
Two-stage approach based on combination of
one-class SVM and CNN for epileptic seizure

identification
Sergei Nazarikov

Baltic Center for Neurotechnology
and Artificial Intelligence

Immanuel Kant
Baltic Federal University

Kaliningrad, Russia 
snazarikov@gmail.com

Vadim Grubov
Baltic Center for Neurotechnology and

Artificial Intelligence,
Immanuel Kant

Baltic Federal University,
Kaliningrad, Russia

vvgrubov@gmail.com

Nikita Utashev
National Medical and Surgical Center

named after N.I. Pirogov
of the Ministry of Health

of the Russian Federation,
Moscow, Russia

Oleg Karpov
National Medical and Surgical Center

named after N.I. Pirogov
of the Ministry of Health

of the Russian Federation,
Moscow, Russia

Abstract—Many automated EEG seizure detection methods
are able to perform well in terms of precision but fail to keep
reasonable recall producing a lot of false positives. To solve
this, we propose a two-stage framework combining classical
outlier detection methods and neural networks, utilizing real-
world EEG data. The first stage uses a one-class support vector
machine to filter non-seizure activity, followed by a convolutional
neural network to distinguish between false positives and true
seizures. Evaluation of metrics tailored for epilepsy detection
showed improved precision, with a slight decrease in recall for
the proposed approach, suggesting that it may improve the
performance of clinical decision support systems.

Index Terms—Multi-stage approach, convolutional neural net-
work, epileptic seizure detection, clinical decision support system,
EEG

I. INTRODUCTION

Epilepsy is a chronic neurological disorder causing recur-
rent seizures, which affects over fifty million people [1].
Nowadays, effective treatment relies on early and accurate
diagnosis, primarily using electroencephalography (EEG) —-
non-invasive method for measuring electrical brain activity [2].
Usually, to diagnose epilepsy, a doctor manually analyzes the
patient’s EEG recording in order to find the patterns associated
with this condition. Despite the fact that such inspection is
precise it’s very laborious and time-consuming. Therefore,
automated tools in the form of Clinical Decision Support
Systems (CDSS) are needed for efficient seizure detection [3].

Previous studies on this topic have used a wide range of dif-
ferent methods to solve this problem, including statistical ap-
proaches [4], [5], time-frequence analysis [6]–[9] and various
machine learning (ML) methods [10]–[14]. The convolutional
neural networks used in this study are no exception as well

[15]. However, most of these studies utilize limited publicly
available datasets, which contain significantly fewer artifacts
and noise than real EEG recordings, leading to overoptimistic
results.

In our previous studies, we focused on frequency char-
acteristics and temporal dynamics of epileptic EEGs using
wavelet transforms and outlier detection techniques [16], and
showed that seizures represent extreme events, suggesting
outlier detection techniques for this task. However, while these
methods are able to find most of the seizures, the number of
produced false positives remains a big issue.

In this study, we aim to improve the precision and maintain
the recall of our model by using a two-stage approach.
We combine a one-class support vector machine (OCSVM)
with a convolutional neural network (CNN) to achieve this.
Additionally, we have adjusted the evaluation procedure to
better reflect the specific requirements of the task. Finally, we
utilize a real-world EEG dataset from a clinical setting to train
and compare our models.

II. MATERIALS AND METHODS

A. Dataset

The employment of a real EEG dataset in this study was
made feasible thanks to the collaboration with the National
Medical and Surgical Center named after N.I. Pirogov in
Moscow, Russia. All patients provided written informed con-
sent, and the study followed the Helsinki Declaration and
local medical regulations. The ”Micromed” encephalograph
at a 128 Hz sampling rate with 25 channels according to the
”10–20” scheme [17] was used. The dataset contains EEG
recordings collected from 83 patients between 2017 and 2019,
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with recording durations from 8 to 84 hours and each patient
had from 1 to 5 seizures during the recording session. Once
the dataset had been collected, an experienced epileptologist
manually annotated all epileptic seizures, which we used as
the ground truth for model training.

