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ABSTRACT

The problem of hidden data recovery is crucial in various scientific and technological fields, particularly in neurophysiology, where experi-
mental data can often be incomplete or corrupted. We investigate the application of reservoir computing (RC) to recover hidden data from
both model Kuramoto network system and real neurophysiological signals (EEG). Using an adaptive network of Kuramoto phase oscillators,
we generated and analyzed macroscopic signals to understand the efficiency of RC in hidden signal recovery compared to linear regression
(LR). Our findings indicate that RC significantly outperforms LR, especially in scenarios with reduced signal information. Furthermore,
when applied to real EEG data, RC achieved more accurate signal reconstruction than traditional spline interpolation methods. These results
underscore RC’s potential for enhancing data recovery in neurophysiological studies, offering a robust solution to improve data integrity and
reliability, which is essential for accurate scientific analysis and interpretation.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0223184

Machine learning, and more broadly artificial intelligence meth-
ods, are increasingly permeating various fields of natural sci-
ences. They are also widely used in nonlinear dynamics and
complex system theory for classifying dynamic operating modes
of nonlinear systems, monitoring and controlling states of non-
linear systems, and predicting the behavior of chaotic oscilla-
tors, both concentrated self-sustained systems and spatially dis-
tributed chaotic systems. In this paper, we raise the question of
the possibility of using such a machine learning technology as
reservoir computing (RC) for the task of finding hidden data in
complex networks. This is a typical situation when we have only
part of the information about the dynamics of a complex network,
for example, due to limitations in our data collection systems.
This is typical for climate and weather problems, and such situa-
tions arise in brain research. Here, we investigate the application
of reservoir computing to recover hidden data from both model
Kuramoto network system and real neurophysiological signals.

We show that the potential of machine learning in such prob-
lems, based on data-driven approaches, is very high and surpasses
standard methods that have been used to solve similar problems
before.

I. INTRODUCTION

One of the important and urgent tasks arising in various sci-
entific fields is the recovery of hidden data and patterns in exper-
imentally investigated systems. Several research directions can be
distinguished in this area. One of them is the recovery of hid-
den characteristics of the system to create more accurate models.
For example, Kyoto Encyclopedia of Genes and Genomes (KEGG)
mapping tools allow identifying hidden features in biological data,
which significantly improves the accuracy and adequacy of models.1

Another important direction is to augment the data based on the
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identified system characteristics. This provides more complete and
reliable data for further analysis.2–4

As an example from the field of neuroscience, we can highlight
the problem of the possibility of spatial and temporal expansion of
electroencephalographic (EEG) signals based on a few experimen-
tally recorded signals. In Ref. 3, a convolutional neural network
model was proposed for generating new signals of brain electrical
activity to increase the density of electrode placement. Compared
with standard spline interpolation methods, the authors show that
the use of the neural network allows for achieving better results. In
the paper,2 a new neural network model was developed to recover
original electroencephalographic (EEG) signals from noisy data in
the presence of recording artifacts.

EEG is a method of recording electrical activity of the brain
based on the measurement of potential differences on the scalp
surface.5 EEG signals are formed due to the combined activity of
many neurons, mainly pyramidal cells of the cerebral cortex, which
generate postsynaptic potentials. Mostly, brain electrical activity
recorded by EEG electrodes represents synchronized activity of
many neurons. This synchronized activity creates macroscopic elec-
trical signals that propagate through the conductive tissues of the
brain and skull. During the propagation, signals from different
sources of neuronal activity are summarized. This causes each elec-
trode to pick up integrated electrical activity from multiple sources.
It means that the same source of neural activity can be registered by
several electrodes. This fact makes it possible to recover signals from
part of the electrodes by using others.

At the same time, the quality of EEG signal recording can vary
during the experiment, which depends on many factors, includ-
ing technical aspects, patient’s condition, and external conditions.6,7

The most common causes of signal degradation are poor contact
between the electrodes and the scalp, electrode movement caused
by head movement or the electrodes themselves, physiological arti-
facts (facial and neck muscle movements can create artifacts in EEG
signals, such as artifacts from eye blinking or chewing), and others.
Collectively, this leads to the fact that some data may be lost or only
partially recorded, which causes the need to recover the lost data.

The recovery and analysis of macroscopic brain signals, such
as EEG/MEG, are of paramount importance in biomedical and
cognitive neuroscience research.8–12 The significance of EEG stems
from several key advantages. First, EEG is a non-invasive technique,
making it safe and convenient for long-term monitoring of brain
activity in patients.13–15 This is particularly crucial in the diagno-
sis and treatment of neurological disorders such as epilepsy, where
precise identification of pathological activity sources can signifi-
cantly enhance treatment outcomes.16 Second, EEG provides high
temporal resolution, enabling the study of the temporal and spa-
tial characteristics of neural activity during cognitive processes.17–19

This high temporal resolution offers unique opportunities for gain-
ing a deeper understanding of the intricate mechanisms underlying
brain function. Third, EEG is a standard neuroimaging technique
employed in brain–computer interfaces (BCIs) due to its simplicity
and portability.20 While BCIs typically utilize a limited number of
EEG channels, augmenting these channels through machine learn-
ing techniques has emerged as a promising avenue for improving
the quality of mental command recognition.21,22 Therefore, advance-
ments in methods for recovering and improving the quality of EEG

signals directly contribute to the creation of more accurate and reli-
able models. These models, in turn, have a profound impact on
the development of novel technologies and treatment approaches in
neurology, psychiatry, and cognitive neuroscience.11,23

