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a b s t r a c t 

The development of mathematical models to describe neuronal interaction processes in the brain is a 

challenging task of nonlinear dynamics. Recent advances in biochemistry and neuroscience allow better 

understanding of biological mechanisms underlying the neuron functioning and synaptic connections be- 

tween neurons. Moreover, significant progress in brain imaging sheds light on the structure of the brain 

network and certain aspects of neuronal dynamics. However, dynamical mechanisms leading to synchro- 

nization between different brain areas still remain unknown and require further investigation. To shed 

light on this issue, we consider two small-world networks of Hodgkin-Huxley neurons interacting via in- 

hibitory coupling. We found that synchronization indices (SI) in both networks oscillate periodically in 

time, so that time intervals of high SI alternate with time intervals of low SI. Depending on the coupling 

strength, the two coupled networks can be in the regime of either in-phase or anti-phase synchroniza- 

tion. We suppose that the inherent mechanism behind such a behavior lies in the cognitive resource 

redistribution between neuronal ensembles of the brain. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

The application of the complex network theory to neuroscience 

s very promising for analyzing structural and functional connectiv- 

ty of brain neurons [1] . Different mathematical models were used 

o describe the dynamics of a single neuron as a node of the neu- 

onal network and the interaction between the neurons. Among 

hem one can highlight the integrate-and-fire [2] , Morris-Lecar [3] , 

itzHugh-Nagumo [4,5] , Hindmarsh-Rose [6] , and Hodgkin-Huxley 

HH) [7] models. The HH model is the most complete bio-inspired 

odel that describes the initiation and propagation of the action 

otential taking into account ionic currents in the neuron’s mem- 

rane. The spiking activity generated by this model simulates the 

lectrical activity of a real neuron [8] . 

Collective neuronal activity plays an important role in brain 

unctioning. According to the functional magnetic resonance imag- 

ng (fMRI) studies, the whole-brain network activity is generated 

hrough the interaction of multiple functional subnetworks during 
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ither a resting state or task accomplishing. The functional subnet- 

orks include a dorsal attention network, a frontoparietal network, 

n executive control network, a default mode network, and other 

euronal networks [9] . Although functional networks have differ- 

nt anatomical locations, they interact with each other and overlap 

uring task accomplishing [10] . 

Collective processes resulted from the functional interaction be- 

ween remote populations of cortical neurons subserve the cog- 

itive performance during demanding tasks. For instance, when 

he task complexity is high brain engages additional resources by 

nvolving multiple neuronal populations. In the visual processing 

asks, a small amount of the sensory information can be pro- 

essed by the occipito-parietal network, while increasing informa- 

ion complexity requires additional activation of prefrontal regions 

11–13] . Finally, collective neuronal activity underlies cognitive per- 

ormance during prolonged cognitive tasks. In this case, the brain 

ynamically redistributes the cognitive load among multiple corti- 

al regions [14] . 

Current understanding of neuronal communication highlights a 

ital role of phase coherence in functional interaction between re- 

ote neuronal ensembles. To illustrate this issue, let us consider 

https://doi.org/10.1016/j.chaos.2021.110812
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he interaction between a pair of neurons. When a presynaptic 

euron fires, a neurotransmitter (protein) enters a synaptic cleft 

rom the axon terminal and moves across the synapse to be bind 

ith receptors in the postsynaptic neuron. The binding of the neu- 

otransmitter may results in either excitation or inhibition of the 

ostsynaptic neuron. In the brain, a postsynaptic neuron may re- 

eive both excitatory and inhibitory inputs from thousands of neu- 

ons simultaneously. At the same time, the postsynaptic neuron is 

rimarily excited by inputs from those neurons whose action po- 

entials are coherent with the action potential of the postsynaptic 

euron. In the absence of the coherence, the input signal comes to 

he postsynaptic neuron at a random phase of its excitability cycle 

nd therefore has a low connectivity performance. Thus, efficient 

ommunication between brain neurons can only be achieved if the 

eurons are in the phase synchronization state. 

