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Abstract: The aim of this work is to find a good mathematical model for the classification of brain
states during visual perception with a focus on the interpretability of the results. To achieve it,
we use the deep learning models with different activation functions and optimization methods for
their comparison and find the best model for the considered dataset of 31 EEG channels trials. To
estimate the influence of different features on the classification process and make the method more
interpretable, we use the SHAP library technique. We find that the best optimization method is
Adagrad and the worst one is FTRL. In addition, we find that only Adagrad works well for both
linear and tangent models. The results could be useful for EEG-based brain–computer interfaces
(BCIs) in part for choosing the appropriate machine learning methods and features for the correct
training of the BCI intelligent system.
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1. Introduction

At present, the application of artificial intelligence methods to the analysis of biological
and medical data is an important and actively researched scientific task [1–3]. Among the
works that are actively conducted in this direction are the analysis of medical images (CT
and X-rays scans, etc.) [4,5], diagnostics of the human cardiovascular system [6], genomic
medicine [7], different brain activity neurovisualization methods [8–10], etc. Within the
latter, of particular interest is the diagnosis of various brain conditions and pathologies
based on neuroimaging data such as a fMRI, fNIRS, MEG, and EEG [11–13]. In partic-
ular, machine learning methods including deep learning have found their application
to process the brain signals in broad ranges, such as mental workload, disease predic-
tion, stroke prediction [14,15], classification of EEG/MEG signals [16–18], prediction of
sleep stages [19,20], and finding EEG biomarkers [21,22]. In the case of applying machine
learning methods to diagnose EEG/MEG features in real time, there is an opportunity to
implement brain–computer interfaces for neurorehabilitation, control of human brain states
and robotics [23].

One of the central points of the application of artificial intelligence methods to medical
and biological tasks is the interpretability of such approaches [24–27]. This is important
for the creation of various assistive medical decision support systems [28,29], when a
medical professional must understand and interpret the decision obtained using artificial
intelligence methods. In this regard, in neuroscience, it is of great interest to develop and
analyze various approaches for the diagnosis of neuroimaging data that are interpretable.
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Especially important is the interpretation of those features on the basis of which we create
a particular machine learning system for application in biology and medicine. In the tasks
of creating brain–computer interfaces for rehabilitation, communication with neurological
patients, or the control of some external device, such as manipulators or exoskeletons,
the most commonly used method is electroencephalography (EEG) to record brain activity
and detect its features for subsequent command generation [23].

Explainable artificial intelligence (XAI) algorithms are considered to follow the princi-
ple of explainability [30]. A concept of explainability does not have a joint definition yet,
so, there is a number of interpretations [31]. One of them is that explainability in machine
learning can be considered as “the collection of features of the interpretable domain, that have
contributed for a given example to produce a decision (e.g., classification or regression)” [32]. So,
analyzing the influence of the different features on classification process is necessary for
the explainable machine learning methods.

For an EEG-based brain–computer interface (BCI), deep mastering interpretability
can display how different factors contained in EEG affect the machine learning model
selection. For instance, Bang at al. [33] conducted analysis in comparison sample-sensible
interpretation via the layer-wise relevance propagation (LRP) approach between the two
subjects and revelead the potential reasons that cause the worse overall performance of
one among all of them. The LRP approach is widely utilized by Sturn et al. [34] to analyze
the deep learning model designed for a motor imagery mission. They assign the elements
leading to an incorrect classification of artifacts of visible interest and eye movements,
which remain in the EEG channels of the occipital and frontal regions. Ozdenizci at al. [35]
proposed to apply a hostile inference approach to research strong features from EEG
throughout unique subjects. Through interpreting the results with the LRP approach, they
confirmed that their proposed method allowed the model of consciousness on neuroscience
options in electroencephalogram, while it is less affected by artifacts from bone electrodes.
Cui et al. [36] used magnificence’s class activation map (CAM) method [37] to examine
character classifications of single-channel EEG alerts accumulated from a sustainably
using enterprise. They identified that the model had been discovered to reveal brain
activity patterns, such as alpha spindles and theta bursts, in addition to features that
resulted from electromyography (EMG) activities, as proof to distinguish between drowsy
and alert EEG alerts. In another work, Cui et al. [38] proposed a completely unique
interpretation technique through taking gain of the hidden state output through the use of
the long short-term memory (LSTM) layer to interpret the CNN-LSTM version designed
for driving force drowsiness recognition from single-channel EEG. The same authors
currently mentioned a novel interpretation method [39] based on a combination of the
CAM approach [37] and the CNN–fixation techniques [40] for a multichannel EEG sign
class and discovered stable functions across distinctive subjects for the venture of driver
drowsiness popularity. Using the interpretation method, they also analyzed the reasons
behind a few incorrectly classified samples. Regardless of the development, it is unclear
to what extent the results of the interpretation may depend and how they may reflect the
model’s selections. It is also not well defined in existing works why a specific interpretive
technique is chosen above the other. These studies motivate us to conduct quantitative
evaluations and comparisons of these interpretive strategies to gain in-depth knowledge of
models designed for classification perceptual brain states of the group of voluntaries using
EEG signals.

It should be noted that the convolutional neural networks (CNNs) being one of the
most popular ML methods are commonly used and demonstrate a great success in image
classification, natural language processing, computer vision, etc. [41,42]. However, their
application to brain signals for achieving good accuracy requires a very deep CNN, which
leads to a large number of parameters and high computational costs [43,44]. At the same
time, the multilayer perceptrons are widely used for classifying EEG signals and demon-
strate usually high efficiency [45,46].
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Earlier in our works, various approaches based on machine learning have been inves-
tigated for EEG/MEG-based classification of brain states during the perception of different
visual stimuli by the subject, including ambiguous images—Necker cubes [47–49]. In par-
ticular, the use of features based on the physiology of brain processes has been shown to
improve the efficiency of the classification of brain states corresponding to the perception
of visual images [50,51]. In our previous paper [52], the influence of image contrast (on the
example of the famous painting by Leonardo da Vinci “Mona Lisa”) on information pro-
cessing in the brain was investigated and the coherent resonance effect and reorganization
of functional connections in the brain at a certain degree of image contrast were shown by
the electroencephalography data. In the present work, we used this experimental dataset to
classify brain states corresponding to different degrees of contrast. We also used a similar
experimental dataset with EEG data on subjects’ perception of an ambiguous Necker cube
with varying degrees of contrast to compare with perception of an artistic painting.

In this paper, we apply different machine-learning methods for the classification
of brain states during visual perception and focus on the interpretability of the results.
To estimate the influence of different features on the classification process and make the
method more interpretable, we use the SHAP’s library technique. As data, we use 31-
channel EEG recordings with a 250 Hz sampling rate filtered in five frequency bands. We
find that a simple deep-learning model gives 100% for almost every dataset, which indicates
an overfitting problem. So, we introduce four models with different combinations of two
activation functions and different optimization methods. We find that the best optimization
method is adagrad and the worst one is ftril. In addition, we find that only adagrad works
well for both linear and tangent models. So, the contribution of the study is the following.

