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ABSTRACT

We address the interpretability of the machine learning algorithm in the context of the relevant problem of discriminating between patients
with major depressive disorder (MDD) and healthy controls using functional networks derived from resting-state functional magnetic reso-
nance imaging data. We applied linear discriminant analysis (LDA) to the data from 35 MDD patients and 50 healthy controls to discriminate
between the two groups utilizing functional networks’ global measures as the features. We proposed the combined approach for feature
selection based on statistical methods and the wrapper-type algorithm. This approach revealed that the groups are indistinguishable in the
univariate feature space but become distinguishable in a three-dimensional feature space formed by the identified most important features:
mean node strength, clustering coefficient, and the number of edges. LDA achieves the highest accuracy when considering the network with
all connections or only the strongest ones. Our approach allowed us to analyze the separability of classes in the multidimensional feature
space, which is critical for interpreting the results of machine learning models. We demonstrated that the parametric planes of the control
and MDD groups rotate in the feature space with increasing the thresholding parameter and that their intersection increases with approach-
ing the threshold of 0.45, for which classification accuracy is minimal. Overall, the combined approach for feature selection provides an
effective and interpretable scenario for discriminating between MDD patients and healthy controls using measures of functional connectivity
networks. This approach can be applied to other machine learning tasks to achieve high accuracy while ensuring the interpretability of the
results.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0155567

Major depressive disorder (MDD) is a common and debilitat-
ing psychiatric illness that affects millions of people worldwide.
Despite advancements in the understanding of its underlying
mechanisms, the diagnosis and treatment of MDD remain a sig-
nificant challenge. In recent years, functional connectivity anal-
ysis of brain activity has emerged as a promising approach for
the identification and characterization of MDD. Additionally,

machine learning (ML) algorithms have shown remarkable suc-
cess in classifying patients with different psychiatric disorders
based on functional neuroimaging data. One of the common
approaches for the classification of patients with MDD is the
application of machine learning algorithms directly to the func-
tional connectivity matrices. However, the problem of explaining
the obtained classification results remains partially unresolved.
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In this study, we present a combined approach for the classifica-
tion of patients with MDD using machine learning and complex
networks theory. We consider global network measures (mean
node strength, average shortest path length, number of edges,
clustering coefficient, and small-world coefficient) as features
because they are more robust to within-group variability than
individual connections in the functional network. Our results
demonstrate that a simple linear discriminant analysis achieves
high accuracy (up to 83%) in two cases: when we use all net-
work connections or when we use only the strongest ones. The
highest contribution is made by mean node strength, clustering
coefficient, and the number of edges.

I. INTRODUCTION

Analysis of functional networks formed in the brain is a power-
ful approach to studying brain functions in normal and pathological
states.1–5 Recently, functional networks have been increasingly used
in the evaluation of patients with neurodegenerative disorders, par-
ticularly in combination with machine learning (ML) methods, due
to the wide capabilities of ML in the analysis and classification
of large datasets and the identification of complex patterns within
them.6–8 However, as ML models become increasingly sophisticated,
there is a growing concern regarding their interpretability, partic-
ularly in the context of biomedical network data. Consequently,
despite the success of ML, its further integration into the medical
domain is possible only after the development and testing of strictly
interpretable/explainable algorithms for preliminary diagnosis.9–12

Thus, the development of interpretable ML-based classifiers is an
urgent problem.13–15

The ML algorithm interpretability refers to the ability to
understand and explain the reasons behind their predictions or
decisions. In the biomedical domain, interpretability is crucial
for gaining insights into the underlying mechanisms of diseases,
identifying potential therapeutic targets, and aiding in clinical
decision-making.15 The interpretability of ML models for biomed-
ical network data remains a significant challenge.16–18 First, the
relevance of the problem lies in the complexity of biomedical net-
work data. The scale-free properties, modularity, and hierarchical
structures in such networks are often observed at the same time,
which makes them challenging to interpret using traditional statis-
tical methods alone. ML algorithms offer the potential to extract
meaningful patterns and relationships from these complex net-
works. However, their black-box nature, i.e., the lack of trans-
parency in how they arrive at predictions, hinders the comprehen-
sion and trustworthiness of their results.19 Second, the lack of a
clear definition of basic concepts surrounding interpretability con-
tributes to the difficulty in substantiating the problem. In the context
of ML methods application for biomedical network data, inter-
pretability can encompass several dimensions. These include feature
importance or relevance, model structure understanding, and the
ability to generate human-interpretable explanations for predic-
tions. Feature importance refers to identifying the specific network
components that significantly contribute to the model’s predictions.
Understanding the model’s structure entails comprehending how
the model produces the overall prediction.20 Human-interpretable