In electroencephalographic (EEG) experiments, phase coherent 

ehavior of neural ensembles results in the increasing amplitude 

f the electric potential registered by the electrode on sensor or 

ource level. Previous experimental studies highlighted the exis- 

ence of phase synchronization between high-frequency spiking ac- 

ivity of single neurons and low-frequency electric activity in the 

uman brain. In particular, Canolty et al. [15] observed that the 

igh-frequency γ -wave (80–150 Hz) of the electrocorticogram is 

odulated by the low-frequency θ-rhythm (4–8 Hz) envelope. Fur- 

hermore, different behavioral tasks evoked distinct patterns asso- 

iated with of the θ – high-frequency γ coupling across the cortex. 

heir results evidenced that the coupling between low- and high- 

requency brain rhythms coordinates the activity in distributed cor- 

ical areas, providing a mechanism for effective communication 

uring cognitive processing in humans. 

The high amplitude of electric potentials in the occipital and 

emporal cortical regions may indicate increasing coherence be- 

ween neurons within local ensembles during earlier visual or au- 

itory processing stages. To integrate sensory information from 

ultiple sources or to perform more complex cognitive process- 

ng, the brain coordinates the activity of the distant ensembles. The 

atter requires phase coupling between low- and high-frequency 

rain rhythms. Thus, phase coherence is needed for forceful inter- 

ction between neural ensambles. 

Although the neuroimaging studies provide substantial evi- 

ence for the vital role of phase coherence, dynamical mechanisms 

nderlying the coherence within and between neuronal ensem- 

les remain unclear. To address this issue, we simulate two in- 

ibitory coupled networks of Hodgkin-Huxley neurons which re- 

eive the input signal in the form of a spike train. We observe that 

he synchronization index (SI) between the neurons in both net- 

orks periodically changes in time: time intervals of high SI alter- 

ate with time intervals of low SI. Adjusting the inhibitory cou- 

ling strength between the neural ensembles can result in either 

n-phase or anti-phase SI oscillations in the ensembles. We assume 

hat in-phase mode is associated with coordination of the ensem- 

les to perform a joint simultaneous cognitive operation, whereas 

nti-phase mode subserves their involvement in the task switch- 

ng between two neuronal ensembles. Finally, we hypothesize that 

nhibitory coupling contributes to the controlling phase coherence 

etween two neuronal populations. 

. Mathematical model 

In this paper, we use the Hodgkin-Huxley (HH) model to de- 

cribe the time evolution of the transmembrane potential of each 

euron [7] : 

 m 

dV i 

dt 
= −g max 

Na m 

3 
i h i (V i − V Na ) − g max 

K n 

4 
i (V i − V K ) 

− g max 
L (V i − V L ) + I ex 

i + I syn 
i 

(1) 
2 
here C m 

= 1 μF / cm 

3 is the capacity of cell membrane, I ex 
i 

is the

xternal bias current injected into a neuron in the network, V i is 

he membrane potential of i -th neuron, i = 1 , . . . , N ( N being the

otal number of neurons in the network) is the neuron number, 

 

max 
Na 

= 120 mS / cm 

2 , g max 
K 

= 36 mS / cm 

2 , and g max 
L 

= 0 . 3 mS / cm 

2 

eceptively denote the maximal sodium, potassium and leakage 

onductance when all ion channels are open. V Na = 50 mV, V K = 

77 mV, V L = −54 . 4 mV are the reversal potentials for sodium, 

otassium and leak channels, respectively, and I 
syn 
i 

is the total 

ynaptic current received by neuron i . m , n and h represent the 

ean ratios of open gates of the specific ion channels. n 4 and 

 

3 h are the mean portions of the open potassium and sodium ion 

hannels within a membrane patch. The dynamics of the gating 

ariables ( x = m, n, h ) is described as follows 

dx i 
dt 

= αx i ( V i ) ( 1 − x i ) − βx i ( V i ) x i + ξx i , ( x = m, n, h ) , (2) 

here αx (V ) and βx (V ) are rate functions defined as 

αm i 

(
V j 

)
= 

0 . 1 ( 25 −V i ) 

e ( 25 −V i ) / 10 −1 
, αn i ( V i ) = 

0 . 01 ( 10 −V i ) 

e ( 10 −V i ) / 10 −1 
, 

αh i ( V i ) = 0 . 07 e −V i / 20 , βm i ( V i ) = 4 e −V i / 18 , 

βh i ( V i ) = 

1 

1+ e ( 30 −V i ) / 10 
, βn i ( V i ) = 0 . 125 e −V i / 80 , 

(3) 