One of the most effective methods to address this problem is
leveraging artificial intelligence and machine learning, which have
proven their utility in various fields, particularly when it comes
to identifying hidden patterns in big data. When working with
time series, reservoir computing (RC), a kind of recurrent neural
network, is highly suitable and offers high efficiency.24,25 RC has
already demonstrated its simplicity and effectiveness in forecasting
the dynamics of chaotic systems based on time series.26,27 Notably,
our studies have shown that using RC-based approaches enables
the forecasting of macroscopic signals from adaptive Kuramoto
networks.28,29 Additionally, this method can forecast the coherent
resonance observed in the Fitzhugh–Nagumo stochastic neuron.30

Nevertheless, the application of RC in recovering hidden macro-
scopic signals from complex networks remains unexplored and
holds substantial practical significance.

In this paper, we thoroughly examine the capabilities of RC in
addressing the issue of recovering collective network dynamics. We
explore an adaptive Kuramoto phase oscillator network where com-
munication parameters between nodes are dynamically modulated
based on their previous states.31–33 Specifically, the strength of the
link between nodes is determined by their degree of synchroniza-
tion during the preceding time period. This implies that connections
between oscillators are reinforced by synchronous behavior and
weakened when their phases diverge. The network’s adaptability
allows for dynamic structural changes, forming clusters of synchro-
nized oscillators. This emergent property is crucial for achieving
high levels of system synchronization. This approach enables mod-
eling the self-organization and adaptive capabilities observed in real
neural systems in response to environmental changes or internal
fluctuations.

It should be noted that a Kuramoto model stands as one of the
most straightforward and widely used models for describing syn-
chronization in systems comprising numerous oscillators.34,35 It was
specifically conceived to investigate synchronization phenomena
that are also observed in neural networks within the brain.36–38 Sec-
ond, the Kuramoto network model enables us to elucidate how oscil-
lators possessing distinct natural frequencies can synchronize via
interaction, mirroring the dynamics of neurons in the brain.35,37 Fur-
thermore, the Kuramoto oscillator network and cortical networks
exhibit macroscopic rhythms that stem from the collective behav-
ior of multiple oscillators.31,35,39–41 In the Kuramoto model, these
rhythms emerge due to the phase synchronization of oscillators,
which bears resemblance to the generation of brain rhythms (such
as alpha, beta, theta rhythms, and others) registered in EEG/MEG
signals.42,43

Importantly, adaptability plays a key role in maintaining and
enhancing synchronized dynamics within the model, promoting the
formation of stable clusters that are essential for the overall net-
work function. This distinction makes our model more realistic than
traditional Kuramoto models with fixed coupling parameters, incor-
porating features more characteristic of real biological systems.44

We have previously utilized this model to study the characteris-
tics of macroscopic signals associated with epileptic brain activity
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in an animal model of epilepsy.45 Consequently, we believe that the
Kuramoto adaptive oscillator network model provides a simplified
framework for further comparison with the results of EEG signal
reconstruction.

Initially, we simulate an adaptive Kuramoto oscillator network
and generate M macroscopic signals, M − 1 of which are utilized to
reconstruct the remaining one. We evaluate the quality of macro-
scopic signal recovery as a function of the degree of overlap between
the macroscopic signals, encompassing scenarios where the macro-
scopic signals do not fully cover the whole network. In such cases,
certain network elements are not directly incorporated into the
macroscopic signals but exert an influence on them via interacting
network elements. Then, we test the proposed RC-based approach
on the real macroscopic signals of rest-state brain electrical activity
measured by EEG.

The structure of the paper is as follows. In Sec. II, we consider
the data that we use to analyze the RC’s ability to reconstruct hidden
variables. As such models, we use an adaptive Kuramoto network
and an EEG dataset of resting-state data collected at the Immanuel
Kant Baltic Federal University. In Sec. III, we consider a machine
learning RC-based model and metrics that allow us to evaluate the
recovery quality. We pay special attention to explaining the obtained
results based on the analysis of mutual information in macroscopic
signals. Finally, in Secs. IV and V, we discuss the obtained results,
their limits of applicability, and directions for further research.

II. DATA UNDER STUDY

A. Adaptive Kuramoto network

As the model system, we use the network of Kuramoto phase
oscillators proposed in Ref. 31 and analyzed in detail in Refs. 32
and 33. The network consists of Nosc = 300 phase oscillators and is
described by the following equation:

φ̇i(t) = ωi + λ
∑

j6=i

wij(t) sin(φj − φi), (1)

where φi is the phase of the ith oscillator, i = 1, . . . , Nosc, λ = 1 is
a coupling strength, ωi is a natural frequency, wij is the weight of
the connection between ith and jth nodes, which is changed in time
according to the adaptive rule,

ẇij(t) = pij(t) −





∑

k 6=i

pik(t)



 wij(t), (2)

where pij(t) is defined as

pij(t) =
1

Tm

∣

∣

∣

∣

∫ t

t−Tm

expi(φi(t
′)−φj(t

′)) dt′
∣

∣

∣

∣

. (3)

Here, pij(t) denotes, at time t, the average phase correlation between
oscillators i and j over a characteristic memory time Tm = 15. In
this case, an additional condition is imposed on the dynamics of
the weights wij that at any moment of time for each ith oscillator
the set connection weights satisfies the condition corresponding to

homeostatic processes,31

Nosc
∑

j6=j

wij = 1. (4)

To solve the system of integrodifferential equations (1)–(4), we
use an approach based on the fourth-order Runge–Kutta method for
the ordinary differential equation components and quadrature rules
for the integral components46 with a time step of 1t = 0.01. The
initial conditions were the following: each ith node interacts with K
randomly chosen neighboring nodes with strength wij = 1/K. The
phases φi and frequencies ωi are randomly selected in the interval
[−π , π]. At the beginning of the calculations, we solved the system
without adaptation with fixed coupling strength wij = 1/K, and after
t = 2Tm we turned on adaptation (2) and (3).

