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ABSTRACT

In this report we propose an approach based on artificial neural networks for the classification and recognition
of various states of the human brain associated with the spatial perception of ambiguous images. Based on
the developed numerical methodology and analysis of the experimental multi-channel EEG data, we create and
optimize an artificial neural network to ensure the accuracy of the classification of EEG states of the brain
in visual perception close to 100%. Different interpretations of ambiguous images produce different oscillatory
patterns in the EEG of a person with similar characteristics for each interpretation.
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1. INTRODUCTION

Currently, the dynamics of neural networks of the human brain attracts the attention of researchers in the
natural and human sciences.1,2 An interdisciplinary approach will come closer to understanding brain riddles
and a better understanding of the neural mechanisms underlying its dynamics, open prospects in the field of
medicine, neurophysiology and neurology in the near future.3,4 The study of various aspects of the functioning of
the human brain is usually based on objective data acquired in the course of psycho-physiological and cognitive
experimental work.5The most convenient and inexpensive method for recording brain signals in cognitive studies
today is EEG. A study of nonlinear processes in the brain neural network during perception of bitistable images
is very important for the understanding of both the visual recognition of objects and the decision-making process
in human brain.5–8 Despite the considerable efforts of many researchers, the basic mechanisms underlying the
interpretation of such images are not yet sufficiently clear. Currently, it is only known that perception is the
result of non-linear processes occurring in the distributed neural network of the occipital, parietal and frontal
cortical regions of the brain.9,10 However, the question remains how the interpretation of the image affects the
human EEG. Earlier, we demonstrated the effectiveness of the artificial neural network method in classifying
EEG oscillations. It is well-known that using the different frequency bands of EEG signals leads to find additional
information on brain dynamics.11–13 In the paper we propose an approach based on artificial neural networks for
classification and recognition of different human brain states related to spatial perception of ambiguous images.

2. EXPERIMENTAL SETUP AND SUBJECTS

Subjects were facing a display screen on which ambiguous images were displayed as visual stimulus (see Fig. 1).
As an ambiguous image, we used the Necker cube,5,14 a simple cube with transparent faces and visible ribs. A
person with normal perception treats the Necker cube as a 3D-object thanks to a specific position of the cube’s
ribs. Visual bistability consists in the fact that this 3D-object can be treated as oriented in two different ways,
especially if different ribs of the Necker cube are drawn with different intensity. Specifically, the contrast of the
three middle lines centered in the left middle corner, g ∈ [0, 1], was used as a control parameter of displayed
images. The values g = 1 and g = 0 correspond, respectively, to 0 (black) and 254 (white) pixels luminance of
the middle lines, using the 8-bit grayscale palette for visual stimulus presentation. Therefore, we can define a
contrast parameter as g = b/254, where b is the brightness level of the middle lines in the used 8-bit grayscale
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Figure 1. Examples of distinct Necker cube images with different wireframe contrasts characterized by control parameter
g. The left-hand image with g = 0 corresponds to the fully left-oriented cube, while the right-hand image with g = 1 to
the fully right-oriented cube

palette. The contrast of the three middle lines centered in the right middle corner was set to (1 − g), and the
normalized contrast of the six visible outer cube edges was fixed to 1.

The multi-channel EEG was recorded at 250-Hz sampling rate from P = 19 electrodes with two reference
electrodes placed at standard positions of the 10–20 international system.15 The EEG signals were filtered by a
band-pass filter with cut-off points at 1 (HP) and 100 (LP) and a 50-Hz Notch filter. The electroencephalograph-
recorder “Encephalan–EEGR–19/26” (Taganrog, Russian Federation) with multiple EEG channels and two-
button input device (joystick) was used for amplification and analog-to-digital conversion of the EEG signals.
Preliminary signal processing was provided by the original software for EEG registration artifact suppression.
Machine learning algorithms were implemented with MATLAB. To demonstrate a grayscale stimulus we used a
24” BenQ LCD monitor with spatial resolution of 1080 pixels and refresh rate of 60 Hz. Each Necker cube drawn
by black and gray lines was placed in the middle of a computer screen on a white background. The subjects
were located at a distance of 70–80 cm from the monitor with visual angle approximately equal to 0.25 rad.