In Eq. (2) , ξx i is independent zero mean Gaussian white noise, 

hose autocorrelation functions are 

 ξm i 
(t) ξm i 

(t ′ ) 〉 = 

2 αm i 
βm i 

N Na (αm i 
+ βm i 

) 
δ(t − t ′ ) , (4) 

 ξh i 
(t) ξh i 

(t ′ ) 〉 = 

2 αh i 
βh i 

N Na (αh i 
+ βh i 

) 
δ(t − t ′ ) , (5) 

 ξn i (t) ξn i (t ′ ) 〉 = 

2 αn i βn i 

N K (αn i + βn i ) 
δ(t − t ′ ) . (6) 

ere, N Na = ρNa S and N K = ρK S represent the total number of 

odium and potassium channels within membrane patch ( ρNa = 60 

 

−2 and ρK = 18 m 

−2 being sodium and potassium channel den- 

ities, respectively) and S = 1 is the membrane patch area of each 

euron. 

In this work, we consider the coupling via chemical synapses 

nly. The synaptic current takes the form [16] 

 

syn 
i 

= 

N ∑ 

j∈ Z (i ) 

g c α(t − t j s )(E re v − V j ) , (7) 

here α(t) describes the temporal evolution of the synaptic con- 

uctance, g c is the maximal conductance of the synaptic chan- 

el, t 
j 
s is the moment of time at which presynaptic neuron j

res, E re v = 50 mV is the synaptic reversal potential, and Z (i ) is

he set of presynaptic neurons coupled with the i -th postsynap- 

ic neuron, defined by the adjacency matrix. We suppose that 

(t) = e −t/τsyn 
(t ) , where 
(t ) is the Heaviside step function and

syn = 3 ms. 

Synchronization inside each network is quantified with the syn- 

hronization index defined as [17,18] : 

= 

√ 

1 

T − t 0 

∫ T 

t 0 

η(t) dt , (8) 

here t 0 and T are durations of transients and total time series, 

nd η(t) is the standard deviation given as 

(t) = 

1 

N 

N ∑ 

i =1 

(
x (i ) (t) 

)2 −
( 

1 

N 

N ∑ 

i =1 

x (i ) (t) 

) 2 

. (9) 

he lower the synchronization index �, the better the synchro- 

ization, so that � = 0 means complete synchronization. 
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Fig. 1. Schematic of the network model. The external stimulus with amplitude A is applied to a small input network of N ex = 5 neurons. Every neuron of the input network 

is unidirectionally connected to each of N 1 = N 2 = 50 neurons of two sub-networks by excitatory synapses with coupling strength g c = 0 . 05 and probability p = 30% . The 

sub-networks are bidirectionally connected to each other by inhibitory synapses with coupling strength g ex 
c and probability p = 30% . The neurons Inside the sub-networks 

are connected to each other according to “small-world” (SW) topology with coupling strength g in c . 
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The correlation between interacted N 1 and N 2 sub-networks can 

e found on the base of their synchronization indices �1 and �2 . 

he Pearson’s linear correlation coefficient is calculated as follows 

19] 

 = 

∫ T 
t 0 
(�1 (t) − �1 )(�2 (t) − �2 ) dt √ ∫ T 

t 0 
(�1 (t) − �1 ) 2 (�2 (t) − �2 ) 2 dt 

. (10) 

ere, r = 1 and r = −1 mean perfect positive and perfect negataive

orrelation, respectively. 

. Results and discussion 

We consider the network presented in Fig. 1 . The external stim- 

lus of a constant current with amplitude A is applied to a small 

nput network of N 

ex = 5 neurons coupled with a randomly cho- 

en coupling strength in the range g s c ∈ [0 , 0 . 15] . This small net-

ork is unidirectionally connected to two large networks of N 1 = 

 2 = 50 neurons by excitatory synapses with coupling strength 

 c = 0 . 05 and probability p = 30% . The large networks are bidirec-

ionally connected to each other by inhibitory synapses with cou- 

ling strength g ex 
c and probability p = 30% . The large networks have 

 “small-world” (SW) topology, and the neurons inside these net- 

orks are coupled with coupling strength g in c . We consider the SW 

etwork topology because we wish to simulate signal processing in 

he brain on both low-level and high-level stages, i.e, on the levels 

f a single neuron and neural ensembles. A continuous stimulus 

eceived by the small input network ( N 

ex ) is transformed by the 

etwork into a sequence of neural spikes transmitted then to the 

arge networks to process the signal. 