• We analyze the complex EEG dataset by using machine-learning techniques and find
which optimization method is suitable for our dataset;

• Apply SHAP for estimation of the influence of different features to make the ML
model more interpretable;

• Find the best optimizer that works well for both linear and tangent models.

The paper is organized as follows. In Section 2, we describe the EEG datasets used
for the analysis, research paradigm, mathematical models of the deep learning approach
(activation functions, optimization methods and the method for feature importance esti-
mation), and case studies with the description of the neural network’s structure. Section 3
contains the results of application of different models for the classification of image intensity.
In Section 4, we compare the considered deep learning methods with each other. Finally,
in Section 5, we draw the conclusions.

2. Model and Methods
2.1. Datasets Description

Our computational analysis is based on the experimental neurophysiological data
obtained earlier in the special experiments on the visual perception of images with different
contrast levels [52]. The experiment consisted of observing images of varying brightness
from I = 0.1 to I = 1.0, as shown in Figure 1. All the experimental EEG data of electric
brain activity were recorded for 31 channels at a sampling rate of 250 Hz using the amplifier
BE Plus LTM, manufactured by EB Neuro S.p.a., Florence, Italy. A detailed description of
the experiment can be found in the ref. [52]. We used data from 5 subjects for two types
of images. Two datasets corresponding to the observation of the ambiguous Necker cube
(Figure 1A) and the Mona Lisa painting (Figure 1B) were considered. The complete set
of all observed stimuli was formed by changing the brightness I of the stimuli, as shown
in Figure 1A,B. A schematic illustration of the used experimental protocols is shown in
Figure 2. At the start and at the end of the experiment, background activity was registered
for 120 s. Each image with intensity I was presented to the subject for 60 s. Between the
presentations, there was 20 s of rest. This study was conducted in accordance with the
Helsinki Declaration and was approved by the Ethics Committee of Kant Baltic Federal
University. All EEG data used for the analysis can be found in the repository [53].
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Figure 1. (A) Necker cube with intensity variant; (B) Mona Lisa portrait: Painting by Leonardo da
Vinci with intensity variant; (C) Map of 31 EEG channels which were used in the experiment.
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Figure 2. Schematic illustration of the experimental protocols. (a) Experiment with Necker cube as
visual stimulus. (b) Experiment with Mona Lisa portrait as visual stimulus.

2.2. EEG Preprocessing

Experimenters performed EEG preprocessing to remove various registration artifacts.
After experimental registration, the EEG signals were filtered with a fourth-order Butter-
worth (1÷ 100) Hz bandpass filter and a 50 Hz notch filter. In addition, an independent
component analysis (ICA) was performed to remove eye blinking and heartbeat artifacts.
It should be noted that in this study, we did not conduct any experimental studies and
only used previously recorded data that had already been cleared of artifacts by the above
procedures and with which we did not perform any additional manipulations.

2.3. Research Paradigm

The schematic representation of the research paradigm and overall structure of the
research is presented in Figure 3.

We begin our consideration with the structure of the data to be analyzed. We consider
trials of the 31-channel EEG with a duration of 1 min with a sampling rate of 250 Hz for
each of 10 brightnesses I, i.e., at each moment of time n for brightness I, a data vector

xI
n =

(
xI

1,n, xI
2,n, . . . , xI

i,n, . . . , xI
31,n

)T
(1)

is registered. Here, index i = 1, 2, . . . 31 corresponds to EEG channels {Fp1, Fp2, . . . O1,
O2} (see Figure 1C), xi is the signal registered in the i-th channel.
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Figure 3. Schematic representation of overall structure. Rectangle frames depict steps of data analysis,
oval frames correspond to the input/output data for each step.

The most frequent and usual practice of EEG analysis is to look at different frequency
ranges [54–56]. Here, we use the standard EEG delta-(δ ∈ (1, 4)Hz), theta-(θ ∈ (5, 8)Hz),
alpha-(α ∈ (8, 12)Hz), beta-(β ∈ (13, 30)Hz), and gamma-(γ ∈ (31, 45)Hz) frequency
ranges [57] for feature extraction and performance evaluation in perceptual brain
states classification.

To obtain the data for each of the above frequency range, we reassigned the EEG
signals (1) to the total average, subtracted the mean, and filtered with a fourth-order But-
terworth ( f L, f H)-Hz bandpass filter, where f L and f H are the boundaries of the frequency
domain of interest [58]. For example, for the α-range f L = 8 Hz and f H = 12 Hz, and we
obtained the alpha-band signal xI,α

n . Similarly, we obtain signals xI,δ,β,γ
n for all other δ-, β-,

and γ- frequency bands of interest.
So, we characterize the brain state during the visual perception of the images of each

brightness by 60 s× 250 samples/s = 15,000 number of features (1) for each frequency band.
We apply two deep learning models to classify brain states for different image brightnesses
I. We consider three spatial domains of features: (i) all the EEG channels in the left and
right hemispheres of the brain, (ii) EEG channels in the left hemisphere only, and (iii) EEG
channels in the right hemisphere only.

We consider two separate strategies for learning and analyzing significant features
that substantially affect model learning. In the first case, learning was based on the
above-described features with separate frequency ranges, for each of which a different
classification model was created. The input data were the trait values xI,δ,α,β,γ

n and image
brightness I. The second case used a single model that combined all the features xI,δ,α,β,γ

n
to predict image brightness I. In this case, different deep learning models with various
neuron activation functions and various types of optimizers were used.

All deep learning models were tested on both datasets collected during the perception
of images of Necker’s cube and Mona Lisa paintings. We applied SHAP (Shapley additive
explanations) technology for feature importance estimation.
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2.4. Mathematical Model of the Deep Learning Approach

Two types of activation functions are used: tanh for the internal layers and so f tmax for
the output. For a compiler, we use rmsprop as the optimizer and categorical_crossentropy
for loss.

The tanh function ψ is described as

ψ(zi) =
1− e−2zi

1 + e−2zi
. (2)

Here, zi = xi × wi + bi, where xi is the input layer value, bi is the broadcasting value
through the columns (bias), wi is the weight value for i ∈ [1, L], and L is the number
of layers.

The standard so f tmax function σ is defined as

σ(z)i =
ezi

∑K
j=1 ezj

, (3)

where z is the input vector, and K is the number of classes in the multi-class classifier. In our
case, K = 10 is the number of intensities I (Figure 1).

We also use rectified linear unit (ReLu) in the convolutions layers due to its computa-
tional simplicity and representational sparsity:

f (x) =
{

0 for x < 0,
x for x ≥ 0,

(4)

where x is the input layer value.
Next, we will describe the optimization methods we use in the paper. Here, we use

the following general notation: θ ∈ Rd is the model parameters we need to optimize, J(θ)
is the objective function,∇θ ≡ g is the gradient of the objective function with respect to the
parameters θ, η = 0.01 is the learning rate determining the size of the steps, t is the number
of step, and ε = 10−8 is a smoothing that avoids division by zero.

2.4.1. Stochastic Gradient Descent (SGD) as Optimizer

SGD is used for parameter updates for each training set. For example, if the dataset
has xn features and yn target or label values, then for each step t, we have the following
update rule [59]:

Θt+1 = Θt − ηg(Θ; x(i); y(i)), (5)

where i = 1, . . . , n.

