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Abstract—We have trained an artificial neural network (ANN)
to predict correct and erroneous interpretations of complex visual
stimuli, Necker cubes with different levels of ambiguity. For
the selected configuration of ANN, the classification accuracy
was 88%. These results are prospective for developing the new-
generation assistive technologies.

Index Terms—Necker cube, machine learnin, cognitive task,
electroencephalograms, ambiguous stimuli

I. INTRODUCTION

In modern science, brain-computer interfaces (BCIs) occupy

a special place at the intersection of neuroscience and machine

learning [1]. BCIs are the devices that connect brain with the

computer or an executive device. BCIs have many practical

applications, including controlling prostheses or a wheelchair

with commands coming directly from the brain. In addition,

they can be used for the treatment of the central nervous

system diseases [4], [5], post-stroke rehabilitation [3], training

cognitive abilities [2] and monitoring cognitive states. Such

BCIs are called passive and attract particular interest, since

they can be used in the development of assistive technologies

that control the cognitive state of a person while performing

complex tasks that require attention and concentration. During

a high cognitive load, along with a decrease in productivity

in terms of response time, a person can make mistakes when

responding to the external stimuli. An ultimate goal of assistive

technologies is predicting and prevention of these mistakes.

A promising approach for prediction is analyzing brain ac-

tivity before the response and finding biomarkers prediction

erroneous response. To test this possibility, we considered

a decision-making task involving perception of the visual

stimuli, Necker cubes and responding to their interpretation.
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We trained an artificial neural network to predict correct and

erroneous interpretations of visual stimuli using EEG signals

recorded before the behavioral response.

II. MATERIALS AND METHODS

A. Experiment

To participate in the experimental sessions, we recruited a

group of volunteers (26 subjects) with normal or adjusted to

normal visual acuity. During the experimental sessions, we

recorded electroencephalograms using the monopolar regis-

tration method and 31 electrodes arranged in accordance with

the classical extended international arrangement of electrodes

10-10, with a sampling frequency of 250 Hz [7], [8]. Before

starting the procedure, we placed the subjects in a chair in a

comfortable position that minimizes muscle movements. On

the monitor screen, the participants observed visual stimuli

- Necker cubes with different levels of ambiguity [9], [10].

The subject, without any visual disturbances, interprets the 2D

image of the Necker cube as a 3D object due to the specific

position of the edges of the cube. The observer can perceive

such an image as oriented either to the left or to the right. As a

control parameter a = [0, 1] (the level of ambiguity), we used

the contrast of the inner edges. This parameter was calculated

as a = g/255, where g is the brightness of the inner edges.

Thus, we had Necker cubes with parameters a = [0.15, 0.25,

0.4, 0.45, 0.55, 0.6, 0.75, 0.85]. We instructed the volunteers

to report their first impression of the orientation of the visual

stimulus by pressing the corresponding button on the joystick.

The whole experiment lasted about 40 minutes, including

short recordings of background brain activity at the beginning

and at the end of the registration. During the experimental

sessions, the subjects observed Necker cubes with predefined

parameters of the ambiguity level 400 times. Between each

demonstration of the visual stimulus, the participants observed

an abstract image on the monitor screen.
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B. Protocol

During the experimental sessions, we formed a protocol.

It contained all the necessary information for working with

experimental data, namely: the time of demonstration of each

visual stimulus, parameter a of the visual stimulus, the correct-

ness of the interpretation of the visual stimulus by the subject,

as well as the time that the subject spent on the interpretation

of each Necker cube.

According to the protocol, we divided the EEG recordings

into 4-second trials, including 2 seconds before and 2 seconds

after the demonstration of the visual stimulus.

C. Data preprocessing

We used a band-pass filter with cutoff frequencies of 1 Hz

and 100 Hz and a 50 Hz notch filter for primary processing

of EEG recordings. Artifacts related to blinking, heartbeat,

and muscle movements were removed using the Independent

Component Analysis (ICA) method [8]. This procedure was

performed in Matlab software using the fieldtrip package [6].

On average, 3 components containing artifacts were removed

for each EEG record. However, ICA didn’t remove all the

distortion of the EEG signal. We conducted a visual inspection

of the processed data in order to remove trials containing high-

amplitude artifacts. For this, we used the z-value threshold z

<1.

D. ANN input

We have generated EEG recordings in the form of a matrix

with a dimension of 31x375, which corresponds to a 1.5-

second recording interval for each visual stimulus (TOI1)

and including a 1-second prestimulus interval (TOI3) and a

0.5-second poststimulus interval (TOI2). Thus, we used three

matrices as input data for the convolutional neural network:

1) TOI1 – 31x375, 2) TOI2 – 31x125, 3) TOI3 – 31x250.

In this paper, we used the following hyperparameters to train

a neural network: initializer = RandomUniform (a technique

that defines the way to set the initial random weights of

ANN layers), intermediate layer activation function = softmax

(defines how the neuron transforms the weighted sum of the

input into an output), Adam optimizer (an algorithm used to

change the attributes of the neural network such as weights

and learning rate in order to reduce the losses), learning rate

= 1 (a hyperparameter that controls how much to change the

ANN model in response to the estimated error each time

the model weights are updated. A small learning rate may

result in a long training process, whereas a large learning rate

may result in learning a sub-optimal set of weights too fast

or an unstable training process), batch size = 200 (defines

the number of samples that will be propagated through the

network. If the batch size is equal to 100, the algorithm takes

the first 100 samples from the training dataset and trains the

network. Next, it takes the second 100 samples (from 101st

to 200th) and trains the network again. We can keep doing

this procedure until we have propagated all samples through

the network), number of epochs = 10 (defines the number of

times that the learning algorithm will work through the entire

training dataset. One epoch means that each sample in the

training dataset has had an opportunity to update the internal

model parameters. When the number of epochs is large, the

ANN learns patterns that are specific to sample data to a great

extent. As a result, ANN gives high accuracy on the training

set but fails to achieve good accuracy on the test set).

E. Cross-validation

We implemented an artificial neural network (ANN) using

the TensorFlow library in Python. We loaded experimental data

into an artificial neural network, having previously converted

them into a feature vector. We combined the experimental data

of all 26 people and obtained as a result a data set consisting

of 9534 trials, of which 8580 had a correct interpretation, and

1054 had an erroneous one. Based on these data, we trained

an artificial neural network to distinguish between correct

and erroneous interpretations of visual stimuli, and evaluated

the effectiveness of ANN using cross-validation. Each round

of cross-validation involved partitioning a dataset into two

subsets, performing ANN training on the training subset (8580

trials, 90%), and validating on the testing subset (954 trials,

10%). This division was chosen because of the peculiarities of

behavioral data (correct and erroneous interpretations). In each

round, we estimated the model’s performance using categorical

accuracy (CA) as follows

CA =
N1

true +N2
true

N1
true +N2

true +N1
false +N2

false

, (1)

where N
1,2
true and N

1,2
false are the numbers of true and false

predictions for the class 1 and class 2, respectively. To reduce

variability, we performed five rounds of cross-validation using

different partitions and averaged CA over the rounds.

III. RESULTS

The chosen configuration of the artificial neural network

provided prediction of correct or erroneous interpretation of

the visual stimulus to the subjects with an accuracy of 88%.

IV. CONCLUSION

We trained an artificial neural network to predict the correct

and erroneous responses of subjects to visual stimuli with an

accuracy of 88% using 31 EEG signals. However, we obtained

these results using a single neural network configuration.

In subsequent studies, we plan to consider various ANN

configurations to select optimal parameters.
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