To describe the macroscopic dynamics of an adaptive
Kuramoto network, we use the concept of macroscopic signals.45

The process of forming groups and calculating macroscopic signals
is illustrated in Fig. 1(a). We consider several macroscopic signals
from different parts of the network. For this, we randomly catego-
rize the oscillators into M = 6 groups (Sj, j = 1, . . . , M) with equal
number of elements (i.e., Mgroup = Nosc/M = 50 oscillators in each
group). For all groups, the following condition imposed on each pair
of groups is fulfilled Si ∩ Sj = ∅, where i 6= j.

The macroscopic signal for each group was defined as

Xj(t) =
1

Mgroup

∑

i∈Sj

sin[φi(t)]. (5)

To analyze the effect of the group intersection on a macro-
scopic signal recovery, we define the intersection rule as follows [see
Fig. 1(b)]. Let us denote the result of selecting 1 random elements
from the set S as R(S, 1). Then, the set S1

i with intersection equal to
1 is defined as

S1
i =

6
⋃

j=1,i 6=j

[Si, R(Sj, 1)]. (6)

We also considered the scenario where the formed oscillator
groups do not fully encompass the network. In such a case, we ran-
domly eliminated δ elements from the initial set S [see Fig. 1(c)]. In
other words, each set was constructed as follows:

Sδ
i = Si\R(Si, δ). (7)

B. Experimental EEG signals

We use experimental data to analyze the possibility of using
RC to restore one of the brain activity recording channels using
information about other EEG recording channels. For this purpose,
we use two-minute recordings of the background electrical activ-
ity of the brain in the rest-state with open eyes recorded in healthy
subjects. An electroencephalograph “actiCHamp” manufactured by
Brain Products, Germany, was used to record EEG activity. EEG sig-
nals were recorded for 63 channels according to the “10–10” scheme
with a sampling frequency of 1000 Hz. We used minimal prepro-
cessing to reconstruct the EEG signals. The EEG data were filtered
in the range [1, 40] Hz using a finite impulse response (FIR) filter.
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FIG. 1. Schematic representation of the Kuramoto oscillator network and the process of macroscopic signal formation. The colors here indicate groups of oscillators randomly
assigned to one of six groups, each of which forms amacroscopic signal. (a) The network is randomly divided intoM = 6 non-intersecting groups of oscillators.Mmacroscopic
signals are formed from these groups, M − 1 of which are fed into the reservoir and used to reconstitute the remaining signal (light green). In this configuration, the RC
has Minput = M − 1 macroscopic signals as input, and the output consists of a single reconstructed macroscopic signal. (b) The process of creating groups with common
elements is visualized by a dashed arrow indicating elements randomly selected from the first group and added to other groups. 1 indicates the number of elements added
to each group. (c) The process of erasing elements from groups. δ indicates the number of elements to be deleted from each group.

Twenty-three healthy subjects (11 males and 12 females) aged
from 18 to 26 participated in the experiments. All of them provided
written informed consent in advance. The experimental studies were
performed by the Declaration of Helsinki and approved by the
local Research Ethics Committee of Immanuel Kant Baltic Federal
University (Protocol No. 32, 04.07.2022).

We designated one EEG channel as a hidden channel to recon-
struct it using data from the remaining EEG channels. To achieve
this, the first minute of recording was utilized as a training set to
train the output layer of the RC, while data from the second minute
were used to evaluate it. This procedure was iteratively applied to
each EEG channel. Additionally, we optimized the RC hyperparam-
eters for each recovered channel individually, aiming to minimize
the reconstruction error for each subject’s data.

III. RESERVOIR COMPUTING-BASED METHOD FOR

HIDDEN DATA RECOVERY

A. Reservoir computing

In the classical application of RC to predict the behavior of
dynamical systems,26,27,47 including the macroscopic dynamics of an
adaptive network,28 the RC typically has an equal number of inputs
and outputs. The hidden layer network (the reservoir itself) is ran-
domly generated, and the weights of the output layer are selected
during training to minimize a loss function. In the prediction mode,
the output values are fed back into the input of the trained RC to
predict new values of the analyzed process.

