensors [scheme (c)].

033607-5 Hramov et al. Chaos 28, 033607 (2018)



small variation of the MLP response over different trials. In

contrast, a large variation of instantaneous MLP responses

over different trials should be inherent to traces correspond-

ing to high decision-making uncertainty. So, one can intro-

duce the threshold value rtr above which one can judge that

the brain is typically uncertain about the decision-making at

time ti of the considered 1-s interval.

To define the threshold rtr and distinguish between

decision-making uncertainty and certain brain states, we cal-

culate the MLP output standard deviation during observation

of the ambiguous Necker cube with I¼ 0.5. The observation

of this image cannot provide any certain decision on the

cube orientation because all edges have the same contrast.

Indeed, a typical MLP response trace, corresponding to the

perception this image is characterized by multiple irregular

switches between “0” and “1” [see Fig. 4(c)]. The standard

deviation calculated using Eq. (8) and its distribution qðrÞ
exhibit the values of r0:5 � 0:3. Based on this result, we

define the threshold value rtr as the 5% percentile of the r0.5

distribution.

Values of rIðtÞ with I 6¼ 0:5 are compared with the

threshold rtr. If rIðtÞ < rtr, we state that the participant is

typically certain about the cube interpretation, whereas rIðtÞ
� rtr indicates a decision-making uncertainty state.

On the base of the above definition, we also introduce

the uncertainty measure UðIÞ characterized the individual

level of decision-making uncertainty during the observation

of the bistable image with parameter I, as follows:

U Ið Þ ¼ 1

T

XT

i¼1

H rI tið Þ � rtr

� �
; (9)

where T is a number of MEG trial samples and Hð•Þ is a

Heaviside step-function. The uncertainty measure UðIÞ is a

portion of the 1-sec time interval during which the brain is

uncertain in decision-making.

III. RESULTS AND DISCUSSION

The observation of ambiguous Necker cubes leads to

switches of visual perception between two alternative states

associated with left and right cube orientations. Each state is

observed in the MEG data when the presented cubes are

non-ambiguous, i.e., when I¼ 0 or I¼ 1. Thus, we consider

the human brain processing ambiguous stimulus, as a bista-

ble dynamical system,23,24 whose state is described by the

vector [Eq. (1)] to which the MLP with the input matrix [Eq.

(2)] is applied.

At the first stage, the MLP neural network was trained

and validated individually for each of five subjects partici-

pated in the MEG experiment. The mean accuracy in MLP

classification obtained during the validation procedure for all

subjects was close to 86%. The application of well trained

MLP allowed us to assess important features of the human

decision-making process.

The time series in Figs. 4(a)–4(c) show typical MLP

responses to individual MEG trials when cubes with different

FIG. 4. (a)-(c) Individual MLP

response traces Y(t) and (d-f) probabil-

ity distribution of standard deviation

qðrÞ calculated over MEG experimen-

tal sessions. Panels [(a) and (d)] and

[(b) and (e)] show the MLP responses

to the interpretation of low ambiguous

left- and right-oriented Necker cubes

with I¼ 0.1 and I¼ 0.9, respectively.

Panels (c) and (f) illustrate the MLP

response to the interpretation of a

highly-ambiguous cube with I¼ 0.5.

The dashed line denotes standard devi-

ation threshold rtr.
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ambiguity were presented. On can see in Figs. 4(a) and 4(b)

that in the case of a low-ambiguous left- or right-oriented

cube, the MPL response curve, after short transient fluctua-

tions, converges to a stable state “0” or “1,” respectively. We

refer such a behavior of the ANN trace to as a decision-

making certainty since ANN handles the identification of well-

established and temporally stable brain states associated with

left- or right-oriented cube interpretation. Instead, the observa-

tion of a highly-ambiguous image is characterized by multiple

irregular switches between “0” and “1” values, as seen in Fig.