2.4.2. Root Mean Square Propagation (RMSprop) as an Optimizer

Root Mean Square propagation (RMSprop) [59,60] is very similar to gradient descent
with momentum; the only difference is that it includes the second-order momentum instead
of the first-order one, plus a slight change on the parameters’ update:

Et = βEt+1 + (1− β)g2
t ,

Θt+1 = Θt −
η√

Et + ε
gt,

(6)

where E is the decaying average over past squared gradients, and β = 0.9 is the momen-
tum term.

2.4.3. Adaptive Gradient Algorithm (Adagrad) as Optimizer

The adaptive gradient algorithm (Adagrad) [61] is a gradient-based optimization
technique that achieves just that: it adjusts the learning rate to the parameters, producing
more substantial updates for uncommon parameters and modest changes for frequent
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ones. As a result, it is ideal for dealing with sparse data. Dean et al. [62] discovered
that Adagrad increased the robustness of SGD and used it to train large-scale neural net-
works at Google [63], which learned to detect cats in Youtube videos [64], among other
things. In addition, Pennington et al. [65] employed Adagrad to train GloVe word embed-
dings, because uncommon words need considerably bigger updates than frequent words,
as mentioned in Equation (7).

Γt = Γt−1 + g2
t ,

Θt+1 = Θt +
η√

Γt + ε
� gt

(7)

where Γt is the sum of the squares of all past gradients, and � is the element-wise vector
multiplication between Et and gt.

2.4.4. Extension of Adagrad (Adadelta) as Optimizer

Adadelta [66] is an extension of Adagrad with a decreasing learning rate. The update
rule of this methods is as follows [67]:

∆θt = −
√

E[∆θ2]t−1 + ε√
E[g2]t + ε

gt

θt+1 = θt + ∆θt

(8)

where E[g2]t = βE[g2]t−1 + (1− β)g2
t and E[∆θ2]t−1 = βE[∆θ2]t−2 + (1− β)g2

t−1.

2.4.5. Adaptive Moment Estimation (Adam) as Optimizer

Adaptive Moment Estimation (Adam) [68] is a method that can update parameters
such as Adadelta and RMSprop. Here, the updated rule is as follows:

θt+1 = θt −
η√

v̂t + ε
m̂t (9)

where bias-corrected moments estimate:

m̂t =
β1mt−1 + (1− β1)gt

1− βt
1

v̂t =
β2vt−1 + (1− β2)g2

t
1− βt

2

(10)

where β1 = 0.9 and β2 = 0.999 are decay rates.

2.4.6. Extension to the Adaptive Movement Estimation (AdaMax) as Optimizer

The vt influence in the Adam update rule scales the gradient inversely proportionally
to the `2 norm of the past gradients (via the vt−1 term) and current gradient |gt|2:

vt = β2vt−1 + (1− β2)|gt|2. (11)

Then, we update to the `p norm with parameterization β2 as β
p
2 [68]:

vt = β
p
2vt−1 +

(
1− β

p
2

)
|gt|p. (12)

Norms for large p values generally become unstable. However, `∞ also generally
shows balanced behavior. That is why the authors propose AdaMax [68] and show that vt
with `∞ converges to the more stable value:
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ut = β∞
2 vt−1 + (1− β∞

2 )|gt|∞

= max(β2 · vt−1, |gt|).
(13)

Then, we obtain the AdaMax update rule:

θt+1 = θt −
η

ut
m̂t. (14)

2.4.7. Nesterov-Accelerated Adaptive Moment Estimation (Nadam) as Optimizer

Nadam (Nesterov-accelerated Adaptive Moment Estimation) [69] combines Adam
and Nesterov accelerated gradient. Combining Equations (9) and (10) and noting that
β1mt−1
1−βt

1
= m̂t−1 which can be replaced by m̂t, we obtain the Nadam update rule:

θt+1 = θt −
η√

v̂t + ε
(β1m̂t +

(1− β1)gt

1− βt
1

). (15)

2.4.8. Follow the Regularized Leader (FTRL) as Optimizer

FTRL [70] strikes a trade-off between the advantages and disadvantages of forward–
backward splitting (FBS) [71] and regularized dual averaging (RDA) [72]. The update rule
is as follows:

θ(t+1) = argminθ

{
G(1:t) · θ + λ1‖θ‖1 +

λ2

2
‖θ‖2

2 +
1
2

t

∑
s=1

σ(s)
∥∥∥θ − θ(s)

∥∥∥2

2

}
(16)

where G(1:t) is the average of previous sub-gradients. In FTRL, the learning rate is different
for different dimensions. If the training data deem that the dimension i needs to take a
wider step than dimension j, the below learning rate will accommodate such updates:

t

∑
s=1

σ(s) = η
(t)
i = α/

β +

√√√√ t

∑
s=1

(
g(s)i

)2
. (17)

Here, α and β are a non-negative and non-decreasing sequence, and λ is the learn-
ing rate.

2.5. SHAP (SHapley Additive exPlanations) for Feature Importance Estimation

Current explicable machine learning such as SHAP [73] supported the stochastic
game [74] for a proof of model predictions. The Shapley value comes from cooperative
theory of games, as an example, Shapley regression values [75] or Shapley sampling
values [76]. Shapley regression values are feature importances for linear models within
the presence of multiple correlation. The technique desires model fitting for all attribute
subsets S ⊆ F. Every attribute ought to receive a gain that represents its contribution to the
model prediction finally. To work out this gain for a given attribute a ∈ F, the predictions of
the 2 models are compared on the present example x, wherever xS ∪ {a} denotes the values
of the input options within the set S ∪ {a}. To take under consideration the influence of all
alternative attributes, the variations are computed for each set S ⊆ F \ {i}. The ultimate
Shapley price is calculated via a weighted average of these differences:

φi = ∑
S⊆F\{a}

|S|!(|F| − |S| − 1)!
|F|!

[
fS∪{a}(xS∪{a})− fS(xS)

]
. (18)

2.6. Case Study

We implement two case studies shown in Table 1. In the first study, we obtained the
maximum accuracy, which is 100% for almost every dataset that indicates an overfitting
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problem. So, we introduced a second method that has a data verification step and multiple
model optimizers. Here, the equations for estimating the result:

Precision =
True Positive

True Positive + False Positive
(19)

Recall =
True Positive

True Positive + False Negative
(20)

F1 = 2× Precision× Recall
Precision + Recall

(21)

Table 1. Description of case study.

Participant Based Validation Focus Point Model Number Optimizer

Case Study I Yes No Precision; Equation (19) Single Single
Case Study II No Yes f1-score; Equation (21) Multiple Multiple

2.6.1. Case Study I

First, we implement a simple model of ANN with RMSprop optimizer (Section 2.4.2)
and a structure described in Table 2. The number of connections in the input layer corre-
sponds to the number of features (15,000), and the number of output connections is equal
to the number of brightnesses (10). The number of parameters is equal to the number of
connections between the layers. For example, for the input and first hidden layer, it is
defined as (15,000 + 1) × 2500 = 37,502,500, where “+1” is the additional channel for the
intensity. The exception is the number of the parameters for the output layer: (15 + 1) ×
(10 + 1) = 176. Using this model, we obtain 100% accuracy for both datasets.