However, the RC architecture employed for the hidden variable
recovery problem under consideration deviates from this classical
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approach. When working with M macroscopic signals, we select one
signal for reconstruction and use the remaining M − 1 signals as
a basis for recovery. In this configuration, the RC has Minput = M
− 1 macroscopic signals as input, and the output consists of a single
reconstructed macroscopic signal as shown in Fig. 1(a). The internal
state of this RC can be described as follows:

ri+1 = (1 − lr)ri + tanh
(

Wreservoirri + WinputXi

)

lr, (8)

where ri is the vector of RC states in time moment i, Wreservoir is the
matrix Nreservoir × Nreservoir of internal weights of RC, Nreservoir = 100
is the number of artificial neurons in the reservoir layer, Winput is

the input weight matrix (M − 1) × Nreservoir, Xi =
[

X1
i , . . . , XM−1

i

]T

is the vector of input signal in time moment i, and lr is the leak-
ing rate, which is the parameter that determines the extent to which
previous states influence the current state. The input weight matrix
Winput is randomly generated based on the parameter Cinput, which
specifies the probability of a link establishing between each input
and reservoir neuron. The internal weights of the reservoir Wreservoir

are generated randomly using a Bernoulli distribution and depend
on the density of the internal reservoir matrix Creservoir and the spec-
tral radius R. The density determines the probability of non-zero
entries in the matrix Wreservoir, which are sampled from a normal
distribution, while the spectral radius normalizes the eigenvalues so
that their maximum absolute value is equal to R.

The single output signal Yi is derived by applying a linear trans-
formation to the reservoir’s internal state vector ri, following the
relationship:

Yi = Woutri, (9)

where Wout is the output Nreservoir-component column vector. Wout is
a vector and not a matrix due to the fact that the number of reservoir
outputs is one, and output signal corresponds to a single recovery
signal Y.

To determine the output weights of the RC, we compare the
RC output r of size Nreservoir × Ltrain to the true signal Y = [Y1,
Y2, .., YLtrain

] and calculate the output weights out Wout using the
least squares method with Tikhonov regularization. Here, Ltrain is
the training length. Consequently, Wout is defined as follows:

Wout = YrT
(

rrT + ηI
)−1

. (10)

Here, the regularization parameter is denoted by η = 10−6 and I
represents the identity matrix.

In the case of the adaptive Kuramoto network under study,
after the formation of M macroscopic signals with specified param-
eters 1 and δ (see Sec. II A), one signal was randomly selected for
reconstruction. The remaining M − 1 macroscopic signals served as
a basis for recovery. The reservoir computer (RC) was provided with
Minput = M − 1 macroscopic signals as input, producing a recon-
structed version of the remaining macroscopic signal as output [see
Fig. 1(a)]. The RC consisted of Nreservoir = 100 artificial neurons. For
each parameter combination of δ and 1, RC hyperparameter opti-
mization was performed using random search48 within the following
ranges: lr from 0.01 to 0.9; Cinput and Creservoir from 0.05 to 0.9; R from
0.01 to 2. The random search algorithm was executed for 500 itera-
tions. The optimization process minimized the total reconstruction

error across ten randomly generated sets of six macroscopic sig-
nals for each unique δ and 1 combination. For each set, a random
reservoir was created based on the optimized hyperparameters. The
training phase utilized Ltrain = 50 000 data points for training the
output layer, followed by an additional 50 000 data points for testing
the RC.

We utilized the ReservoirPy library for RC computations.49

B. Quality of recovery

To evaluate the accuracy of hidden macroscopic signal recov-
ery, we calculated the relative error as follows:

Relative Error(Yrec, Y) =
Error (Yrec, Y)

Self Error
, (11)

where

Error(Yrec, Y) =

∑

i (Y
rec
i − Yi)

2

∑

i (Yi − Y)
2

, (12)

Self Error =
1

M − 1

∑

Xi∈Sinput

Error (Xi, Y). (13)

Here, Yrec is the recovery signal, Y is the true signal, M is the num-
ber of macroscopic signals, and Sinput is the input set of macroscopic
signals Xi.

C. Mutual information

To estimate the amount of information contained in the
macroscopic signals fed into the RC, we used the average normalized
value of the mutual information between the input macrosignals and
the recovered signal (true signal),

MI =
1

M − 1

∑

Xi∈Sinput

I(Xi, Y)

H(Y)
, (14)

where I(Xi, Y) = H(Xi) + H(Y) − H(Xi, Y) is the mutual informa-
tion between two signals, H(Xi) and H(Y) are the entropies of
signals, and H(Xi, Y) is the mutual entropy of signals.

To compute mutual information, we used the sklearn library,
which implements a method based on entropy estimation via dis-
tances to k-nearest neighbors described in Refs. 50 and 51.

IV. RESULTS

A. Mutual information

The feasibility of recovering hidden data from available data
hinges on the presence of a discernible relationship between the two
data sets. One method for quantifying the strength of this relation-
ship is to calculate the mutual information between the given data
sets. In this study, we have investigated the impact of macroscopic
signals, characterized by parameters 1 and δ, on the level of mutual
information between them, as illustrated in Fig. 2. In Sec. IV B,
we will use the mutual information between macroscopic signals to
interpret the results of macroscopic signal reconstruction.