4(c). We interpret the latter as the ANN uncertainty which is a

consequence of a doubt in decision-making. One of the mea-

sures characterizing the decision-making process in average

over experimental sessions is standard deviation r of the MLP

output, presented in Figs. 4(d)–4(f). While in the former case

the standard deviation is distributed in a wide range from 0

to 0.5, in the latter case the standard deviation is localized

in a narrow range above the threshold rtr to 0.5 indicating

decision-making uncertainty.

Figure 5 shows the sequence of averaged MLP outputs

along with traces of standard deviation corresponding to

MEG recordings taken during 1 s after demonstration of the

Necker cube with different edges intensities I. The left and

right columns represent the MLP outputs and standard devia-

tions obtained from MEG signals corresponding to the left-

and right-oriented cubes with the same value of relative edge

intensity DI ¼ jI � 0:5j or ambiguity degree. The ambiguity

degree varied from 0 and 0.5 is used as a control parameter.

The lower DI, the higher the ambiguity. A highly ambiguous

cube with I¼ 0.5 has DI¼ 0, while non-ambiguous cubes

with I¼ 0 or I¼ 1 have DI¼ 0.5. Figures 5(a) and 5(d) dem-

onstrate that the subject clearly interpreted the orientation

of the presented Necker cubes while observing images with

evident orientations (DI¼ 0.4); the MLP outputs converge to

either 0 or 1 in the case of left- or right-oriented cubes,

respectively.

We can see in Figs. 5(a) and 5(d) that the standard devi-

ation is below the threshold (r < rtr) during a major part of

the 1-sec interval. Note, that the convergence of hYi to 0 and

1 is accompanied by the drop of r. The analysis of the MLP

output curves together with the standard deviation allowed

us to conclude that the subjects made a decision on the cube

orientation after a short transient time s when he/she was

uncertain about the image interpretation. Thus, we can divide

FIG. 5. Sequence of MLP responses averaged over experimental sessions hYi (upper traces) and standard deviation r (lower traces). Decision-making process

in interpretation of (a) and (d) low-ambiguous, (b) and (e) medium-ambiguous, and (c) and (f) high-ambiguous images is shown. The corresponding Necker

cube images with specified edges intensities I are shown in the right-hand side of each panel. Gray areas highlight the regions of 1 second trials, which are sig-

nificant in terms of decision-making certainty.
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the perception process into two stages: stage I (decision is in

process, which can be considered as the time of decision-

making uncertainty) and stage II (decision is already made,

which can be considered as a stable well-recognized brain

state). Therefore, the value of s characterizes the time inter-

val required for visual stimulus processing and decision-

making on image interpretation.

Figures 5(b) and 5(e) show the curves of the averaged

MLP output and standard deviation corresponding to the

observation of images with medium degree of ambiguity. One

can see that an increase in ambiguity leads to an increase in

the duration s of the transient stage I required for visual stim-

ulus processing via higher-nervous activity, because high-

ambiguous images are more complex for visual perception

and further interpretation. The interpretation process of the

Necker cube with small DI qualitatively differs from the inter-

pretation of low-ambiguous images. Figures 5(c) and 5(f)

illustrate the subject uncertainty on the cube orientation dur-

ing the observation of high-ambiguous Necker cubes with

DI¼ 0.03. The features of the human brain behavior detected

via MLP allows one to distinguish different stages of the

decision-making process and decide whether a subject (in

average) handles the interpretation successfully or not, as well

as to estimate how difficult it was for him to interpret the

observed image. Thus, looking at the averaged MLP output

and standard deviation, one can realize whether, typically, the

participant has already interpreted the observed Necker cube

or still remains uncertain about its orientation.

Finally, Fig. 6 illustrates the values of uncertainty UðIÞ
calculated according to Eq. (9) and time lag s in decision-

making. The data were averaged over the group of participants.