Table 2. Deep learning model for Case Study I. The number of the parameters is equal to the number
of connections between the layers.

Layer Shape Parameters Activation Function

Input 15,000 -

tanh : Equation (2)

Hidden layer 1 2500 37,502,500
Hidden layer 2 1000 2,501,000
Hidden layer 3 500 500,500
Hidden layer 4 200 100,200
Hidden layer 5 100 20,100
Hidden layer 6 50 5050
Hidden layer 7 25 1275
Hidden layer 8 15 390

Output 10 176 so f tmax : Equation (3)

2.6.2. Case Study II

Next, we use the models with verification, different activation functions and optimiz-
ers. As validation, we default to the validation built in the Keras Sequential model: we
choose 10% of the original dataset as the data on which to evaluate the loss and any model
metrics at the end of each epoch. The model is not trained on these data. These data are
only used for tuning hyper-parameters to make the model eligible for working well on
unknown data.

We consider four models, which differ from each other in activation function: tanh,
relu or their combinations. The structure of the models is described in Table 3. The layers
are the same as for Case I. So, the number of the parameters is also the same as for Case 1
but without an exception for the output layer: (15 + 1) × 10 = 160.
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Table 3. Updated deep learning models for Case Study II. The ReLu activation function is described
by Equation (4), tanh—Equation (2), softmax—Equation (3).

Layer Shape Param
Activation Function

Model 1 Model 2 Model 3 Model 4

Input 15,000 - tanh relu relu tanh

Hidden layer 1 2500 37,502,500 tanh relu tanh relu
Hidden layer 2 1000 2,501,000 tanh relu relu tanh
Hidden layer 3 500 500,500 tanh relu tanh relu
Hidden layer 4 200 100,200 tanh relu relu tanh
Hidden layer 5 100 20,100 tanh relu tanh relu
Hidden layer 6 50 5050 tanh relu relu tanh
Hidden layer 7 25 1275 tanh relu tanh relu
Hidden layer 8 15 390 tanh relu relu tanh

Output 10 160 softmax

2.6.3. Computing System

The configuration of the computing system we used to perform ML follows:
• RAM: 503 GB;
• CPU: Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20 GHz;
• OS: Ubuntu 18.04.5 LTS 64 bit;
• GPU: NULL.

3. Results

In the paper, we use deep-learning neural networks with different structures, activation
functions and optimizers for classification of the intensity (brightness I) of the image which
was observed by the participant during the experiment. We have two datasets in which
the Necker cube and Mona Lisa portrait were used as images, respectively. Each dataset
includes 5 participants, 31 EEG channels, 10 intensities, and 15,000 data points for each of
them. The dataset description is presented in more detail in Section 2.1.

We implement two case studies using different neural networks, which are described
in Section 2.6. In both case studies, our goal is the classification of 10 intensities. Each of
them is described below.

3.1. Case Study I

In this study, we decided to divide our dataset by frequency bands: δ, θ, α, β, and γ [77].
We divided our dataset into three parts based on EEG channels: (i) All channels, (ii) Chan-
nels from left hemisphere, (ii) Channels from right hemisphere, and we use the model
shown in Table 2 on all of them [77]. The results of classification are shown in Tables 4
and 5 regarding the Mona Lisa and Necker cube datasets, respectively. The results of
classification for both datasets are presented in Tables 4 and 5. Here and further, the first
value for each “cell” (intersection of channels, participant and frequency band) is accuracy
defined by Equation (19) (* means 100%), and the second one is the intensity which gives
the maximum influence on the classification. For estimating the influence, we use SHAP
(SHapley Additive exPlanations) as described in Section 2.5. In tables, we show only
the intensity with maximum influence, but SHAP allows estimating the influence of all
intensities I for each time point. An example is shown in Figure A1 in Appendix A.

To estimate the quality of the DL model, we plot ROC, accuracy and loss curves.
The ROC curves for all intensities are shown in Figure 4a. This plot is typical for every
subset we investigated in Case Study I: AUC = 1.0 for every intensity, frequency range and
dataset. Figure 5a illustrates the dependencies of accuracy and loss on every epoch. As one
can see, the accuracy reaches 1.0 on the second epoch already, while the loss exponentially
decreases with each increasing epoch.
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(a) (b)

Figure 4. ROC plots for (a) Case I and (b) Case II, Model 1, Nadam optimizer. The dataset for both
plots is Mona Lisa, all channels, α frequency. Class [1–10] for (a) and [0–9] for (b) corresponds to
intensity is equal to [0.1–1.0], respectively.

(b) (c)

(a)

Figure 5. (a) Accuracy and loss plot for Case I and (b) Accuracy and (c) Loss for train and validation
processes for Case II, δ frequency, Model 1, Adam optimizer.

Using this model, we obtained the maximum accuracy, which is 100% for almost every
dataset that indicates an overfitting problem. So, we introduce the second method, which
has a data verification step and multiple model optimizers.

The computation time for Case I is 155–162 s per model (1 dataset, 1 frequency) for
all EEG channels and 74 to 82 s per model for the EEG channels from only the left or
right hemisphere.
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Table 4. The results of classification by the deep learning model for Case Study I for Mona Lisa
dataset when we use (first row) all EEG channels, (second row) the channels from only the left
hemisphere of the brain and (third row) the channels from only the right one. The first value for each
”cell” (intersection of channels, participant and frequency band) is accuracy (* means 100%), and the
second one is the intensity, which gives the maximum influence on the classification.

Channels Participant δ θ α β γ

All EEG channels

1 *|0.1 *|0.1 *|0.1 98%|0.1 97%|0.1
2 *|0.1 *|0.1 *|0.1 98%|0.1 95%|0.1
3 *|0.1 98%|0.1 98%|0.1 94%|0.1» 90%|0.1
4 97%|0.1 97%|0.1 98%|0.1 98%|0.1 89%|0.1
5 *|0.1 *|0.1 92%|0.1 92%|0.1 92%|0.1

Channels from left brain hemisphere

1 *|0.7 *|0.7 *|0.6 97%|0.5 97%|0.8
2 *|0.7 *|0.7 *|0.7 *|0.9 *|0.7
3 *|0.7 97%|0.9 97%|0.4 94%|0.9 94%|0.1
4 *|0.7 *|0.2 94%|0.9 97%|0.9 94%|0.8
5 *|0.7 *0.7 97%|0.9 *|0.7 *|0.9

Channels from right brain hemisphere

1 *|0.6 *|0.9 97%|0.6 *|0.6 90%|0.8
2 *|0.6 *|0.6 *|0.6 *|0.6 93%|0.6
3 *|0.6 *|0.6 *|0.6 *|0.6 90%|0.8
4 *|0.6 *|0.6 *|0.6 97%|0.6 97%|0.6
5 *|0.6 *|0.5 97%|0.5 97%|0.6 90%|0.6

* Means 100% Accuracy.