It is important to note that the formation of macroscopic sig-
nals involves an element of randomness. Specifically, we randomly
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FIG. 2. Dependence of mutual information between macroscopic signals normal-
ized by the entropy on the parameters of formed macroscopic signals. (a) Mutual
information vs the number of signals added to the sets 1. (b) Mutual information
vs the number of signals erased from the sets δ. The green dots represent the
results of the modeling, while the circles, connected by a dashed line, illustrate
the analytical evaluation I(Yk , Ym)/H(Yk) [see Eq. (23)]. It should be noted that
we fitted the free parameters in Eq. (23), such as D, d, and Nc, using the least
squares method to compare the analytical estimation and the data.

select Nosc/M = 50 unique Kuramoto signals to contribute to each
macroscopic signal (see Sec. II A for details). The resulting mutual
information values are represented by the green dots in Fig. 2. It
is well seen that increasing 1, which is responsible for the pres-
ence of common elements in the macroscopic signals, leads to an
increase in the mutual information between the macroscopic signals
[see Fig. 2(a)]. At the same time, removing elements from the sets
(increasing δ) decreases the mutual information [see Fig. 2(b)].

In order to understand the observed dependence between the
mutual information and the parameters 1 and δ, we considered a
toy model that admits analytic investigation. Recall that the typical
collective regime of (1) is cluster synchronization.31 Keeping this in
mind, let us consider n units (oscillators) divided into Nc clusters of
the equals size n/Nc, so that the output of the ith unit xi is given as

xi = Xj + σi, (15)

where Xj is the (average) output of the jth cluster to which the unit
belongs, and σi is the deviation. For simplicity, we assume that the
outputs of the clusters are normally distributed and independent
of each other, and the deviations are also normally distributed and
independent: Xj ∼ N(0, D), σj ∼ N(0, d).

Now, let us divide the oscillator evenly into M groups
Sk = ik1, i

k
2, . . . , iks regardless of the cluster membership and then

introduce either intersection 1 or elimination δ in the way described
by Eqs. (6) and (7), respectively. Then, the size of each group is
given as

s =











n

M
+ (M − 1)1 if 1 ≥ 0,

n

M
− δ if δ > 0.

(16)

Let us define the output of each group as

Yk =
1

s

∑

i∈Sk

xi, (17)

then the entropy of Yk is given as

H(Yk) =
1

2
log 2πeDY, (18)

where

DY =
d

s
+

D

Nc

(19)

is the variance of the output.
The joint entropy of the outputs of two groups reads

H(Yk, Ym) = log 2πe +
1

2
log |6|, (20)

where 6 is the covariance matrix with σ11 = σ22 = DY and

σ12 = σ21 = 〈YkYm〉 =
r

s2
d +

D

Nc

, (21)

where r is the number of common units in the two groups which can
be estimated as

r =







12M(M − 2)

n
+ 21 if 1 ≥ 0,

0 if δ > 0.

(22)

Finally, we obtain

I = H(Yk) + H(Ym) − H(Yk, Ym)

= log

(

d

s
+

D

Nc

)

−
1

2
log

[

d2

s2

(

1 −
r2

s2

)

+
2dD

sNc

(

1 −
r

s

)

]

.

(23)

The analytical evaluation of the mutual information between
the macroscopic signals of the network is represented in Fig. 2 by
a dashed line with circles. It can be seen that the analytical depen-
dencies obtained by proper choice of the parameters 1 and δ qual-
itatively and quantitatively reflect the main trends in the change of
mutual information when increasing or decreasing data redundancy
by adding or excluding elements (oscillators) from the groups.

Thus, both numerical simulations and analysis of the toy model
show the presence of the information of some macroscopic signals of
the network is contained in others, and this mutual information can
be controlled by the intersection or elimination parameters. Further,
we will study how efficiently this information can be extracted by
different methods.
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B. Data recovery

1. Model signals

To recover macroscopic signals, we consider and compare two
approaches: multivariate linear regression (LR) and reservoir com-
puting (RC). We analyze how efficiently each method can exploit

the available data information. To this end, we examine the depen-
dence of the relative recovery error on the mutual information. Note
that we use the relative error to compensate for the effect of increas-
ing similarity between macroscopic signals with increasing mutual
information. To numerically characterize the degree of similarity
between macrosignals, we introduce a characteristic that we termed

FIG. 3. Macroscopic signal recovery results. Panels (a)–(c) correspond to the case of adding common signals to the sets forming macroscopic signals (1 > 0), and panels
(d)–(f) correspond to erasure from the sets of signals (δ > 0). Panels (a) and (d) show the dependence of macroscopic signals self-error (13) on mutual information on
a semi-logarithmic scale. (b) and (e) are the relative error (11) distributions for multivariate linear regression (orange dots) and RC (green dots). The lines correspond to
the linear approximation of the distributions, and in the upper right corner, the corresponding slopes of the curves for each method are given. (c) and (f) correspond to the
temporal realizations of the recovered signals, and their corresponding values of mutual information and relative error are represented by crosses in the panels (b) and (e).
Gray curves are the true signal, orange curves are LR-based recovery, and green curves are RC-based recovery.
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self-error. From Fig. 3, we can clearly see that the increase in mutual
information leads to an almost linear decrease in the self-error in
semi-logarithmic scale, both for signals with intersection (1 > 0)
and when erasing signals from the groups (δ > 0). We use the self-
error value as a baseline against which we analyzed the recovery
error for each method.

As you can see from Figs. 3(b) and 3(e), the RC method
significantly outperforms the LR method both when adding com-
mon signals 1 > 0 and when erasing signals from the sets (δ > 0).
Indeed, the error for RC is about four times smaller than the baseline
(true signals), whereas for LR the error is about three times smaller
than the baseline.