One can see from Fig. 6(a) that UðIÞ grows up as ambiguity

increases and has a well-pronounced peak at I¼ 0.5 (highest

ambiguity). Figure 6(b) also shows the explicit tendency in

increasing time s needed for the brain to perceive and interpret

the demonstrated image. It should be noted that both dependen-

cies UðIÞ and sðIÞ are asymmetric with respect to I¼ 0.5 that

indicates lower level in decision-making uncertainty while

observing left-oriented Necker cube images. Such left-oriented

perceptual bias observed in the data of all participants may be

caused by different reasons, e.g., the influence of the leading

eye,38 features of visual information interpretation conditioned

by left-to-right reading or left hemispherical attentional

bias.39,40

The experimental data were analyzed using paired t-test.

According to the obtained p-values, the significant changes

in U and s are marked by “*” for p< 0.05 and “**” for

p< 0.001. It can be seen that both UðIÞ and s exhibit signifi-

cant changes as the edges intensity varies, more pronounced

for high and low I associated with unambiguous cases

(p< 0.001). On the contrary, for I� 0.5, the changes are less

significant (p< 0.05).

Thus, summarizing these results, we can say that a

growth of uncertainty in decision-making was observed not

only in one participant, but was peculiar to the whole group.

The features of the decision-making process, detected via arti-

ficial intelligence tools, namely, the duration of image percep-

tion s and uncertainty measure U helped us to distinguish

between clear interpretation of the visual stimuli and the state

of uncertainty, without the analysis of direct answers from the

subject, but solely from his/her brain activity. While studying

mechanisms of perceptual decision-making, Heekeren et al.41

noted that “During a rainstorm, however, the sensory input is
noisier, and thus you have to look longer to gather more sen-
sory data to make a decision about the person at the light and
the appropriate behavioural response.” Using our approach,

we can estimate how long the decision-marking process will

take place. Finally, it should be noted that the provided mea-

sures are able to indicate the difference in interpretation of

left- and right-oriented Necker cube images, and that the latter

induces higher level of decision-making uncertainty.38–40

IV. CONCLUSIONS

The artificial neural network approach was applied for rec-

ognition and classification of MEG trials associated with per-

ception of ambiguous graphical objects. We trained ANN to

recognize interpretations of fully left- or right-oriented Necker

FIG. 6. Statistical characteristics of Necker cube interpretation for the group

of subjects, calculated on the base of MLP processing of experimental MEG

signals. (a) Uncertainty measure UðIÞ averaged over the group of partici-

pants. Error-bars show the standard deviation. (b) Boxes and whiskers indi-

cate time lags sðIÞ for different edges intensities I. The stars “*” and “**”

indicate statistical significance of p< 0.05 and p< 0.001, respectively. The

p-values were calculated via paired t-test.
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cubes. The comparison of averaged ANN outputs along with

their standard deviation over multiple experimental sessions,

obtained for these cubes over a 1-s interval allowed accessing

some important features of ambiguous images interpretation

from the decision-making viewpoint.

First, we have shown that interpretation of low- and

medium-ambiguous images differed from interpretation of

high-ambiguous images. The interpretation process of low-

and medium-ambiguous images can be divided into two

stages: in stage I the subject is uncertain about the decision,

and in stage II the decision is made. The duration of stage I

increases as the image ambiguity grows. During the observa-

tion of high-ambiguous images, the human brain is mostly in

a decision-making uncertainty state characterized by multiple

irregular switches between ANN output values “0” and “1.”

Second, we have introduced quantitative measures U
and s for estimating the level of human decision-making

uncertainty based on the analysis of neurophysiological sig-

nals of the brain activity without any visual or audio contact

with the subject. Third, the analysis of uncertainty measure

U over the group of participants allowed us to reveal a par-

ticular feature in the perception of ambiguous images: the

perception of right-oriented Necker cubes resulted in a

higher level of decision-making uncertainty as compared

with left-oriented cubes.

The obtained results are very promising for application

of artificial neural networks in intelligent systems with the

aim of quantitative description of the decision-making pro-

cess. Our results can also be useful for the development of

new generations of brain-computer interfaces able to control

and enhance the human ability to make a decision in stressful

situations.42–45
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