Table 5. The results of classification by deep learning model for Case Study I for Necker cube dataset
when we use (first row) all EEG channels, (second row) the channels from only the left hemisphere
of the brain, and (third row) the channels from only the right one. The first value for each “cell” is
accuracy (* means 100%), and the second one is the intensity, which gives the maximum influence on
the classification.

Channels Participant δ θ α β γ

All EEG channels

1 *|0.1 *|0.1 *|0.1 *|0.1 97%|0.1
2 *|0.1 *|0.1 *|0.1 *|0.1 98%|0.1
3 *|0.1 *|0.1 98%|0.1 98%|0.1 90%|0.1
4 *|0.1 97%|0.2 97%|0.2 98%|0.1 *|0.1
5 *|0.1 *|0.1 92%|0.2 *|0.1 97%|0.1

Channels from left brain hemisphere

1 *|0.7 *|0.7 *|0.7 *|0.7 91%|0.1
2 *|0.7 *|0.8 *|0.3 *|0.9 *|0.8
3 *|1.0 *|0.4 97%|0.9 97%|0.7 91%|0.5
4 *|0.9 97%|0.4 *|0.9 97%|0.4 *|0.9
5 *|0.7 *|0.7 *|0.9 *|0.9 *|0.9

Channels from right brain hemisphere

1 *|0.6 97%|0.2 97%|0.6 *|0.5 90%|0.6
2 *|0.6 *|0.6 *|0.6 *|0.6 97%|0.6
3 *|0.6 97%|0.6 *|0.6 97%|0.8 90%|0.6
4 *|0.1 97%|0.6 *|0.6 *|0.6 *|0.6
5 97%|0.6 *|0.6 97%|0.6 86%|0.2 93%|0.6

* Means 100% Accuracy.

3.2. Case Study II

As it was mentioned above, using the first model for classification of the image’s
intensity has an overfitting problem. To avoid it, we add data validation to our deep
learning model. In addition, we estimate the f1-score (Equation (21)) instead of precision,
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as it was for model 1. The advantages of using the f1-score is that it can equally distribute
all the classifier’s values, which cannot be done by using precision. Suppose for example
that only 6 of 10 intensities were classified. Precision will work with only those 6 classified
intensities, while the f1-score will use all 10 of them.

In Case Study II, we use four models (see Table 3) with different combinations of two
activation functions (tanh and relu) to cross-check which model will work better (linear or
tangent). We also use different optimizers to check how they perform for different models.
The SHAP’s library technique [78] gives the proper explanation of the classification result
of any deep learning model [77,79]. So, we can easily identify intensity with a maximum
influence on classification (shown in Figure A1).

The ROC curves for all intensities are shown in Figure 4b for nadam optimizer.
The curves are slightly different from the ones for Case I: not all AUCs are equal to 1.0,
but all of them are higher then 0.99. As one can see, TPR is lower then 1.0 for low FPR
for the number of classes, but these deviations are small and in a very short range, which
indicates the high quality of the classifier. We should note that the illustrated ROC plot
corresponds to the case with the highest deviation among all ROC plots. So, in every case,
we have AUC 1 0.99.

We estimate the accuracy and loss of the model during training and validation pro-
cesses (Figure 5b,c). As one can see, the accuracy for both processes are rapidly growing
and reaches its maximum value of 1.0 and 0.97, respectively, for the 10th epoch. Loss,
in opposite, rapidly decreases and reaches zero value for the training process. However, for
validation, it decreases up to 0.2 and then slowly increases.

Figure 6a represents the normal dependencies of them for each epoch, which are
expected to be obtained. However, in some cases, they could differ from it: instead of the
accuracy being increased, it decreases for a short epoch range and returns normal after it.
An example of such irregular behavior is shown in Figure 6b.

Based on that, we define five behavior activities for estimation of the applicability
of the model to the dataset. The description is provided in Table 6. We compare the
dependencies of accuracy and loss on the epoch to the normal ones (Figure 6a) during
train and validation processes and obtain one of four results: during both processes, the
dependencies correspond to the normal ones (B1), they both have irregular behavior (B2),
or only one of them has irregular behavior (B3, B4). In addition, we introduce B5 behavior
for the case of zero accuracy. So, B1 is the best behavior while B5 is the worst.

(a) (b)(a) (b)

Figure 6. (a) Normal and (b) irregular dependencies of accuracy and loss on epoch.

As it was mentioned above, in Case Study II, we use different models with different
optimizers for image intensity classification by EEG signals filtered in five frequency
bands. For each of them, we estimate behavior (Table 6), f1-score (Equation (21)), and the
intensity with maximal influence. The computation time for Case II depends strongly on
the activation function and optimization method; it varies from 288 to 6559 s per model.
The average computational time for Case II is 2274 s. In the next subsections, we describe
the results for each optimizer method.
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Table 6. Behavior activity for estimation of the applicability of the model to the dataset for Case
Study II. N means accuracy vs. epoch dependence corresponds to the normal one (Figure 6a), NN
means irregular behavior (Figure 6b), ’-’ means accuracy is zero.

Model Accuracy Loss Validation Accuracy Loss Behavior

N N B1
NN NN B2
NN N B3
N NN B4
- - B5

3.2.1. Root Mean Square Propagation (rmsprop)

First, we use root mean square propagation (rmsprop) as the optimizer. Table 7 shows
the results of application of the models with rmsprop for classification. As one can see,
models 2 and 3 do not perform well since they cannot classify the intensity for three and five
frequency bands, respectively, for both datasets. Other models demonstrate high accuracy
(f1-score > 0.9) and excellent (B1) and good (B4) behavior. Note that most frequencies for
both datasets have the same behavior for models 1 and 4.

Table 7. The results of using the models with rmsprop optimizer for intensity classification.

Model Dataset Behavior Frequency f1-Score Intensity

Model 1
Mona Lisa B1 θ 0.97 0.2

B4 δ, α, β, γ 0.97, 0.99, 0.95, 0.87 0.2, 0.4, 1, 0.9

Necker Cube B1 θ, α 0.99, 0.97 0.2, 0.1
B4 δ, β, γ 0.99, 0.97, 0.93 0.2, 0.6, 0.1

Model 2

Mona Lisa
B1 α * 0.98 0.5
B2 γ 0.27 0.8
B5 δ, θ, β - -

Necker Cube
B2 β 0.23 0.8
B4 α 0.25 0.9
B5 δ, θ, γ - -

Model 3 Mona Lisa B5 δ, θ, α, β, γ - -Necker Cube

Model 4
Mona Lisa B1 α * 0.99 0.1

B4 δ, θ, β, γ 0.97, 0.98, 0.95, 0.9 0.8, 0.5, 0.4, 0.2

Necker Cube B1 θ 0.98 0.8
B4 δ, α, β, γ 0.99, 0.95, 0.95, 0.93 0.7, 0.1, 0.6, 0.7

* Refers to irregular behavior in accuracy vs. epoch graph shown in Figure 6.

