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Abstract. The effect of adaptive coupling is studied in a neural net-
work of randomly-coupled Rulkov maps. As an adaptive mechanism,
we propose a modified spike-timing-dependent plasticity (STDP) rule
with implemented homeostatic property. The comparison of the results
of classical and modified STDP shows that the implication of homeo-
static property results in significant changes in the network dynamics.
Moreover, the neural network with modified STPD demonstrates much
more pronounced dynamical changes when internal noise and stim-
ulus amplitudes are varied. The use of the modified rule also leads
to decreasing coherence and characteristic correlation time in the
system.

1 Introduction

Brain is one of the most comprehensive dynamical systems. Different approaches,
including physiological, biochemical, mathematical and informatics, are applied for
studying brain dynamics. The consideration of the brain neural system as a net-
work of coupled dynamical units is an efficient mathematical way to simulate
a complex behavior of a real neural system. Numerous studies are devoted to
a study of structural properties of such neural networks, that can help in bet-
ter understanding of dynamical properties of real synaptically connected neural
networks [1].

There are two main reasons why the development of effective neural models
is an important. First, a good mathematical model can give a deep insight into
mechanisms responsible for memory, decision-making, and various forms of sensory
information processing. Despite differences between fundamental factors underlying
these processes in real neural networks and in models, they all can be explained by
the neuroplasticity [2] observed on a microscopic level, as changes in the particu-
lar group of neurons, and on a macroscale level, as the interaction in cortical areas.
Neuroplasticity reflects the neural network ability to change its structure according
to its temporal dynamics. In neural models, this phenomenon is accounted by the
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formation of various forms of network connectivity structures under the influence of
external stimuli.

Another reason of the importance of mathematical modeling is the development
of effective artificial intelligent systems which use decision-making and control algo-
rithms based on neuromorphic principles of information processing. The discovery
of cognitive mechanisms underlying perception of various forms of stimuli allows a
significant increase in the efficiency of the program methods employed in different
neurobiological devices, such as neurofeedback-based neurointerfaces [3,4], exoskele-
tons [5], and prosthetic devices [6]. Besides the biomedical aspect, the technologies
developed on the base of existing knowledge on brain functioning are actively used
in machine learning methods [7].

In this paper, we introduce a adaptive neuronal network model based on the
Rulkov map. The Rulkov model simulates a spiking-bursting behavior of a biological
neuron. It is used for studying neural synchronization [8–10] which is an essential issue
in neuroscience considering neural information processing and various pathological
states, such as, for example, epileptic seizures. We study spatio-temporal patterns of
neuronal behavior caused by the interplay of synchronization between neurons and
structural adaptation in the network. We reveal the coherence resonance phenomenon
in the Rulkov map network model, that occurs when the network undergoes stochastic
perturbations which make the oscillatory network response more regular [11]. This
effect manifests itself as an increase in the order (or coherence) of the dynamical
system at the certain level of external and/or internal noise [12]. Such a behavior were
observed in various dynamical systems and intensively studied in neural networks
recently [11]. Here, we focus on the intrinsic noise effect on the network coherence
and evaluate the optimal level of noise intensity, when the regularity in the neuron
dynamics optimizes.

The network topology is regulated by spike-timing-dependent plasticity (STDP)
based on the adaptation mechanism, which represents the Hebbian learning rule,
the biologically inspired mechanism explaining temporal requirements for neural
connectivity [13]. STDP characterizes how the temporal order of presynaptic and
postsynaptic neural activity affects firing patterns in the network structure imple-
mented by such forms of synaptic plasticity as long-term potentiation (LTP) and
long-term depression (LTD) [14]. STDP is observed in different brain areas of insects
and mammals [15–17]. It should be noted that classic STDP regulates the behaviour
of two coupled neurons and does not reflects homeostasis phenomenon, which is
an important feature that causes the emergence of non-homogeneous topologies in
real-world neural networks.

In recent papers [18,19], the scientists studied synchronization phenomena in spik-
ing neural networks with classical spike-timing-dependent plasticity, and showed that
spiking synchronization can be improved by using STDP. In our work, we study
dynamical regimes of neuronal networks taking into account the homeostasis term
and consider the effect of intrinsic noise on the network coherence. We show that
implementing the modified STDP rule significantly changes the system dynamics as
compared with the classical STDP rule. As a result, the modified rule allows com-
pletely different dynamical regimes for the same parameters, because the system
becomes more sensitive to external perturbations, such as a constant stimulus or
noise. Since the influence of the external signal is more significant, less experimental
resources are required to control the system dynamics.

