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Abstract—Machine learning methods have been widely applied
in neurophysiological data studies for classification and clusteri-
zation purposes. However, analysis of connectivity data requires
consideration it’s graph-like structure to utilize it’s structural
and functional information. To address this issue, we propose a
machine learning model based on graph convolutional network
for classification of connectivity matrices obtained from fMRI
data. We show that out relatively simple model has a good
generalization ability and is able to achieve high performance
on moderate amount of data.

Index Terms—graph convolutional network, machine learning,
fMRI, classification

I. INTRODUCTION

The connectivity features of the brain evaluated via neu-

rophysiological data such as MEG, EEG and fMRI, can be

modelled as a graph with brain regions as the nodes and

structural or functional relationships between them as the

edges [1], [2]. Such representation allowed to gain an insight

into the structural and functional organization of the brain

by applying the mathematical methods of graph theory [3]–

[5]. Besides, in medical studies, machine learning methods

are widely used for processing the neuroimaging data [6], [7],

among which the graph neural networks (GNN) draw the most

attention in the context of analysis of graph-like data [8].

In this paper, we use GNN-based machine learning model

for classification of resting state fMRI (rs-fMRI) data. Many

studies are focusing on the rs-fMRI connectivity due to

it’s great potential in clinical applications. In particular, the

differences between various network structures assessed via

rs-fMRI were used in identification of mental disorders such

as schizophrenia [9], [10], post-traumatic stress disorder [11],

Alzheimer’s disease [12], [13] and obsessive-compulsive dis-

order [14]. A bulk of studies is dedicated to machine learning

methods, among which the convolutional neural networks

(CNN) are recognized as the most appropriate [15]–[17]. In

present study, we propose a model based on graph convolu-

tional network (GCN) to classify rs-fMRI data. Unlike CNNs,

that benefit from the grid-like structures of the images, GCN

are able to operate directly on graphs by processing the

node and edge features and taking into account the graph-

like structure of the data [18]. Recently, GCNs were used in

natural language processing [19], [20], chemistry [21], [22],

computer vision [23] and social network analysis [24]. Here,

we perform classification of rs-fMRI data of major depressive

disorder patients using GCN-based model. We demonstrate

that event the relatively simple model can achieve a good

generalization ability on a moderate amount of data with a

controllable risk of overfitting.

II. METHODS

A. Experimental dataset

The performance of the proposed architecture was evaluated

with rs-fMRI dataset containing 91 correlation matrices: 50

healthy controls and 41 major depressive disorder patients.

The scanning procedure was performed on a GE Discovery

750w MRI system. We estimated the connectivity for 166

regions of interest by calculating an average BOLD time series

across the voxels in each parcellation i and Pearson correlation

coefficients for all pairs of mean parcellation activities. As a

result, each connectivity graph was represented as connectivity

matrix 166x166, each value representing the strength of the

edge between two parcels:

ri,j =

∑n

k=1
(xi,k − xi)(xj,k − xj)

√

∑n

k=1
(xi,k − xi)2

√

∑n

k=1
(xj,k − xj)2

, (1)

where n is the length of the time series x, and x is the mean

of the time series.

For GCN classification, a representation of each graph

included a node feature matrix, edge data in coordinate format,

a 1D vector of edge weights and label (see fig. 1A). Since

each node of the correlation matrix represents a certain brain

region, we emphasized their uniqueness by assigning a single

feature to each of them, thus obtaining a 166x166 node feature

matrix. The dataset was normalized and randomly shuffled

before splitting into training, validation and testing subsets in

the ratio 60/30/10%.
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Fig. 1. A – a single graph representation in coordinate format; B – scheme of proposed GCN model; C – training and validation losses during 200 epochs
of model training.

B. GCN architecture

Fig. 1B shows the scheme of the proposed classifier. The

model included one k-dimensional graph convolutional layer

(GraphConv) proposed in [25] with 166 input and 64 hidden

neurons. The GraphConv layer computes the feature vector

f
(t)

k as follows:

f
(t)

k (s) = σ



f
(t−1)

k (s)W
(t)

1
+W

(t)

2

∑

u∈NL(s)∪NG(s)

f(k)(t−1)(u)



 ,

(2)

where σ is an activation function (we used ReLU activation

in proposed model), W
(t)

1
and W

(t)

2
are parameter matrices

(sequences of weights), NL(s) and NG(s) are local and global

neighborhoods of the node set s. For more details of the

mathematical definition of GCN see [25]. The element-wise

sigmoid function was applied to the feature vector before

proceeding with fully-connected linear layer with one output

neuron, which provides the prediction. Before each step, we

applied the batch normalization [26], and before the output

layer we used 10% dropout.

III. RESULTS

The model was trained for 200 epochs using Adam opti-

mizer [27] with learning rate 0.0001. We used binary cross

entropy to calculate training, validation and testing loss. The

data was fed to the model in batches with the batch size of

32. The results of training are presented on fig. 1C. One can

see that although both training and validation loss continue

to improve, there is a gap between the curves. Such pattern

suggests the problem of unrepresentative validation set, i.e. the

too small amount of validation data, which is rather expected

considering a relatively small amount of data used to train

the model. At the same time, the model was able to achieve

training accuracy of 100% and validation accuracy of 98.89%.

We also tested the model on a small amount of data that was

never used in the training process and achieved 100% accuracy

of classification. Therefore, the model demonstrated a good

generalization ability.

However, this research has certain limitations. The most

important one is a small dataset used to train GCN, which can

lead to overfitting and unreliable results of classification even

on testing dataset. To address this problem, several precaution

steps were taken. The model was designed with only one graph

convolutional layer to avoid possible problems of applying

an overly deep model to insufficient data. Besides, we chose

a small learning rate to avoid the instability of the training

process, and adjusted the batches to the optimal size. As a

result, the training and validation curves converge smoothly,

and the gap between them suggests the insufficient amount of

validation data rather than overfitting.

IV. CONCLUSION

In present research, we apply a graph convolutional net-

work to classify rs-fMRI data from healthy controls and

major depressive disorder patients. Despite the relatively small

amount of initial dataset, the proposed model was able to

achieve 100% of testing accuracy without the signs of strong

overfitting.
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