The experimental studies were performed in accordance to ethical standards16 and approved by the local
research ethics committee of the Yuri Gagarin State Technical University of Saratov. Twenty healthy subjects
from a group of unpaid volunteers, male and female, between the ages of 20 and 45 with normal or corrected-
to-normal visual acuity participated in the experiments. All subjects have provided informed consent before
participating in the experiment.

3. ARCHITECTURE OF ANN AND ALGORITHM DESCRIPTION

The artificial neural network consists of a number of artificial neurons interconnected with each other by synaptic
weights to form a network. There are many possible ANN architectures used for pattern recognition. In this
study we use such class of ANN as a multilayer perceptron (MLP), which is characterized by signals traveling
only in a forward direction (feedforward network) from left to right on a layer-by-layer basis.17 MLP is the
universal and popular class of ANN widely used for a broad range of applications including the classification
problem.18–23 In our case the classification problem is the recognition of two different multistable brain states
corresponding to the perception of the ambiguous Necker cube image as left- or right-oriented.

Figure 2 shows the used ANN architecture of MLP with two hidden layers for EEG signal classification. First
layer (Input Layer – IL) contains P = 19 inputs corresponding to 19 EEG channels. For each p-th input we used
the functional EEG signal sp(t) with 1-s duration (250-sample time series) from p-th channel registered for the
case of left- or right-oriented cube image perception. The signals from each input are fed to all computational
nodes (artificial neurons) of the first hidden layer (Hidden Layer 1 – HL1 ) with the number of neurons equal
to H1. The resulting outputs of the first hidden layers are, in turn, applied to the second hidden layer (Hidden
Layer 2 – HL2 ) with the same type of the computational nodes. The number of nodes in the second hidden
layer is equal to H2. Finally, the output signals of the second hidden layer neurons emerge at the single neuron
of the output layer (OL). Since our classification problem is the recognition of two brain states by means of the
analysis of the 19-channel EEG data set, the ANN contains only one output neuron, the output value of which
classifies the current brain state corresponding to either left- or right-oriented cube interpretation.
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Figure 2. MLP architecture with two hidden layers in EEG signal classification. IL (l = 0) is the input layer, HL1 and
HL2 are the first (l = 1) and second l = 2) hidden layers, respectively, whose nodes (artificial neurons) are characterized
by nonlinear activation function (2), and OL is the output layer (l = 3) consisting of one artificial neuron with linear
activation function (3). The number of inputs is H0 = P = 19, the numbers of nodes within the hidden layers are H1 = P
and H2 = 5, respectively, and the number of output nodes is H3 = 1

The evolution of an artificial neuron network is described by the following mathematical model24

ul
i(t) = F l

Hl−1∑
p=1

wl
piu

l−1
p (t)− θli

 , (1)

where H l is the number of neurons in the l-th layer (a layer with l = 0 is supposed to be the input layer), ul
i(t) is

the output signal of the i-th neuron belonging to the l-th layer (u0
i (t) are signals from analyzed EEG channels),

Wl = {wl
pi} is the weight matrix of the l-th layer which dimension is (H l−1 ×H l), and wl

pi (p = 1, . . . , H l−1,

i = 1, . . . , H l) are the synaptic weights of input signals for the i-th neuron of the l-th layer, Θl = {θli} is the
threshold vector for neurons of the l-th layer,

F l(η) = f(η) =
1

1 + exp(−η)
(2)

is the nonlinear logistic activation function for neurons of hidden layers l = 1, 2, and

F 3(η) = η (3)

is the linear activation function for the output layer (l = 3).

A class of recognized objects can be characterized by the mean squared value of output signal u(t) = u3
1(t):

y =

√√√√√ 1

T

T∫
0

(u(t))
2
dt. (4)

Since the input signals u0
p(t) are trials sp(ti) (p = 1, . . . P , ti = i∆t, i = 1, . . . N) with the length T consisting of

N = 250 samples (T = 1 s, ∆t = T/N), Eq. (4) can be rewritten in the form

y =

√√√√ 1

N

N∑
i=1

(u(ti))
2
. (5)

For the left-oriented Necker cube perception the mean squared value of the output signal is supposed to be
y ≥ 0.5 and for the right-oriented cube y < 0.5.
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The unknown matrices Wl and vectors Θl can be obtained during the learning process by minimizing the
classification error criterion:

µ =

√√√√ 1

K

K∑
k=1

(dk − yk)
2
, (6)

where K is the total number of objects in the training set, yk is the mean squared value of the output signal
calculated for the k-th object using Eq. (5), dk is a desired output value of yk which we wish the MLP learns
(dk = 1 corresponds to the left-oriented cube perception and dk = 0 to the right-oriented one). To find unknown
parameters of ANN we used the Levenberg-Marquardt algorithm (LMA).25 By differentiating the error criterion
(6) with respect to the unknown parameters, the LMA method gives better results in comparison with other
optimization methods, but requires more computational time to determine the unknown parameters. For the
learning process we created a data set consisting of 70 single trials with 1-s duration (250 samples) which were
randomly selected from EEG records obtained from one volunteer. This data set consisted of 35 trials for each
orientation of the Necker cube images with different contract parameters g. For a more reliable assessment of
the result of ANN learning, we repeated the training procedure many times (1000 learning cycles in total). As
a consequence, we obtained 1000 ANNs with different parameters and different values of classification error µ.

4. RESULTS

The recognition accuracy of the brain states classification during visual perception of ambiguous images (left-
/right-oriented perception) for each of 12 subjects used for training ANN are shown in Fig. 3. To analyze the
classification accuracy we took the remaining part of the EEG that was not used for training, i.e. about 280
EEG trials of the registered brain states after image demonstrations.
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Figure 3. Recognition accuracy for all 12 subjects. Left blue columns represent accuracy for each subject using ANN
trained on his/her own EEG (h = r), while right orange columns show accuracy using ANN trained for subject 4 (h = 4).
The right panel represents the data averaged over all subjects under study.

We started the analysis of our classification algorithm from the training ANN for each subject under study.
The training data set was formed individually for each subject and the optimal set of ANN parameters Γr =
(W1

r ,W
2
r ,W

3
r ,Θ

1
r,Θ

2
r, θ

3
r) (r = 1, . . . 12 being the subject number) was obtained for classification of the brain

states of subject r. In this case the mean accuracy for all 12 subjects was close to 83 ± 5% (mean±S.D.) (left
blue column in the right panel in Fig. 3). The recognition accuracy for every subject, shown in the blue left
columns in the left panel of Fig. 3, vary between 68 and 100%.
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It is remarkable that two subjects (r = 4 and r = 11) demonstrated recognition accuracy of classification of
image perception close to 100%. When we used ANNs trained on these subjects for other subjects, we obtained
much higher accuracy than if using their own ANNs. These results are shown in the right orange columns in
Fig. 3. Using ANN with parameters Γ4 evaluated for subject r = 4 the accuracy of classification was close to
100% for almost all subjects, only subjects with r = 3 and r = 7 demonstrate ρ = 97%. Thus, we can conclude
that features of EEG oscillatory patterns corresponding to perception of the left- or right-oriented cubes are
typical for all subjects and a single ANN trained on the EEG data set of one person can classify with high
accuracy the corresponding brain states of a large group of people.

5. CONCLUSION

In this paper we have proposed to use an artificial neuronal network for the classification and automatic recog-
nition of human brain states associated with perception of ambiguous images. We have optimized the ANN
architecture using obtained experimental data and have shown that it is possible to achieve close to 100% accu-
racy in the classification of the EEG patterns during perception of ambiguous images. We have found particular
features of the EEG oscillatory patterns corresponding to different interpretations of the Necker cube, typical
for all subjects, so that a single ANN trained on the EEG data set of one person can classify with high quality
the corresponding brain states of a large group of people.

We firmly believe that the significance of our results is not limited to visual perception of the Necker cube
images. We are sure that the proposed experimental approach and developed computational technique based
on the ANN will be useful for studying and classifying different brain states analyzed by means of EEG and
MEG recordings and can stimulate future research in the field of cognitive and pathological brain activity. The
developed approach provides a solid experimentally approved basis for further understanding brain functionality.
The rather simple way to quantitatively characterize brain activity related to perception of ambiguous images
seems to be a powerful tool, which may be used in neurotechnology, e.g., for the brain-computer interface
task,26,27 and in medicine for diagnostic and prognostic purposes.28 We expect that our work will be interesting
and useful for scientists carrying out interdisciplinary research at the cutting edge of physics, mathematics,
neurophysiology and medicine.
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