2 Model

The ensemble of coupled Rulkov maps can be described by a set of equations, where
each i-th neuron is represented as [20]
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xn+1 = f(xn, xn−1, yn + βn),

yn+1 = yn − µ(xn + 1) + µσ + µσn + µAξξn.
(1)

Here, x is the fast dynamical variable that represents the membrane potential of
the i-th neuron and y is the slow gating variable dependent on the small value of
µ ∈ (0, 1]. Parameters α, σ, µ stand for network dynamic regulation, and Aξ is the
amplitude of Gaussian noise ξ, which has zero mean and unity standard deviation.
Function f describes different types of neuron-like activity corresponding to spiking,
bursting and silent regimes as

f(xn, xn−1, yn) =


α/(1− xn) + yn, if xn ≤ 0,

α+ yn, if 0 < xn < α+ yn and xn−1 ≤ 0,

−1, if xn ≥ α+ yn or xn−1 > 0.

(2)

The external stimulation is introduced via variables βn and σn defined as

βn = βeIextn + βsynIsynn ,

σn = σeIextn + σsynIsynn ,
(3)

where βe and σe are the coefficients used to balance the effect of external current
Iextn :

Iexpn =

{
0, n < ts,

A, n ≥ ts,
(4)

where A is the amplitude of external stimulus, βsyn and σsyn are the coefficients of
chemical synaptic coupling [21], and Isynn is the synaptic current given as

Isynn+1 = γIsynn − gsyn ∗

{
(xpostn − xrp)/(1 + e−k(x

post
n −θ)), xpren ≥ α+ ypren + βpren ,

0, xpren < α+ ypren + βpren ,

(5)

where gsyn ≥ 0 is the strength of synaptic coupling, θ = −1.55 and k = 50 are
the synaptic parameters which stand for the synaptic threshold behavior. The
superindices pre and post refer to the presynaptic and postsynaptic variables, respec-
tively, γ ∈ [0, 1] is the synaptic relaxation time defining a synaptic current portion
preserved in the next iteration, and xrp is the reversal potential determining the
synapse type, inhibitory or excitatory. We consider a motif of N = 100 globally cou-
pled neurons with coupling strength gsyn uniformly distributed in the interval of
[0.0, 0.1] and relaxation time γ uniformly distributed in [0.0, 0.5]. The parameter val-
ues are chosen so that the uncoupled neurons are in a resting state, namely, α = 3.65,
σ = 0.06, and µ = 0.0005. We also assume the following parameter values: βe = 0.133,
σe = 1.0, βsyn = 0.1, σsyn = 0.5, and xrp = 0. Applying the external stimulus to the
system for these parameter values forces the neurons from a silent to a spiking regime.
The values of α and σ allow us to switch the neurons to a bursting regime.
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To evaluate correlation in our model, we introduce the characteristic correlation
time [12]:

τc =
T∑
t0

C(τ)2, (6)

where t0 = 3000 is the number of iterations in transients, T is the total number of
iterations in time series, and C(τ) is the autocorrelation function given as

C(τ) =

〈
(xavr(n)− 〈xavr〉) (xavr(n+ τ)− 〈xarv〉)

〉〈
(xavr(n)− 〈xavr〉)2

〉 , (7)

where 〈...〉 is the time average after transients and xavr represents the averaged mem-
brane potential. The small value of the correlation time indicates an uncorrelated
system behaviour. Thus, the larger the τc, the better the regularity (coherence).

To evaluate synchronization in the neuronal network, we introduce synchroniza-
tion degree [22,23]:

S =

√
1

T − t0

∫ T

t=t0

s(t)dt, (8)

where s(t) is defined as

s(t) =
1

N

N∑
n=1

[xn(t)]2 −

[
1

N

N∑
n=1

xn(t)

]2
, (9)

and N stands for the number of nodes (n = 1, 2, ..., N). The smaller S, the more
network elements are in a synchronous state, S = 0 means complete synchronization
in the neuronal network.