explanations involve presenting the model’s output in a manner that
can be easily understood and validated by domain experts.

Statistical analysis before the ML model training is considered
as a straightforward approach to achieve ML interpretability, which
may allow an understanding of what features distinguish a patient
group from the control one.21–23 Furthermore, the identified patterns
could be used for interpretation in the medical field, such as precised
diagnostic process, prediction of the outcome, etc. However, statisti-
cal methods do not always succeed in identifying significant features,
especially in their complex combination, while feature selection
approaches based on ML (such as filter-type methods, wrappers,
random forest methods, minimum redundancy maximum rele-
vance method, Shapley additive explanations, etc.) may show good
results.24–26 This is usually due to the large inter-subject variability
and small sample sizes in the data obtained in neurophysiologi-
cal biomedical experiments. We can assume that a more universal
and informative approach here is the combination of statistical
methods and conventional ML feature selection techniques.27,28 The
authors27 statistically contrasted electroencephalographic spectral
power between the classes in the representative group of subjects
and then used these statistically identified features to train an arti-
ficial neural network to classify brain responses to specific visual
stimulation. Statistical methods can also confirm and supplement
the results of the feature selection algorithms.28 All of this will help
us to advance the solution to the interpretability problem of the
developing ML model.

In this study, we explored the potential of the described
approach for identifying major depressive disorder (MDD) in
patients based on the analysis of resting-state functional magnetic
resonance imaging (rs-fMRI) data. MDD is one of the most com-
mon psychiatric disorders in the world. It affects approximately
300 × 106 people globally and is associated with significant disabil-
ity, morbidity, and mortality. The relevance for psychiatry of the
problem of MDD diagnostics is due to the insufficiency, ambiguity,
and subjectivity of conventional clinical assessments and subjective
reports.29 On the other hand, in psychiatry, there is a significant
lack of biological proof in terms of the diagnostic process.30–32 The
diagnosis itself leans only on the subjectivity of the clinical assess-
ment scales, patient report, and the experience of the physician.
Recent studies have demonstrated the good diagnostic potential
of ML approaches relying on the analysis of differences in the
specific strengths of connections or other network measures in func-
tional networks derived from fMRI data.33–36 However, the problem
of explaining the obtained classification results remains partially
unresolved.37

Here, we analyze resting-state functional networks recon-
structed from fMRI data. We employ the simple ML method,
linear discriminant analysis (LDA), to differentiate patients with
major depressive disorder (MDD) and healthy control subjects. To
ensure the interpretability of the ML model, we adopt the com-
bined approach involving feature selection based on significance
and statistical analysis. We examine the peculiarities and nuances
of this approach in the multidimensional feature space. One signif-
icant aspect of this work is that we consider global network mea-
sures (mean node strength, average shortest path length, number
of edges, clustering coefficient, and small-world coefficient) as fea-
tures because they are more robust to within-group variability than
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individual connections in the functional network. This approach
is supported by recent studies showing that network measures
may provide a more accurate and reliable biomarker for MDD
diagnosis.26,38 In other words, we build the classifier based on
comparing network topology characteristics. We believe that this
approach enables us to identify and explain the specificities in
the resting-state functional network topological features of MDD
patients. Furthermore, we consider the essential issue of the prin-
ciple choice of threshold for reconstructing a binary functional
network from raw data following Ref. 26.

II. METHODS

Figure 1 illustrates a schematic representation of the research
paradigm and overall structure of the research: the consequence of
methods applied to the original data. A detailed description of the
data and methods is presented below.