In our previous study, we observed that the predictions of
OCSVM were unsatisfactory for 16 particular patients due to
an extreme amount of artifacts in the data [16]. Consequently,
we decided to exclude these 16 subjects and keep the data
from the remaining 67 subjects for further analysis.

B. Preprocessing

In this study, we work with EEG signals in the time-
frequency domain. The transformation of raw signals was done
via continuous wavelet transform (CWT) with complex Morlet
wavelet as mother wavelet [18], [19]. The wavelet power (WP)
spectra in the 1–40 Hz range were used as input for the models:

Wn(s, τ) =

∞∫
−∞

xn(t)ψ
∗
s,τ (t)dt, (1)

wn(s, τ) = |Wn(s, τ)|2, (2)

where n = 1, 2, . . . N is the number of the channel (N = 25),
ψs,τ (t) is a basis function derived from the mother wavelet
ψ0, Wn(s, τ) are the coefficients of CWT, ∗ corresponds to
complex conjugation, and wn(s, τ) is the WP of a signal
xn(t).

C. Seizure detection

To demonstrate the effectiveness of the developed approach,
we compare it to two one-stage models based on ML and DL
approaches. Namely, we used OCSVM and CNN in a standard
one-stage fashion as base models. The OCSVM baseline treats
seizure detection as an outlier detection problem and uses
a Gaussian kernel and 10-fold cross-validation for training,
similar to [16]. The WP defined in 2 and averaged over the
2-5 Hz frequency band, 25 EEG channels, and 60-second time
intervals, is used as input for the OCSVM model.

In the case of the single-stage CNN model, we reformulated
the original task into the image classification task of 10-
second time intervals after CWT. With this formulation, we
used a CNN based on the ResNet-18 architecture [20] with
modifications to the first and last layers to ensure correct
input processing. Additionally, as CNNs generally perform
better when input data has a distribution with a zero mean and
unit variance we used the normalized logarithm of the WP as
CNN input. We trained a one-stage CNN model for 10 epochs,
where at each epoch 100 training examples per patient were
used, with approximately 50% containing epileptic activity.
Other training hyperparameters included a learning rate of
0.001, a batch size of 4, binary cross-entropy as a loss function,
and the Adam optimizer.

As mentioned earlier, the two-stage approach combines
OCSVM and CNN. In the first stage, OCSVM performs a
rough filtration by predicting ”suspicious” 60-second segments
that may contain epileptic activity. In the second stage, these

”suspicious” segments are fed into the CNN model, which
refines OCSVM predictions on 10-second segments. The main
difference in CNN training for the two-stage approach is in
the way training examples are sampled. For the CNN from the
two-stage method, we use half of the examples from actual
seizures and half from OCSVM false positives, keeping the
other parameters the same as for the one-stage CNN.

D. Evaluation

During the analysis of baseline CNN predictions, we found
many short predictions (less than 50 seconds long). These pre-
dictions make little sense because seizure durations typically
exceed 40 seconds (in our dataset average duration is more
than 100 seconds). Therefore, to smoothly decline these short
predictions, we applied a median filter with a kernel size of
K = 7.

Usually, seizure detectors are evaluated as binary classifiers
of fixed time intervals. However, in reality, seizures, aren’t iso-
lated 10-second intervals. Our analysis of models’ predictions
supports this statement. We observed that predictions of the
same class tend to cluster together which is a good sign as it
reminds natural EEG patterns. To employ this observation we
used an algorithm to convert a series of 10-second predictions
into segments of varying lengths. This algorithm involves
two steps: first - merge neighboring segments of the same
class, second - merge positive segments separated by a single
negative prediction.