3.2.2. Adaptive Moment Estimation (Adam)

Next, we use Adaptive Moment Estimation (adam) as an optimizer. Table 8 shows
the results of application of the models with Adam for classification. As for the previous
optimizer, models 2 and 3 do not perform well since they cannot classify intensity for
four and five frequency bands, respectively, for both datasets. Other models demonstrate
accuracy in the [0.83 0.99] range and excellent (B1) and good (B4) behavior. Note that the
maximal f1-score is achieved for δ frequency in every dataset.
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Table 8. The results of using the models with Adam optimizer for intensity classification.

Model Dataset Behavior Frequency f1-Score Intensity

Model 1
Mona Lisa B4 δ, θ, α, β, γ 0.99, 0.98, 0.96, 0.93, 0.85 0.7, 0.1, 1, 0.2, 1

Necker Cube B1 θ, γ 0.96, 0.86 0.5, 0.5
B4 δ, α, β 0.98, 0.97, 0.9 0.2, 0.2, 0.6

Model 2
Mona Lisa B2 β 0.32 0.3

B5 δ, θ, α, γ - -

Necker Cube B5 δ, θ, α, β, γ - -

Model 3 Mona Lisa B5 δ, θ, α, β, γ - -Necker Cube

Model 4
Mona Lisa

B1 θ *, α * 0.95, 0.97 0.6, 0.2
B2 β 0.91 0.4
B4 δ, γ 0.97, 0.9 0.7, 0.8

Necker Cube B1 θ 0.96 0.1
B4 δ, α, β, γ 0.99, 0.97, 0.92, 0.83 0.6, 1, 0.1, 0.2

* Refers as irregular behavior in accuracy vs. epoch graph shown in Figure 6.

3.2.3. Nesterov-Accelerated Adaptive Moment Estimation (Nadam)

Then, we use nesterov-accelerated adaptive moment estimation (Nadam) as an opti-
mizer. Table 9 shows the results of application the models with Nadam for classification.
Again, models 2 and 3 do not perform well since they cannot classify intensity for four and
five frequency bands, respectively, for both datasets. Other models demonstrate accuracy
in [0.84 0.99] range as well as excellent (B1) and good (B4) behavior.

Table 9. The results of using the models with Nadam optimizer for intensity classification.

Model Dataset Behavior Frequency f1-Score Intensity

Model 1
Mona Lisa B1 α 0.96 0.1

B4 δ, θ, β, γ 0.99, 0.98, 0.93, 0.88 0.9, 0.2, 0.6, 1

Necker Cube B4 δ, θ, α, β, γ 0.99, 0.97, 0.98, 0.94, 0.84 0.4, 0.4, 0.4, 0.7, 0.2

Model 2

Mona Lisa B2 β 0.11 0.5
B5 δ, θ, α, γ - -

Necker Cube
B1 δ 0.97 1
B4 θ 0.95 0.8
B5 α, β, γ - -

Model 3 Mona Lisa B5 δ, θ, α, β, γ - -Necker Cube

Model 4
Mona Lisa B1 δ, α 0.98, 0.97 0.2, 0.9

B4 θ, β, γ 0.99, 0.97, 0.86 0.4, 0.4, 0.1

Necker Cube B1 δ, α 0.97, 0.94 0.4, 0.2
B4 θ, β, γ 0.97, 0.91, 0.88 0.3, 0.2, 0.3

3.2.4. Extension to the Adaptive Movement Estimation (AdaMax)

The next optimizer we use is AdaMax, which is an extension to the Adaptive Move-
ment Estimation. Table 10 shows the results of application of the models with AdaMax for
classification. Comparing to all previous optimizers, AdaMax performs well for almost
every frequency and model (except for model 2, which demonstrates B5 behavior for δ and
θ frequencies). The accuracy for models 1, 3 and 4 are higher then 0.88. Moreover, model
1 for the Mona Lisa dataset demonstrates B1 behavior for all frequencies. The f1-score
for model 4, the Mona Lisa dataset, and the δ frequency is 1.0. So, we need to introduce
chaos [80] and dilution [81] to solve this problem for future work.



Mathematics 2022, 10, 2819 16 of 25

Table 10. The results of using the models with AdaMax optimizer for intensity classification.

Model Dataset Behavior Frequency f1-Score Intensity

Model 1
Mona Lisa B1 δ, θ, α, β, γ 0.99, 0.97, 0.98, 0.97, 0.90 0.2, 0.7, 0.3, 0.3, 0.1

Necker cube B1 δ, θ 0.98, 0.95 0.8, 0.6
B4 α, β, γ 0.96, 0.93, 0.91 0.4, 0.2, 0.2

Model 2
Mona Lisa

B2 θ *, α *, β 0.96, 0.8, 0.94 0.9, 0.6, 0.4
B4 γ 0.83 0.8
B5 δ - -

Necker Cube B4 α, β, γ 0.98, 0.93, 0.9 0.3, 0.2, 0.5
B5 δ, θ - -

Model 3
Mona Lisa B1 θ, α *, β * 0.98, 0.96, 0.96 0.2, 0.6, 0.2

B4 δ, γ 0.99, 0.88 0.7, 0.2

Necker Cube B1 δ, θ, α, β 0.98, 0.99, 0.95, 0.94 0.9, 0.8, 0.4, 0.4
B4 γ 0.88 0.8

Model 4
Mona Lisa B1 θ, α 0.98, 0.97 0.9, 0.2

B4 δ, β, γ 1, 0.97, 0.89 0.5, 0.7, 0.6

Necker Cube B1 θ, α 0.98, 0.96 0.8, 0.4
B4 δ, β, γ 0.96, 0.96, 0.91 0.7, 0.8, 0.2

* Refers as irregular behavior in accuracy vs. epoch graph shown in Figure 6.

3.2.5. Adaptive Gradient Algorithm (adagrad)

Then, we use is adaptive gradient algorithm (adagrad) as optimizer. Table 11 shows
the results of application the models with adagrad for classification. This algorithm does
not demonstrate B5 behavior for any model. Moreover, all the models except model 2
demonstrate B1 behavior. One can see, that using lower frequency band gives higher
f1-score. There are also 100% accuracy for δ frequency, Necker cube dataset, model 1 and 3.
So, we need to introduce chaos [80] and dilution [81] to solve this problem for future work.

Table 11. The results of using the models with adagrad optimizer for intensity classification.

Model Dataset Behavior Frequency f1-Score Intensity

Model 1
Mona Lisa

B1 δ, θ, α, β, γ
0.98, 0.97, 0.95, 0.91, 0.88 0.1, 0.9, 0.6, 1, 0.6

Necker Cube 1, 0.96, 0.93, 0.85, 0.86 0.6, 0.5, 0.9, 0.4, 0.4

Model 2
Mona Lisa B1 δ, θ, γ 0.98, 0.95, 0.83 0.2, 0.2, 0.9

B4 α, β 0.94, 0.74 0.1, 0.7

Necker Cube B1 δ, θ, α 0.96, 0.94, 0.92 0.2, 0.2, 0.1
B4 β, γ 0.75, 0.83 0.4, 0.2

Model 3
Mona Lisa

B1 δ, θ, α, β, γ
0.98, 0.97, 0.96, 0.89, 0.86 0.5, 0.7, 0.3, 0.6, 0.9

Necker Cube 1, 0.98, 0.95, 0.88, 0.88 0.5, 0.1, 1, 0.7, 1

Model 4
Mona Lisa

B1 δ, θ, α, β, γ
0.98, 0.96, 0.96, 0.86, 0.86 0.5, 0.6, 0.6, 0.6, 0.3

Necker Cube 0.99, 0.98, 0.95, 0.9, 0.84 0.3, 0.8, 0.1, 0.3, 0.9

3.2.6. Extension of Adagrad (adadelta)

Next, we use the extension of Adagrad (Adadelta) as an optimizer. Table 12 shows the
results of application of the models with Adagrad for classification. Although most models
demonstrate B1 behavior, the f1-score is very low for many of them, and in some cases, it is
close to zero. So, using the Adadelta optimizer does not perform good classification.
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Table 12. The results of using the models with the Adadelta optimizer for intensity classification.