We analyze the relationship between mutual information and
relative error. For this purpose, we use a correlation analysis based
on the Pearson correlation coefficient. It was found that there is no
statistically significant correlation in the area of overlapping macro-
scopic signals [1 > 0, see Fig. 3(b)]. At the same time, when the
signals are erased [δ > 0, see Fig. 3(e)], there is a statistically signif-
icant correlation between mutual information and relative error for
RC (r = −0.254, p = 3.5 × 10−19) but not for LR.

It should be noted that Figs. 3(c), and 3(f) show the time realiza-
tions of the reconstructed signals, and their corresponding values of
mutual information and error are depicted by crosses in Figs. 3(b)
and 3(e). From this figure, it is clearly seen that RC is better at
recovering all the features of the macrosignal compared to LR. The
qualitatively better prediction of the nonlinear model (RC) is espe-
cially good for the case δ > 0, when we remove some information
from the macroscopic signals. It is in this situation that the best abil-
ity of the reservoir to reveal hidden relationships for the recovery of
hidden variables is well manifested.

To assess the generalizability of our findings, we investigated
the impact of the number of macroscopic signals (M) on reconstruc-
tion accuracy for both methods under consideration (see Fig. 4). Our
results indicate that, irrespective of the number of macroscopic sig-
nals, both methods demonstrate the ability to recover hidden data.
Furthermore, increasing the number of macroscopic signals con-
sistently leads to a reduction in the relative error. Notably, across
all parameter values examined, RC consistently exhibits higher
recovery accuracy compared to LR.

2. Experimental signals

We apply our developed approach to macroscopic signal recov-
ery on real data of brain electrical activity recorded with EEG
sensors [see Fig. 5(a)]. We found that, on average, using the RC
method to reconstruct hidden channels outperforms the standard
approach (spline interpolation) implemented in the widely used
MNE package based on spline interpolation.52 MNE package uses
to reconstruct EEG signals spherical spline interpolation53 based
on the other EEG channels. This method creates a model of the
electrical potential distribution on the head surface that projects
sensor locations onto a unit sphere and interpolates the signal in
needed sensor locations based on signals in other locations using
Legendre polynomials. It should be notes that the spherical spline
interpolation does not involve solving the inverse problem and
restoring the sources of brain electrical activity, but only performs

FIG. 4. Dependence of the relative error on the number of macroscopic signals
at 1=0 and δ =0. Here, the green and orange curves correspond to the RC and
the LR recovery methods, respectively.

an instantaneous projection of the field distribution registered on
good sensors onto bad channels.

Figure 5(b) shows the distribution of median values of relative
recovery error (ErrorMNE/ErrorRC) over the head surface among 23
subjects. One can see that all the values obtained are greater than
1, with most of the values lying between 1 and 10. Moreover, in
some cases, RC outperforms the standard approach by more than 40
times. At the same time, the distribution of the relative accuracy of
channel recovery is not uniform over the head surface. In particular,
there is a maximum difference between the methods in the frontal
region and a minimum difference in the occipital region. It should
be noted that the absolute accuracy of recovery also depends on the
location of the channels: the best recovery results are observed in the
central, frontal, and occipital regions, while more modest accuracy
values are achieved in the temporal and parietal regions.

Figure 5(c) illustrates an example of applying EEG channel
recovery methods. The left panel of Fig. 5(c) presents the time series
of the P8 channel, located in the parietal lobe, along with reconstruc-
tions generated using the RC and LR methods, as well as the MNE
package. The right panel of Fig. 5(c) shows the time-dependent
recovery error for this signal, calculated in five-second windows for
each method. As evident from Fig. 5(c), the error exhibits temporal
fluctuations. However, across the entire time range, the RC-based
method consistently achieves the lowest error.

Based on the data obtained, we systematically compared the
performance of the LR and RC methods in reconstructing EEG

Chaos 34, 103121 (2024); doi: 10.1063/5.0223184 34, 103121-8

Published under an exclusive license by AIP Publishing

 10 O
ctober 2024 13:36:54

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

FIG. 5. Results of EEG channel reconstruction using RC and LR methods and standard approach implemented in MNE package based on the spline interpolation.
(a) Schematic representation of sources in the brain whose activity is recorded by EEG sensors. (b) Distribution of median values of relationship ErrorMNE/ErrorRC over
the head surface among 23 subjects. The distribution of the recovery errors is shown below. Here, each point corresponds to the recovery results for all combinations of
channels and subjects. (c) Gray curve is the example target signal for channel P8 from parietal lobe. Green, blue, and orange curves are reconstructed signals using RC and
LR approaches and the MNE package, respectively. The time dependence of the recovery error calculated in a five-second time window for all methods used is shown on the
right. (d) The distribution of the relative recovery errors for LR and RC approaches. (e) The mean and standard deviation for the recovery error for RC and LR approaches
relative to the error obtained by the MNE package.
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TABLE I. Spearman’s rank correlations between the error ratio of the LR and RC

methods, ErrorLR/ErrorRC, and the absolute error values for LR, RC, and MNE

methods.