Coherence is defined as

H =
1

N

N∑
n=1

h2n −

(
1

N

N∑
n=1

hn

)2

, (10)

and hn is described by the equation:

hn =

√√√√ 1

M − t0 + 1

M∑
m=m0

Rm(n), (11)

where Rm is interspike interval (ISI) between m-th and (m + 1)-th spike, M is the
number of spikes (m = 1, 2, ...,M), m0 is the number of transient spikes. The second
condition in equation (2), which defines the spike generation threshold, is used to
determine ISIs.

The standard STDP learning rule is defined by equation:

4gij = A+(gij)xjδ
i −A−(gij)xiδ

j , (12)

where δ is the delta function, A+ and A− denotes how much the coupling strength
will be changed from pre- and postsynaptic spike generation, respectively. In this
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Fig. 1. The dependencies of STDP parameters A+ and A− on the synaptic weight.

work, we apply these values as a function of the current value of the synaptic weight
gij as follows

A+(g) = 1− g8, A−(g) = g8. (13)

This allows us to bound the coupling strength in the range [0, 1], as shown in
Figure 1.

Although this classical mechanism for synaptic plasticity regulates the interaction
between pre- and post-synaptic neuron, it does not take into account the homeostatic
plasticity whose presence is essential in real neural networks [26]. It was recently
shown that in adaptive networks, the implementation of this property can cause the
emergence of non-homogeneous real-like topologies [27]. In the present research,
we implement the homeostatic property by adding the term which describes the
interaction of the current node with all other connected neurons [28]:

∆gij = A+(gij)xjδ
i −A−(gij)xiδ

j +
∑
k 6=j

(A+(gik)xkδ
i −A−(gik)xkδ

k), (14)

where the first and second terms in the right part of the equation correspond to
the interaction between nodes i and j, and the third term corresponds to the average
impact of all other nodes connected to node i [29]. Such a notation allows the account
of a synaptic scaling process (or homeostatic scaling), in which the neural network
regulates chronically elevated activity [30].

3 Results

To estimate the system dynamics in the response to control parameters α and σ,
we study synchronization degree in the two-parameter space of the coherence and
correlation time calculated for both classic equation (12) and modified equation (14)
STDP models, shown in Figure 2. The black areas in Figures 2a and 2b correspond
to complete synchronization when S = 0, while the white areas in Figures 2e and 2f
indicate a silent regime characterized by the absence of spiking activity. An increase
in α with constant σ leads to enhancing coherence and synchronization. If we fix
α and increase σ, we observe an increase in both S and H. The comparison of the
results based on classical STDP principles (Figs. 2a and 2e) and on our approach
(Figs. 2b and 2d) allows us to conclude that the change in the STDP rule does affect
the (α, σ)-parameter dependencies of coherence and synchronization degree.

In Figures 2e and 2f one can distinguish three typical areas (white, yellow/red,
and blue/black) corresponding to high, medium, and low values of τc, respectively.
Comparing these figures with the bifurcation diagram on the (α, σ)-parameter plane
in reference [25], where three different regimes (silence, bursts of spikes, and spikes)
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Fig. 2. Network characteristics in the (α, σ)-parameter space, calculated using classical
STDP principles (a,c,e) and on the base of our approach (b,d,f) for A = 1, Aξ = 0.5. (a,b)
Synchronization degree S, (c,d) coherence H, and (e,f) correlation time τc.

are depicted, one can see a very close similarity. To verify this result, we calculate
time series of averaging membrane potentials as follows [11]

xavr =
1

N

N∑
i=1

xi, (15)

where i is the neuron index and N = 150 is the total number of neurons in the
network. In Figures 3a and 3c, these averaging signals occur in the blue/black and
yellow/red areas which correspond to the regimes of spikes and bursts of spikes,
respectively. One can see that a change in the STDP rule leads to correspond-
ing change in the characteristic correlation time map. The main difference between
Figures 2e and 2f lies in the area of α ∈ [3; 4.6], σ ∈ [0; 0.3]. In the time series of
averaging membrane potentials from this area (Fig. 3b), the network with classic
STDP principles demonstrates bursting dynamics, while the network with STDP
rule proposed in this study exhibits spiking dynamics.

The comparison of Figures 2e and 2f with the bifurcation diagram from reference
[25] demonstrates that a change in the STDP rule in the way we do in this paper
allows us to save the map of characteristic regimes of a single neuron. At the same
time, the use of the classic STDP principles change the regime map and increae the
area of bursts of spikes.