Model Dataset Behavior Frequency f1-Score Intensity

Model 1
Mona Lisa

B1 δ, θ, α, β, γ
0.96, 0.4, 0.54, 0.2, 0.4 0.3, 0.5, 0.7, 0.8, 0.4

Necker Cube 0.54, 0.51, 0.53, 0.3, 0.37 0.5, 0.4, 0.9, 0.3, 0.5

Model 2
Mona Lisa B1 δ, θ, α, β, γ

0.73, 0.59, 0.76, 0.66, 0.76 0.6, 0.4, 0.4, 0.4, 0.7

Necker Cube 0.84, 0.68, 0.48, 0.53, 0.72 0.3, 0.1, 1, 0.8, 0.8

Model 3
Mona Lisa B1 δ, θ, β, γ 0.17, 0.25, 0.03, 0.15 0.8, 0.6, 0.3, 0.6

B5 α - -

Necker Cube B1 δ, θ, α, γ 0.07, 0.19, 0.15, 0.21 0.7, 1, 0.6, 1
B5 β - -

Model 4
Mona Lisa

B1 δ, θ, α, β, γ
0.14, 0.11, 0.1, 0.03, 0.18 0.6, 0.5, 0.9, 1, 0.1

Necker Cube 0.32.0.11.0.14.0.03.0.18 0.7, 0.2, 0.9, 0.2, 0.1

3.2.7. Stochastic Gradient Descent (SGD)

Then, we use stochastic gradient descent (SGD) as an optimizer. Table 13 shows the
results of application the models with SGD for classification. With this optimizer, models 1
and 4 (start and end with tanh) work perfect for both datasets because they demonstrate
B1 behavior and high accuracy for all frequencies. Model 3 has good results for almost
all frequencies except δ one. In contrast, model 2 demonstrates B5 behavior and does not
perform well.

Table 13. The results of using the models with an SGD optimizer for intensity classification.

Model Dataset Behavior Frequency f1-Score Intensity

Model 1
Mona Lisa

B1 δ, θ, α, β, γ
0.97, 0.99, 0.99, 0.97, 0.89 0.8, 0.8, 0.2, 0.1, 0.2

Necker cube 0.98, 0.96, 0.96, 0.91, 0.88 0.2, 0.5, 0.4, 0.2, 0.8

Model 2
Mona Lisa

B1 δ 0.73 0.7
B2 γ 0.92 0.2
B5 θ, α, β - -

Necker cube B2 β, α 0.19, 0.58 0.4, 0.1
B5 δ, θ, γ - -

Model 3

Mona Lisa B1 θ, α, β, γ 0.96, 1, 0.96, 0.91 0.5, 0.9, 0.2, 1
B2 δ * 0.25 0.1

Necker cube
B1 θ, α, β 1, 0.99, 0.94 0.5, 0.4, 0.4
B2 δ 0.01 0.4
B4 γ 0.94 0.6

Model 4
Mona Lisa

B1 δ, θ, α, β, γ
0.98, 0.99, 0.98, 0.95, 0.9 0.7, 0.6, 0.5, 0.9, 1

Necker cube 0.97, 0.98, 0.96, 0.93, 0.9 0.8, 0.1, 1, 0.7, 0.9
* refer as fault in epoch vs accuracy graph shown in Figure 6.

3.2.8. Follow The Regularized Leader (FTRL)

Finally, we use the follow the regularized leader (FTRL) algorithm for optimization.
As one can see from Table 14, it demonstrates B5 behavior for all the models and datasets.
Only using the δ frequency band for model 2 gives good results.
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Table 14. The results of using the models with FTRL optimizer for intensity classification.

Model Dataset Behavior Signal f1-Score Max Influence

Model 1, 3–4 Mona Lisa B5 δ, θ, α, β, γ - -Necker cube

Model 2
Mona Lisa B1 δ 0.98 1

B5 θ, α, β, γ - -

Necker cube B1 δ 0.98 0.7
B5 θ, α, β, γ - -

4. Comparison of the Methods
4.1. Case Study I

As we know, right brain specialization is intuition and creativity while left brain
specialization is language [82]. We found that using channels from different parts of the
brain and filtering EEG signals in different frequency bands influences the classification
process. Table 15 shows the intensity which gives the maximal influence on the classification
process for all participants in Case Study I. As one can see, when we use all EEG channels
or the ones from the right brain hemisphere, the same intensity gives the maximal influence
for both datasets and all frequencies, while for left channels, the intensity differs for datasets
and frequencies.

Table 15. The intensity which gives the maximal influence on the classification process for all
participants in Case Study I.

Frequency
Channel Dataset

δ θ α β γ

All EEG channels Mona Lisa 0.1 0.1 0.1 0.1 0.1Necker cube

Channels from left brain hemisphere Mona Lisa 0.7 0.7 0.9 0.9 0.8
Necker cube 0.7 0.4 0.9 0.9|0.7 0.9

Channels from right brain hemisphere Mona Lisa 0.6 0.6 0.6 0.6 0.6Necker cube

4.2. Case Study II

In Case Study II, we focus on difference keras [83] optimizers. As we mention in
Table 6, we assign five behaviors. In this table, we omitted B5 behavior because it does
not produce any output. The best behavior is B1, because both models have performed
as a proper one. The next best one is the B3, because here, the validation performs good.
The next best one will be B4, because its validation fails to perform well. So, the behavior
activity from good to bad is B1 > B3 > B4 > B2.

Table 16 shows that the most frequent behavior of the RMSprop, Adam, Nadam,
and AdaMax optimizers is B4, while for AdaMax, Adagrad, and SGD, it is B1. In our
model, B1 is much better than B4. So, we can say that Adagrad is the best optimizer to use.
Table 16 also gives information about which optimizer is suitable for which model. This
table gives us a simple overview about linear and tangent models.