Spearman’s ρ P value

ErrorLR/ErrorRC ErrorLR 0.313 2.148 × 10−15

ErrorRC 0.246 6.124 × 10−10

ErrorMNE 0.408 3.012 × 10−26

signals [see Figs. 5(c) and 5(d)]. First, we analyzed the ratio of
recovery errors, ErrorLR/ErrorRC, by using RC-based and LR-based
methods for all EEG channels and participants. The distribution
of this ratio, shown in Fig. 5(d), reveals that in most instances,
the error ratio exceeds 1. This indicates that the RC-based method
generally outperforms the LR-based method in terms of accuracy.
Second, we compared the RC-based and LR-based methods with
spherical spline interpolation, implemented in the MNE package
[see Fig. 5(e)]. Our results demonstrate that both methods signif-
icantly outperform spherical spline interpolation. Third, a closer
examination of the recovery errors revealed that the RC and LR
methods exhibit comparable accuracy, both significantly superior to
spherical spline interpolation. However, in certain cases, the accu-
racy of the RC method is notably higher than that of the LR method
[see Fig. 5(e)].

We hypothesized that the RC-based method’s superior perfor-
mance in complex scenarios might be attributed to its ability to
capture complex, nonlinear relationships between signals, which the
LR-based method may struggle to represent. To prove this hypothe-
sis, we conducted a correlation analysis. Given the potential presence
of outliers and nonlinear dependencies in our data, we opted for
Spearman’s rank correlation coefficient, known for its robustness
in such situations. We correlated the error ratio ErrorLR/ErrorRC

with the absolute error values for each method (ErrorLR, ErrorRC,
and ErrorMNE). The results of this analysis, presented in Table I,
indicate a significant positive correlation between the error ratio
and the errors for all methods considered. The strongest correlation
was observed between ErrorLR/ErrorRC and ErrorMNE (ρ = 0.408,
p = 3.012 × 10−26).

Our findings suggest that in relatively straightforward cases,
where recovery errors are minimal for all methods, the recov-
ery errors of LR and RC approaches are similar. However, as the
complexity of the reconstruction task increases, leading to higher
errors across all methods, the RC method demonstrates signifi-
cantly improved accuracy, further surpassing the LR method. This
observation supports our hypothesis that the RC-based method
excels in handling complex, nonlinear relationships within the data,
contributing to its enhanced performance in more challenging sce-
narios.

V. DISCUSSION AND CONCLUSION

This study investigated the application of reconstructive coding
(RC) for recovering hidden data within a model system and real neu-
rophysiological signals, specifically electroencephalography (EEG).

Our model employed an adaptive network of Kuramoto phase oscil-
lators to generate macroscopic signals through the superposition of
signals from distinct oscillator groups. This network, with its care-
fully chosen parameters, exhibits self-organizing properties, leading
to the spontaneous formation of synchronized clusters of oscillators
from an initially random network.31

Our approach to the formation of macroscopic signals was
based on the principle that each macroscopic signal comprises syn-
chronized elements from multiple clusters within the network. This
approach effectively reflects the diverse contributions of these ele-
ments to the overall signal. In our model, the number of elements
from different clusters contributing to each macroscopic signal var-
ied randomly. This diversity in contribution closely mirrors the
formation of EEG signals, which arise from a heterogeneous mix
of sources, including spatially distinct groups of neurons (anal-
ogous to clusters in the adaptive Kuramoto network) exhibiting
synchronized dynamics. Just as different neuron groups contribute
differentially to the EEG signal, elements from different clusters con-
tribute with varying degrees to the macroscopic signal. Thus, our
method of generating macroscopic signals from elements within the
adaptive Kuramoto network provides a compelling representation
of the process underlying the formation of macroscopic signals, such
as EEG. It captures the complex and diverse contributions from
different synchronized clusters, offering a valuable framework for
understanding the intricate dynamics of these signals.

We investigated scenarios where groups forming macroscopic
signals either fully encompassed the network, allowing for over-
laps of 1 elements, or partially covered the network with factor δ

without overlaps. We analyzed these macroscopic signals for mutual
information content, observing that the addition of signals increased
mutual information, while the removal of elements decreased it.
These observations align closely with our qualitative analytical esti-
mates. By varying the 1 and δ parameters, we generated sets of
macroscopic signals with varying levels of mutual information. We
assessed the impact of mutual information on the quality of model
macroscopic signal recovery. Our findings indicate that RC more
efficiently utilizes the available information for recovery than LR,
with the recovery error for RC averaging half that of LR. We also
conducted a correlation analysis to explore how mutual information
levels affect recovery performance.

Our analysis revealed no significant correlation between the
relative error and mutual information when common elements
were added to the macroscopic signal sets, suggesting that both
methods equally benefit from the increase in mutual information,
which also leads to greater similarity among the macroscopic signals.
However, when macroscopic signals were formed from a reduced
number of elements in the original network (with element era-
sure, δ > 0), indicating an information deficit about the system, a
significant negative correlation was observed between the relative
recovery error and mutual information for RC, but not for LR. This
underscores RC’s superior efficiency in leveraging additional infor-
mation in the macroscopic signals. For LR, any increase in signal
reconstruction accuracy was proportional to the increase in signal
similarity. It should be noted that such a pattern in our opinion can
be explained by the ability of RC to capture the non-linear relation-
ship between macroscopic signals that manifested in the growth of
mutual information but not captured by the LR method.
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We investigated the impact of the number of macroscopic sig-
nals on the accuracy of hidden data recovery. Our findings demon-
strate that increasing the number of partitions in the Kuramoto
network, thereby forming a greater number of groups from which
macroscopic signals are generated, leads to enhanced reconstruc-
tion accuracy. This improved accuracy arises from the fact that
an increased number of macroscopic signals preserves more infor-
mation about the overall network dynamics. This occurs because
the averaging effect, which reduces information, is inversely pro-
portional to the number of macroscopic signals. Consequently, a
larger number of signals results in less averaging, leading to greater
preservation of network information and, ultimately, improved
reconstruction accuracy.