However, with the last step, the usage of classical metrics
based on the confusion matrix becomes problematic since
the number of true seizure segments and predicted seizure
segments may be not equal. To solve this problem we need to
modify the procedure of accounting TP , FP , and FN pre-
dictions. Proposed rules are illustrated in Fig. 1. Specifically,
we treat the predicted segment as TP if one or more predicted
segments within or intersect a T -second range (T = 60 in this
study) of a true seizure (Fig. 1A). We call segment FP if it is
outside of T -second range of true seizure (center of Fig. 1B),
and we call true seizure FN if there is no prediction within
T -second range of this seizure (edges of Fig. 1B). With these
rules, we can evaluate the performance of the models with
standard metrics for classification: recall, precision, and F1.

III. RESULTS

In this section, we compare the performance of the proposed
two-stage approach with one-stage OCSVM and one-stage
CNN. All the metrics are shown in Table I. We can see that
both one-stage models result in a similar performance, with
slight differences in recall, and similar precision.

More specifically the one-stage OCSVM produces a high
recall of 0.9020, indicating it successfully identifies the
majority of true seizures. However, its precision is low at
0.1176 which is also reflected by a high number of false
positives (FP = 345). The one-stage CNN demonstrates a
very high recall of 0.9608, which means that it detects nearly
all presented seizures. However, similar to OCSVM, it also has
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Fig. 1. Rules for counting TP , FP , FN . Green corresponds to true seizures,
yellow — to T -second range of seizures, and red — to predictions. (A)
multiple predicted segments in T -second range of seizure are counted as one
TP ; (B) predicted segments outside T -second range of seizure are counted
as FP , true seizure without any predictions in its T -second range is counted
as FN .

a low precision of 0.1273, indicating a considerable number
of false positives as well (FP = 336).

The proposed combination of OCSVM and CNN yields sig-
nificantly improved precision = 0.5733, with approximately
10 times fewer false positives (FP = 32) than any of the
two one-stage approaches. While the recall is slightly reduced
compared to the individual models at 0.8431, it remains
relatively high, indicating that most seizure events are still
correctly identified. The F1 of 0.6825 reflects a well-balanced
performance between precision and recall, indicating that the
proposed two-stage approach is the most effective among the
three evaluated. At the same this approach results in slightly
more FN predictions which may be a limitation for some
applications.

TABLE I
COMPARISON OF ONE-STAGE MODELS AND TWO-STAGE APPROACH

Model precision recall F -score FN FP TP
One-stage OCSVM 0.1176 0.9020 0.2081 5 345 46

One-stage CNN 0.1273 0.9608 0.2248 2 336 49
Two-stage 0.5733 0.8431 0.6825 8 32 43

IV. CONCLUSION

In this study, we proposed a two-stage seizure detection
algorithm where OCSVM is used for data filtering in the first
stage, and in the second stage, CNN is used to refine OCSVM
predictions. The proposed two-stage approach showed a slight
decrease in recall but a significant increase in precision,
which produces and as a result has a significant precision
improvement. This method may enhance CDSS quality by
efficiently handling large-scale real EEG datasets with minimal
false positives.

REFERENCES

[1] W. H. Organization et al., Epilepsy: a public health imperative. World
Health Organization, 2019.

[2] R. Cooper, J. W. Osselton, and J. C. Shaw, EEG technology.
Butterworth-Heinemann, 2014.

[3] R. T. Sutton, D. Pincock, D. C. Baumgart, D. C. Sadowski, R. N.
Fedorak, and K. I. Kroeker, “An overview of clinical decision support
systems: benefits, risks, and strategies for success,” NPJ digital medicine,
vol. 3, no. 1, p. 17, 2020.

[4] S. S. Alam and M. I. H. Bhuiyan, “Detection of seizure and epilepsy
using higher order statistics in the emd domain,” IEEE journal of
biomedical and health informatics, vol. 17, no. 2, pp. 312–318, 2013.

[5] A. Pisarchik, V. Grubov, V. Maksimenko, A. Lüttjohann, N. Frolov,
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