Another criterion we use for comparison of the model is the computational time (CT).
Figure 7 illustrates the CT for all the models and optimizers which we have used in our
research within Case Study II for δ frequency and the case of using all EEG channels.
The lower the computational time of the machine learning method, the easier to use it.
As one can see, the same optimizers marked by color require different times for the different
models. The greatest difference was demonstrated by the Nadam optimization method
(marked by brown color): more then 6000 s for models 1 and 3, 3500 s for model 2 and
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2500 s for model 4; and RMSprop (pink): almost 4000 s for model 1 and around 2000 s for
models 1, 3 and 4. The CT for Adadelta (blue), Adagrad (orange), AdaMax (red), and FTRL
(violet) optimizers does not differ from one model to another. The CT for the Nadam
optimizer is the highest for each model, so it is the most ineffective method among the
others. In the opposite, the SGD optimization method (gray) requires the lowest CT for
models 1–3, but for model 4, the most effective method is Adam (green).

Table 16. Comparability within two datasets based on behavior and optimizer. Here, the cell value is
the frequency bands whose f1-score is more than 70% and the number of the frequency corresponds
to the behavior in brackets. B1/B2/B3/B4 are defined in Table 6.

Optimizer Dataset
Behavior

B1 B2 B3 B4

RMSprop Mona Lisa θ(1), α(2) - - δ(2), β(2), γ(2), α(1), θ(1)
Necker cube θ(2), α(1) - - δ(2), α(1), β(2), γ(1)

Adam Mona Lisa θ(1), α(1) β(1) - δ(2), θ(1), α(1), β(1), γ(2)
Necker cube θ(2), γ(1) - - δ(1), α(2), β(2), γ(1)

Nadam Mona Lisa α(2), δ(1) - δ(1), θ(2), β(2), γ(2)
Necker cube δ(2), α(1) - - δ(1), θ(3), α(1), β(2), γ(2)

AdaMax Mona Lisa δ(1), θ(3), α(3), β(2), γ(1) θ(1), α(1), β(1) δ(2), β(1), γ(3)
Necker cube δ(2), θ(3), α(2), β(1) - - δ(1), α(2), β(3), γ(4)

Adagrad Mona Lisa δ(4), θ(4), α(3), β(3), γ(4) - - α(1), β(1)
Necker cube δ(4), θ(4), α(4), β(3), γ(3) - - β(1), γ(1)

Adadelta Mona Lisa δ(2), γ(2) - - -
Necker cube δ(1), γ(1) - - -

SGD Mona Lisa δ(3), θ(3), α(3), β(3), γ(3) γ(1) - -
Necker cube δ(2), θ(3), α(3), β(3), γ(2) - - γ(1)

FTRL Mona Lisa δ(1) - - -
Necker cube δ(1) - - -

Figure 7. Computational time of different optimizers marked by different colors (blue, orange, green,
red, violet, brown, pink, gray) for Case II, δ frequency, all EEG channels.

To estimate the performance of the models, we measure precision, recall, f1-score, and
specificity. Figure 8 illustrates the measures for all the models and optimizers. A good
model should demonstrate precision, recall and f1-score values close to 1 and specificity
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value close to 0. As one can see, all optimizers except FTRL have 0 specificity and very high
precision for model 1 and 3, and also all except FTRL and Adadelta have high recall and
f1-score for those models. So, based on these measures, we can conclude that models 1 and
3 with Adagrad, Adam, AdaMax, Nadam, RMSprop, and SGD optimization functions are
better than the others.

(a) (b)

(d)(c)

Figure 8. (a) Precision, (b) recall (sensitivity), (c) f1-score (accuracy), and (d) specificity for Case II, δ

frequency, all EEG channels.

Table 17 demonstrates a comparative study of methodologies and results between the
current work and previous machine learning-based EEG studies aimed at classifying brain
states In [84], the classical SVM classifier was used to classify EEG involving biological
categories and non-biological categories, and it reached the classification accuracy of 82.7%.
In [85], the RNN-based model was used for the classification of EEG data evoked by visual
object stimuli, and 84% accuracy was achieved. In [86], the authors reached a great 96.94% f1-
score, but we cannot it as the baseline since they used not only EEG signals for classification
but also the original images. In our study, we use only EEG signals, and 31 channels is
enough to achieve a 92.9% f1-score (average value for Model 1 over all frequencies) for the
Adagrad optimizer. We should note the EEG-Net model presented in Ref. [87] where the
authors used only 14 EEG channels to achieve 88% accuracy, which is a little bit less than
our result. Overall, our model demonstrates a good ability to classify the EEG signals.

Table 17. Comparison with the existing studies.

Study Year Aim Signals Algorithm Accuracy, %

El-Lone, R. et al. [84] 2015 Classification objects and 256 EEG channels SVM 82.7
animals by EEG

Spampinato, C. et al. [85] 2017 Classification EEG data evoked by visual object stimuli 128 EEG channels RNN-based model 84
Parekh, V. et al. [87] 2017 Image annotation system 14 EEG channels EEG-Net 88
Zheng, X. et al. [86] 2020 Image classification by analyzing 128 EEG channels LSTMS-B 96.94

images and EEG signals + images
Kuc, A. et al. [51] 2021 Ambiguous stimuli classification 31 EEG channels CNN 74
Current study 2022 Classification of the image’s 31 EEG channels MLP, adagrad 92.9

intensity optimizer

5. Conclusions

We have applied different machine-learning methods for the classification of brain
states during visual perception. As data, we used 31 EEG channels filtered in δ, θ, α, β, and γ
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frequency bands corresponding to the perception of Mona Lisa and Necker cube images. In
Case Study I, we used a deep learning model with eight layers, the tanh activation function,
and the RMSprop optimizer. Using this model, we obtained the maximum accuracy which
is 100% for almost every dataset that indicates an overfitting problem. To estimate the
influence of different features on the classification process and make the method more
interpretable, we use the SHAP’s library technique.

To avoid the overfitting problem of the first model, we introduced the second method
(Case Study II), which has a data verification step. Here, we used four models with different
combinations of two activation functions (tanh and relu) to cross-check which model works
better (linear or tangent). We also used different optimizers to check how they perform for
different models. We found that the best optimization method is Adagrad; it performs well
for most of the frequency bands. In contrast, the FTRL method does not work at all. The list
of optimizers from best to worst is: Adagrad > SGD > AdaMax > Adadelta > Nadam >
RMSprop > Adam > FTRL. In addition, we found that only Adagrad works well for both
linear and tangent models.
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Adadelta extension of Adagrad
SGD Stochastic gradient descent
FTRL Follow The Regularized Leader
CNN Convolutional Neural Network
LRP Layer-wise Relevance Propagation
FBS Forward-Backward Splitting
LSTM Long Short-Term Memory
RDA Regularized Dual Averaging
SHAP SHapley Additive exPlanations

Appendix A. Application of SHAP for Feature Importance Estimation

To estimate the influence of the features, we use SHAP (SHapley Additive exPlana-
tions) as described in Section 2.5. An illustrative example of the SHAP technique application
is shown in Figure A1. Here, class N corresponds to the intensity I = 0.1× (N + 1). As one
can see, feature 11,406 corresponding to 11,406/250 = 45.624 s from the beginning of image
presentation has the most influence on the classification. In addition, 0.9 intensity (Class 8)
influences the most for each time point.

Figure A1. Example of top 20 features with the most influence on classification estimated by SHAP.
Here, Class N corresponds to the intensity I = 0.1 × (N + 1). Feature F corresponds to the time
F/250 s from the beginning of image presentation.
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