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assessment of alertness by the collaborative BCI can be used
to redistribute the workload among all participants according
to their current physiological states to improve overall work
efficiency of the group.

In this paper, we propose an approach to collaborative
BCI aimed to enhance human-to-human interaction while
performing shared visual task. We also describe the setup
for such BCI and its possible application in long task of
classifying ambiguous visual stimuli with varying degrees of
ambiguity by a group of people.

II. MATERIALS AND METHODS

A. Participants and Experimental setup

Twelve healthy volunteers between the ages of 20 and 45
with normal or corrected-to-normal visual acuity participated
in the experiments. All of them provided informed written
consent before participating. The experimental studies were
performed in accordance with the Declaration of Helsinki
and approved by the local Research Ethics Committee of the
Innopolis University.

Electroencephalogram signals (EEG) [21] of the sub-
jects were recorded and processed. For EEG recording we
used electroencephalograph “Encephalan-EEGR-19/26” made
by Medicom MTD (Taganrog, Russia). EEG signals were
recorded with sampling rate of 250 Hz and filtered by 50-
Hz notch filter and band-pass filter with cutoff frequencies of
1 and 70 Hz. EEG signals were recorded with the help of 31
Ag/AgCl electrodes placed on the scalp in accordance with
international scheme “10-10”.

B. Visual task

All subjects participated in visual task that consisted in
classification of the series of sequentially presented ambiguous
(bistable) images. We used the Necker cube [22] as the
model for bistable visual stimulus. The Necker cube is a
2D projection of 3D image of a cube with transparent faces
and visible ribs. Regular observer sees the Necker cube as a
3D object because of the defined position of the cube edges.
Ambiguity in the perception of this cube lies in interpretation
of its orientation. The cube can be perceived as left- or right-
oriented depending on the contrast of the various internal
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I. INTRODUCTION

The brain-computer interface (BCI) development is one of 
the novel multidisciplinary tasks in neuroscience, physics and 
engineering. The BCI transforms characteristic features of op-
erator’s brain activity into computer commands for controlling 
software and/or hardware in real-time. Such modern technol-
ogy can find applications in various applied fields, including 
medicine, industry, robotics, etc. [1]–[5] For example, BCIs 
can be used for rehabilitation of patients with physical and 
mental injuries as well as for enhancing cognitive abilities of 
healthy subjects [6]–[16].

The latter concept led to proposal of the brain-to-brain inter-
faces (BBIs), that enable direct information transfer between 
the brains of interacting humans and/or animals. The BBI can 
be used to enhance the performance of two operators during 
the shared cognitive task with high mental load by adding 
interaction between operators. The natural evolution in this 
direction is the concept of collaborative BCIs [17], [18], which 
aimed to use multi-brain computing to further enhance human 
performance.

Such collaborative BCI can be useful for improving the 
cognitive performance in the group of people subjected to a 
shared work task that requires sustained attention and alert-
ness. For example, pilots of military or civil aircraft [19] or 
operators of power plants [20], whose work is associated with 
a long monotonous activity and requires high concentration 
of attention. Collaborative BCI can help a group of people 
to interact more effectively by assessing and controlling their 
physical and/or neurophysiological condition. For example, the
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edges of the cube. This contrast parameter g ∈ [0, 1] can be
treated as the degree of complexity of cube’s classification
and, thus, it can be used as the control parameter. The Necker
cubes with a value of g close to 1 or 0 can be easily interpreted
as a left- or right-oriented while g ∼ 0.5 corresponds to the
cube with the highest complexity of classification.

C. Data analysis

EEG signals were analyzed with the help of continuous
wavelet transform (CWT) [23]. The CWT is computed as
convolution of EEG signal x(t) with wavelet basis φs,τ :

Wn(s, τ) =
1√
s

∫ ∞

−∞
xn(t)φ

∗
s,τ (t)dt, (1)

where n = 1, 2...N is the number of EEG channel and “*”
stands for complex conjugation.

