
ISSN 1063�7850, Technical Physics Letters, 2015, Vol. 41, No. 8, pp. 762–764. © Pleiades Publishing, Ltd., 2015.
Original Russian Text © A.N. Pavlov, O.N. Pavlova, 2015, published in Pis’ma v Zhurnal Tekhnicheskoi Fiziki, 2015, Vol. 41, No. 15, pp. 105–110.

762

Generation of chaotic oscillation regimes with
given statistical characteristics is a topical problem in
communication engineering [1–3]. In particular, cor�
responding oscillation processes are applied as carrier
or masking signals and provide higher protection of
information transmitted by a communication chan�
nel, as well as channeling of a communication system
[4–6]. In the transmission process, statistical charac�
teristics of chaotic oscillations can be retuned, which
favors higher protection of transmitted information.
Oscillation regimes in the region of chaotic dynamics
can be changed by varying the controlling parameter
of the oscillatory system. However, this approach is
complicated by the presence of periodicity “win�
dows,” which does not permit one to obtain smooth
dependences of statistical characteristics when varying
the parameter. As an alternative, one can use an
approach that applies an additional source of noise
affecting the chaotic oscillation generator. By varying
the intensity of noise, one can implement switchings
between different dynamic regimes in the multistabil�
ity region, which has an effect on the statistical prop�
erties of generated oscillation processes.

In this work, investigations aimed to studying the
possibility to control for statistical characteristics of
chaotic oscillations by use of noise in the cases of syn�
chronous and asynchronous regimes in the dynamics
of coupled oscillatory systems are carried out. The
investigations were performed based on analysis of
sequences of recurrence times to the Poincaré secant.
For a statistical characteristic of the analyzed dynamic
regimes, mean Hölder exponent h(0) reflecting the
correlation properties of the process was chosen. It is
related to such characteristics of spectral�correlation
analysis as scaling exponents describing the frequency
dependence of the power spectral density function of

regularities in the decrease in the autocorrelation
function [7]. Quantity h(0) was determined based on
the method of wavelet transform modulus maxima [8].
In the context of this method, a wavelet transform of
the sequence of recurrence times to the Poincaré
secant x(i) is performed:

(1)

where wavelet function ψ is subjected to scale trans�
forms and translations that are specified by parame�
ters a and k. In the presence of singularities in signal
x(i) at time instant k*, coefficients of wavelet trans�
form W(a, k*) are characterized by the presence of
exponential dependence W(a, k*) ~ ah, where quan�
tity h (the Hölder exponent) describes the local irreg�
ularity of the signal and characterizes its correlation
properties. Usually, spectrum of Hölder exponents
h(q) is considered. Here, the index q characterizes the
observation scale—whether the structure is small�scale
(q < 0) or large�scale (q > 0). Spectrum h(q) is calcu�
lated by use of an approach based on calculating parti�
tion functions [7]. After the calculation of coefficients
of the continuous wavelet transform W(a, k), a skele�
ton is distinguished—the set of lines of local extreme
values of the surface of wavelet coefficients recorded at
each fixed scale a. Then, generalized partition func�
tions Z(q, a) are calculated by the formula

(2)

where L(a) is the set of lines l of modulus maxima of
wavelet coefficients existing on the chosen scale a and
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kl(a) determines the position of the maximum that
corresponds to a line with a number l. Differentiating
the function τ(q) numerically, one can calculate the
sought spectrum h(q) = dτ(q)/dq. This approach is
more universal as compared to the classical correlation
analysis and can be applied when studying nonstation�
ary processes and signals of relatively short duration.

In contrast to investigations performed earlier [9],
the method of wavelet transform modulus maxima was
first modified for more exact calculation of Hölder
exponents. This modification provided optimizing the
choice of the range of scales a when approximating the
power dependence of the partition function for deter�
mining the range of scales with the linear dependence
logZ(loga). This made it possible to reduce the effect
of short lines of local extreme values of wavelet coeffi�
cients caused by oscillating “tails” of wavelet func�
tions, as well as the effect of longest lines which lead to
significant errors due to the insufficient statistics in the
analysis of relatively short processes. Additionally, the
reliability of calculation results was estimated by using
different wavelet functions (WAVE, MHAT, and wave�
lets corresponding to higher derivatives of the Gauss
function).

Special attention was devoted to studying noise�
induced switchings between different dynamic
regimes in the dynamics of coupled self�oscillating
systems. For this purpose, values of controlling
parameters were chosen in the range of pronounced
multistability and the noise level was varied to change
the frequency of switchings between different oscilla�
tion regimes. In particular, by the example of the
dynamics of coupled Rössler systems

(3)

considered for the following values of controlling
parameters: ω1 = 1.0093, ω2 = 0.9907, a = 0.15, b = 0.2,
and γ = 0.02 [10, 11], the effect of noise Iξ(t) on statis�
tical characteristics of synchronous and asynchronous
self�sustained oscillatory regimes was compared (here,
ξ(t) is the standard normal white noise and I is the
noise intensity). At larger values of I (e.g., I > 0.5), the
noise leads to transitions between all possible dynamic
regimes; as a consequence, statistical characteristics
do not depend on the attractor that existed before
introducing the fluctuations. However, for lower
intensities of the noise, its effects on synchronous and
asynchronous chaotic regimes of self�sustained oscil�
lations are significantly different. In general, singular�
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ity spectra of synchronous regimes (both chaotic and
regular ones) are more sensitive to fluctuations, and
fine tuning of the noise intensity for them allows one
to control for statistical characteristics over a wider
range.

The figure presents calculation results for the vari�
ation in quantity h(0) for synchronous and asynchro�
nous chaotic regimes of self�sustained oscillations
appearing due to the period�doubling bifurcation cas�
cade. For the asynchronous regime, introducing an
additive noise allows one to control for statistical char�
acteristics in a small range (variation in the mean
Hölder exponent does not exceed 0.1), while the cor�
responding variation in h(0) for the synchronous chaos
is larger almost by an order of magnitude. This is a sig�
nificant change in correlation characteristics of the
signal. Note, e.g., that a change in the Hölder expo�
nent by unity for the white noise corresponds to the
transition to the Wiener random process which is sig�
nificantly “smoother.” Thus, varying the parameter I,
one can vary in a wide range statistical properties of the
oscillation process generated by system (3). The calcu�
lated dependences (see the figure) are well approxi�
mated by a power function, and deviations from this
approximation are insignificant. The obtained
approximation allows one to determine the required
value of intensity I that provides generation of a cha�
otic signal with given statistical properties.
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Variation in the mean value of the Hölder exponent as a
function of noise intensity for the regime of synchronous
(circle) and asynchronous (triangles) chaos. Values pre�
sented along the ordinate are absolute.
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