The dynamical behavior of the sub-networks N 1 and N 2 is il- 

ustrated in Fig. 2 (a). The first 50 neurons in the graph belong to

he N 1 sub-network, while the second 50 neurons to the N 2 sub- 

etwork. The neurons inside each sub-network are coupled by in- 

ibitory synapses, while the two sub-networks are interconnected 

ia excitatory synapses. The type of synchronization beween the 

ub-networks depends on the coupling strength g ex 
c . 

The dependence of the average spike amplitude x a v r = 

1 
N 1 

∑ N 1 
i =1 

x i of the sub-network N 1 versus �1 is presented in 

ig. 2 (b). One can see that larger spike amplitude of the aver- 

ged signal corresponds to higher �1 with the correlation between 

hem to be r = 0 . 707 . 

Using Eq. (8) , we calculate the time series �1 (t) and �2 (t) 

nd then filter them with a [0 . 004 , 0 . 015] -Hz band-pass filter to

isualize a slow variation of the macroscopic signal generated by 

ach network. The result is presented in Fig. 2 (c), where one can 
3 
ee that SIs of the two sub-networks oscillate periodically in time 

xhibiting antiphase synchronization [20] . 

Fig. 2 illustrate network dynamics for the coupling strengths 

 

ex 
c = −0 . 1 and g in c = 1 . 0 between the large networks and inside

hem, respectively. One can see that in this case �1 and �2 are 

egatively correlated, i.e, their amplitudes oscillate approximately 

n antiphase. When �1 increases, �2 decreases and vice versa. We 

nd that the type of synchronization depends on both g ex 
c and g in c . 

The neurons inside each network fire at different moments of 

ime. For time moments corresponding to the maximum values of 

he oscillating SI in each sub-network (shown by the arrows in 

ig. 2 (c)), we calculate the distributions of the time lags for all 

eurons in both sub-networks with respect to the average spike 

ime. The resulting distributions for three SI maxima are present 

n Fig. 2 (d). For both interacted networks N 1 and N 2 the distribu- 

ions at t 1 and t 3 are similar to each other, while the distribution at 

 2 is different. This is because t 1 and t 3 are times corresponding to 

he maximal �1 , i.e, in the first network, while t 2 to the maximal 

2 , i.e., in the second network. The former distributions have pro- 

ounced peaks close to 0, while the latter distributions are wide 

nd close to uniform. 

In Fig. 3 (a) we plot the two-parametric diagram of the correla- 

ion r of SIs in the space of g ex 
c and g in c . One can note the light yel-

ow area of high positive correlation with a 0.02 width in the cou- 

ling strength g ex 
c between the sub-networks. The boundary values 

f this area increases as the coupling strength inside the networks 

 g in c ) is decreased. Hence, to achieve maximal positive correlation, 

oth coupling strengths must oscillate inphase, either decrease or 

ncrease simultaneously. This suggests that the excitatory current 

eceived by a neuron from the neurons of the same network and 

he inhibitory current received from another network should com- 

ensate each other. In a similar way, a maximal anticorrelation 

an be achieved (black areas in Fig. 3 (a)) when two sub-networks 

emonstrate antiphase dynamics. One can also note that the upper 

ark area of negative correlation in Fig. 3 (a) ( −0 . 06 < g ex 
c < −0 . 015 )

s the widest for g in c = 1 . 0 and becomes narrower with decreasing

he last one. 

In Fig. 3 (b) we plot the dependencies of the correlation r on the 

oupling strength between the large networks for different values 

f the coupling strength inside these networks. When the networks 

re disconnected ( g ex 
c = 0 ), the correlation is close to r = 0 . 15 . A

ecrease in the coupling strength g ex 
c towards more negative values 

rst leads to a small increase in the correlation up to r ∈ [0 . 2 , 0 . 4] .

hen, a further decrease in g ex 
c results in a decrease in r to negative 

alues up to r ≈ −0 . 8 for g ex 
c ≈ −0 . 3 . After that, r grows again and

eaches r ≈ 0 . 9 for g ex 
c ∈ [ −0 . 055 , −0 . 07] depending on g in c . For a
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maller coupling strength inside the large networks, the maximum 

nd minimum values of the correlation are achieved for a smaller 

oupling strength between the networks. 