Here we used complex Morlet mother wavelet since it
has recommended itself in studies on neurophysiological data
[24]–[26]:

φ0(η) = π− 1
4 ejω0ηe−

η2

2 , (2)

where parameter ω0 = 2π is the central frequency of Morlet
wavelet, η = t−t0

s .
The common way to interpret CWT results is to consider

wavelet energy:

E(f, τ) = |W (f, τ)|2 (3)

Wavelet energy spectrum can also be analyzed in specific
frequency band by averaging wavelet energy across this band:

EF (t) =
1

∆fF

∫
f∈fF

E(f, t)df, (4)

where ∆fF — width of investigated frequency band.
Averaged wavelet energy EF (t) can be additionally aver-

aged over some time interval T :

eF =
1

∆T

∫
t∈T

EF (t)dt, (5)

where ∆T — width of investigated time interval.
In the present study EEG signals were analyzed in alpha

and beta frequency ranges during 2-second interval preceding
the stimulus presentation and corresponding wavelet energies
eα and eβ were calculated for each presented stimulus (see
Eq. 4,5). Wavelet energies were additionally averaged over
EEG channels of parietal area.

III. RESULTS

In the present study we aimed to find specific characteristic
based on brain activity, that can be used to evaluate attention
and, thus, can be used in BCI.

According to multiple reports both α- and β-rhythms are
relevant to attention, including visual stimuli processing [27]–
[29]. It is well-known that attention modulates the prestimulus
α- and β-band power [30], [31] and affects decision accuracy.
Thus, either medium or low α- and high β-band power during
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Fig. 1. Correlation between eα and reaction time RT (a), eβ and reaction
time RT (b).

the prestimulus period is beneficial for sensory perception [32].
Thus, to evaluate brain activity related to attention we can
use wavelet energies eα and eβ (see Eq. 4,5). On the other
hand, as objective source of information about participant’s
attention and efficiency in visual task we can use behavioral
characteristic — reaction time RT , that reflects time interval
between stimulus presentation and subject’s response.

In our work we investigated the presence of correlation
between eα and reaction time RT and between eβ and reaction
time RT . For this we calculated corresponding Pearson’s
correlation — results for one of the subjects are shown on
Fig.1.

From Fig.1a we can see, that there is no significant corre-
lation between eα and reaction time RT , however, correlation
is more pronounced between eβ and reaction time RT (see
Fig.1b). This result suggests that wavelet energy eβ averaged
in 2-second prestimulus time interval and over EEG channels
of parietal area can be used as a characteristic to assess
subject’s attention during long classification visual task.

Results, obtained in the present work and our previous
studies [33] allow us to propose a design for collaborative
BCI aimed to enhance human-to-human interaction while
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performing shared visual task.
A group of subjects (I — total number of subjects in group)

participate in the experiment with such BCI. Each subject have
an assigned personal computer for visual stimuli presentation
and EEG-recording hardware for data recording, while all
client computers are connected to the server that performs
all data analysis and overall control on the experimental
procedure. Visual stimuli are presented simultaneously for
all subjects using specially made software running on the
corresponding client computers. According to the value g all
the presented stimuli (the Necker cubes) in range g ∈ [0, 1]
can be divided into several groups, that would correspond to
different complexity of visual classification task.

Recorded EEG data from each client computer is transmit-
ted to the server, where it is analyzed. The characteristic eβ of
each operator is estimated using his/her stimulus-related brain
activity preceding each stimulus, then eβ,i of all subjects are
compared (i = 1, 2...I — subjects, number). According to
the result of this comparison the server redistributes stimulus
complexity between subjects, i.e. the subject with the highest
cognitive performance receives stimuli with the highest am-
biguity, while subject with the lowest cognitive performance
receives stimuli with the lowest ambiguity.

IV. CONCLUSION

The presented results contributed in the multidisciplinary
field of science, especially, in physics and collaborative BCI
development. We found specific characteristic based on brain
activity in beta-frequency band, that can be used to evaluate
attention. We proposed an approach to collaborative BCI
using this characteristic. We also described the setup for such
BCI and its possible application in long task of classifying
ambiguous visual stimuli with varying degrees of ambiguity
by a group of people.
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