To estimate the network response to noise and external stimuli, we study two-
parameter dependencies of synchronization degree, coherence, and correlation time on
noise (Aξ) and external stimulus (A) amplitudes, calculated for both classic (Eq. (12))
and modified (Eq. (14)) STDP models, as shown in Figure 4. One can see that syn-
chronization degree increase a bit faster when the first learning design is applied
(Fig. 4a); in the classical model, the value of A > 1.5 is enough to obtain S ≥ 0.7,
while the modified model requires larger amplitude values. This can be a direct
consequence of the presence of the third term in equation (14). When the STDP
learning takes into account the dynamics of all synaptic connections of the current
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element with all other elements, the dynamics of whole network evolves differently, in
presumably more realistic way. Besides, we do not observe the influence of Aξ on the
network dynamics, although some combinations of Aξ and A values (e.g., Aξ ≈ 0.6,
A ≈ 1.6, where there is a red spot on Fig. 4b) result in the high S value.

One can note correlations between dependencies shown in Figures 4c–4f. Consid-
ering coherence dynamics shown in Figures 4c and 4d, one can distinguish similar
patterns corresponding to the classic and modified STDP models. In the classical
model (Fig. 4c), the system reaches minimal coherence with a large value of the noise
amplitude (Aξ > 1.8) and a small value of the external stimulus (A < 0.3). In the
contrary, the maximal coherence corresponds to intensive external stimuli and faint
noise (Aξ < 0.5 and A > 1.5). A similar situation occurs with the modified system
(Fig. 4d), although the coherence value overcomes notable depression.

Finally, Figures 4e and 4f illustrate correlations between noise and external stimuli
amplitudes and correlation time, which also demonstrate a high coherence level in
the system. Indeed, one can track a set of similarities between dynamics of τc value
in the classical and modified models in Figures 4e and 4f, respectively, as well as
the correlations between H and τc in the corresponding models. In both cases, the
value of correlation time decreases as the noise amplitude is increased, and reaches a
maximum value for Aξ < 1.

Despite the observed differences, we can conclude that, generally, the dynamical
patterns remain the same in both models. The whole picture reveals the tendency of
the considered characteristics to suppress in the case of the modified model, but the
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Fig. 4. Two-parameter dependencies of network characteristics on noise (Aξ) and external
stimulus (A) amplitudes, calculated for classic STDP principles (a,c,e) and proposed in
this study (b,d,f). (a,b) Synchronization degree S, (c,d) coherence H, and (e,f) correlation
time τc.

key correlations, such as growing coherence in the presence of noise with increasing
amplitude and correlations between τc and H, appear equally.

4 Conclusion

We have studied the dynamics of the neuronal network of the Rulkov maps using the
modified STDP-learning rule by implementing the homeostatic property [29]. This
property was employed by the additional component in the STDP equation, which
described the average connectivity change of the current node for the single time
step. By this way, we took into account the impact of all neighbours of the node on
the formation of each of its connections [28].

We have investigated the network of 150 Rulkov neurons coupled to each other
with random weights, which were changed through time according to the classical and
modified STDP principles in the presence of noise and external stimulus. We have
found that the implication of homeostatic property in the STDP rule led to sufficient
changes in the dynamics as compared with the classical mechanism. At this point,
the whole network dynamics became similar to that of a single neuron; the number
of the neurons in the burst-of-spike regime decreased.

Besides the neuron parameters, we have also investigated the influence of noise
and external stimulus on the network dynamics. We have found that the system
with the modified STPD demonstrated much more pronounced dynamical changes
when noise and stimulus amplitudes were varied. Using the modified rule also led to
decreasing coherence and characteristic correlation time in the system, that can be
important for applications in computational models for pattern classification.

Recent research implies the possibility for implication of networks composed
by spiking neurons for the solution of intellectual tasks, such as classification of
brain states, that earlier could only be adressed to classical non-dynamical neural
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networks. At the same time, the main requirement allowing to shape the dynam-
ics and topology of spiking networks for a concrete task is the implementation of
the biologically inspired adaptive mechanism, including the rewarded plasticity as in
reference [31]. The results obtained in the present paper can be used for the devel-
opment of biologically inspired intelligent systems for pattern recognition [32] of
adaptive locomotion [33].

This work has been supported by the Russian Science Foundation (grant 17-72-30003).
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