The time series of SIs are shown in Fig. 4 for three different val-

es of the coupling strength between the large networks g ex 
c . While 

I oscillates inphase for g ex 
c close to 0 ( Fig. 4 (a)), for higher nega-

ive values of g ex 
c these oscillations are asynchronous ( Fig. 4 (b,c)), 

nd for g ex 
c = 0 . 1 they oscillate in antiphase ( Fig. 4 (d)). 

The collective processes resulted from the functional interaction 

etween remote populations of cortical neurons were shown to 

ubserve the cognitive performance during demanding tasks. For 

nstance, when the task complexity is high, the brain engages ad- 

itional resources by involving multiple neuronal populations. The 

ollective neuronal activity underlies the cognitive performance 

uring prolonged cognitive tasks. In this case, the brain dynami- 

ally redistributes the cognitive load among multiple cortical re- 
4 
ions. Here, we demonstrate that SI in both networks periodically 

scillates in time; the time intervals with high SI alternate with 

he time intervals where SI is low. When adjusting the strength 

f inhibitory coupling, one can observe that SIs of these networks 

re inphase or antiphase synchronization. We can suppose that the 

nderlying mechanism of antiphase oscillations stands behind the 

ognitive resource redistribution between neuronal ensembles in 

he brain. 

All previous studies were performed for the case when the neu- 

ons of the small input network were connected to each other 

ith a coupling strength randomly chosen from g s c = 0 to range 

 

s 
c = 0 . 15 . To investigate how the input signal from the small input

etwork N 

ex affects antiphase oscillations of the large networks, 

e fix the coupling strength g s c . In Fig. 5 (a) we show how the cor-
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network: I: g s c = 0 . 15 , II: g s c = 0 . 075 , III: g s c = 0 . (b-d) Membrane potentials of input 

neurons for I, II and III. 
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elation changes for three different fixed values of g s c : g s c = 0 . 15

red dash-dotted line I), g s c = 0 . 075 (solid blue line II), and g s c = 0

black dashed line III). One can see that the dependences II and 

II are very similar. However, the elimination of the coupling in 

he input network (line I) leads to a decrease in the amplitude of 

orrelation oscillations. The shape of line III differs from others. In 

igs. 5 (b-d), one can see that without coupling the neurons display 

synchronous dynamics, while an increase in g s c improves synchro- 

ization between the neurons. 

Thus, the increasing coupling between the neurons in the small 

nput network N 

ex affects synchronization in the large networks. 

onsidering that the input network plays a role of low-level signal 

rocessing, the communication between neurons in this network 

s necessary for effective signal processing. It should be noted that 

egardless of the coupling strength in the input network, there is 

lways decreasing SI correlation from positive ( r = 0 . 4 or higer) to

egative ( r = −0 . 8 ) values for g ex 
c < −0 . 06 . Therefore, we can as-

ume that this process is determined by the interaction between 

 1 and N 2 networks via inhibitory coupling. 

. Conclusion 

In this paper we have investigated dynamics of the complex 

etwork of Hodgkin-Huxley neurons. The considered network con- 

isted of a small input network and two large interacted networks. 

n external signal received by the input network was transformed 

y the network into a sequence of spikes, and then transmitted 

o two sub-networks of small-world configuration, interacting with 

ach other via an inhibitory coupling and operating together to 

rocess the signal. 

We have observed that the synchronization index (SI) in both 

etworks oscillates periodically in time; the time intervals of high 

I alternates with the time intervals of low SI. We have found that 

Is in these networks exhibit either inphase or antiphase synchro- 

ization depending on the inhibitory coupling strength between 
5 
hem. We suppose that the underlying mechanism behind the an- 

iphase dynamics lies in the cognitive resource redistribution be- 

ween neuronal ensembles in the brain. 

We have also demonstrated that excitatory coupling between 

he neurons inside the network affects the synchronization index. 

o maintain the neural network in the regimes of inphase or an- 

iphase SI oscillations, we should keep a balance between exci- 

atory and inhibitory connections. It suggests that the excitatory 

nd the inhibitory currents should compensate each other. In other 

ords, when one of them increases, the other must be increased 

oo, and vice versa. 

Finally, we have shown that the coupling inside the input small 

etwork affects antiphase synchronization between two large net- 

orks. However, the scenario from positive and negative correla- 

ion and back between the large networks are only determined by 

nhibitory coupling between them. 
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