Thus, our investigation with modeled macroscopic signals
demonstrated that the RC method can significantly outperform LR
in recovering macroscopic signals. Moreover, while the LR method’s
recovery accuracy improvement correlates with an increase in sig-
nal similarity, RC excels under conditions of mutual information
scarcity, achieving a more pronounced improvement in recovery
accuracy than the corresponding increase in signal similarity.

One of the potential applications of macroscopic signal recon-
struction is in the analysis of neurophysiological signals of differ-
ent neuroimaging modalities. Neurophysiological experiments often
encounter corrupted or lost data due to various reasons. Common
causes of data corruption include noise from increased muscle ten-
sion as a result of experimental constraints or disruptions caused by
the subject touching or scratching their head, potentially displacing
electrodes, or causing significant signal interference.6,7

A common solution to these issues is data reconstruction using
intact data. For EEG signals, spherical spline interpolation across
neighboring, undamaged channels is frequently employed.53,54 This
method benefits significantly from the field spread effect, where
electrical activity from the cortex, influenced by the brain tissue’s
uneven conductivity, may be detected more readily at neighbor-
ing electrodes rather than the closest one. This suggests that a
single source may contribute to the signals at multiple electrodes,
as illustrated in Fig. 5(a). However, spline interpolation does not
account for individual anatomical differences, inaccuracies in elec-
trode placement, or functional connections between different brain
areas.54

After confirming that RC can effectively recover hidden data
in model systems like Kuramoto phase oscillators and that RC not
only reproduces macroscopic signals more accurately than linear
methods but also captures hidden regularities we applied RC to real
neurophysiological signals. We have compared different approaches
for EEG data channel reconstruction including RC, LR, and spher-
ical spline interpolation methods. The latter is implemented as a
standard tool for EEG signal reconstruction in the MNE package.52

Note that we did not test the spline interpolation approach on model
data because the Kuramoto model network does not have a spatial
arrangement of oscillators, and, hence, we could not use spherical
spline interpolation for model data. Our results showed that RC per-
forms, on average, 3.2 times better than the traditional approach,
with some cases showing improvements up to 40-fold.

It is important to note that, unlike spherical spline interpola-
tion, the proposed method for EEG channel recovery necessitates a
training step for the output layer of the RC and requires access to

a segment of undamaged data for this purpose. This requirement
imposes certain limitations on the applicability of the proposed
approach. Nonetheless, despite these constraints, the RC-based
method can be highly beneficial for recovering individual epochs
or fragments of EEG/MEG recordings that may be compromised
due to physiological or technical artifacts. It is crucial to emphasize
that many neurophysiological studies in clinical medicine and cog-
nitive neuroscience rely on subjects repeatedly performing single-
type tasks to elicit evoked or event-related potentials.55–61 However,
during the postprocessing of neurophysiological data, segments
of EEG/MEG recordings that are damaged are frequently identi-
fied. Typically, these impaired fragments are either excluded from
further analysis or interpolated, which—as a consequence of the
repeated-measures design—can lead to data loss and diminished
analysis quality. Specifically, the exclusion of individual epochs
from the analysis can severely compromise the signal-to-noise ratio
when studying evoked potentials, particularly when the number of
events is limited.59 In this context, the proposed RC-based recov-
ery approach has the potential to significantly enhance the quality
of data analysis in cognitive neuroscience, enabling more accurate
interpretations of neurophysiological phenomena. Furthermore, it
is plausible that we can train the model to recover data using a
group of subjects, after which we can apply the RC model to restore
data for an individual subject whose EEG/MEG recordings are com-
promised. However, this approach necessitates further analyses and
experimentation to validate its effectiveness.

So, these findings underscore the substantial potential of RC
in neurophysiological signal analysis. Nonetheless, it is important
to recognize the additional limitations of our study. Our theoretical
analysis was confined to a single model (the network of phase oscil-
lators) and did not explore more realistic models. Future research
will address this gap by applying our approach to spike neural net-
works and whole-brain models based on the models of neuronal
masses.62 Moreover, the influence of noise on data recovery remains
unexplored. A significant constraint of our approach for real neu-
rophysiological signals is the necessity for training data from areas
with intact signals. Another limitation of our study is the specific
focus on only one type of activity. Specifically, we trained and
tested the RC approach using background activity alone. Conse-
quently, this study did not explore the quality of signal recovery
across different types of tasks. For instance, we did not evaluate the
performance of our approach when using background recordings
for training and then applying it to recover signals during the exe-
cution of experimental tasks, such as solving cognitive challenges.
Special note, we observed that RC can identify latent interconnec-
tions between signals, highlighting the potential for developing new
methods to restore functional relationships in neurophysiological
data.

In conclusion, our study investigated the use of RC to recover
hidden data from both model systems and real neurophysiolog-
ical signals. We found that RC is twice as effective as LR in
utilizing available signal information for recovery. Additionally,
RC significantly outperforms the commonly used spline interpola-
tion method in real neurophysiological data recovery tasks. These
results demonstrate the strong potential of RC for both practi-
cal applications and basic research in neurophysiological signal
analysis.
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