A. Experimental data

As experimental data, we used a set of 166 × 166 symmetric
functional connectivity matrices calculated based on blood-oxygen-
level dependent (BOLD) signals in 166 brain regions. The BOLD
signal detected during rs-fMRI experiment reflects the changes in
deoxyhemoglobin driven by spatially localized variations in brain
blood flow and blood oxygenation, which are coupled to underly-
ing neuronal activity by a process termed neurovascular coupling.
We extracted the normalized fMRI volumes with the help of SPM
12 software and parcellated them into 166 regions according to the
automated anatomical labeling atlas AAL3.39 To estimate the con-
nectivity between the brain regions, we calculated the Pearson corre-
lation coefficients (absolute values)40 for all pairs of parcel-averaged
BOLD activities. The analyzed dataset contains connectivity matri-
ces for 85 subjects: 50 healthy ones as a control group and 35 subjects
with a major depressive disorder (MDD group).

Subjects from both groups were assessed by experienced psy-
chiatrists using Mini International Neuropsychiatric Interview and
Montgomery–Åsberg Depression Rating Scale (MADRS). Subjects
having a previous history of comorbid psychiatric conditions,
autoimmune diseases, neurological diseases, history of head trauma,
or any metal implants incompatible with the MRI were excluded.
All participants provided a written consent form complying with
the Declaration of Helsinki. The study was approved by the Medi-
cal University of Plovdiv Ethical Committee (2/19 April 2018). The
two groups of subjects did not differ significantly in terms of mean
age, sex, and level of education distribution.

The MR scanning procedure was performed on a 3T MRI sys-
tem (GE Discovery 750w, General Electric, Boston, MA, USA). The
protocol included a high-resolution structural scan (Sag 3D T1) with
a slice thickness of 1 mm, matrix 256 × 256, TR (relaxation time)
7.2 s, TE (echo time) 2.3 s, and flip angle 12◦, FOV 24, 368 slices
and resting-state functional scan–2D echo-planar imaging (EPI),
with slice thickness 3 mm, matrix 64 × 64, TR 2000 ms, TE 30 ms,
36 slices, flip angle 90◦, FOV 24, a total of 192 volumes. Before the
EPI sequence, subjects were instructed to remain as still as possible
with their eyes closed and not to think of anything in particular. The

duration time of the resting-state functional scan was 6 min. MRI
data were pre-processed in a typical way (see Sec. 2.1.3 in Ref. 36).

B. Network measures

Each functional connectivity matrix could be represented in the
form of a network (graph). To analyze the network’s structure and
topology, we calculate the following global measures: mean node
strength 〈k〉, average shortest path length 〈L〉, number of edges Ne,
clustering coefficient C, and small-world coefficient σ .

Mean node strength is calculated as41

〈k〉 =
1

N

N∑

i=1

ki, (1)

where ki is the strength of ith node (the sum of weights of edges
connected to the node) and N is the number of nodes in the graph.

Average shortest path length is calculated as42

〈L〉 =

∑N
i=1

∑N
j=1 Lij

N(N − 1)
, (2)

where Lij is the shortest path between ith and jth nodes. Note that
Lii = 0 for i = 1, . . . , N, so we exclude it from the calculation.

Clustering coefficient is the Watts–Strogatz clustering coeffi-
cient calculated as43,44

C =
1

N

N∑

i=1

2ni/ki(ki − 1), (3)

where ni is the number of direct edges interconnecting the ki nearest
neighbors of node i.

Small-world coefficient is calculated as45

σ =
C/Cr

〈L〉/〈Lr〉
, (4)

where Cr and 〈Lr〉 are the clustering coefficient and the average
shortest path length for an Erdős–Rényi random graph with the
same number of nodes and edges, respectively.

For measures calculation, we used open-source NetworkX
package in Python.

C. Thresholding

The weights of edges (or connections) in the obtained func-
tional networks are distributed in the range of 0–1. We introduce a
threshold value Thr to remove the edges with weights w < Thr.36 So,
increasing Thr leads to leaving only strong connections in the net-
work. In the process, some nodes can become disconnected (their
strength is equal to 0); we remove these nodes from the network.
Figure 2 shows the graph representation of the functional connec-
tivity matrix of one healthy subject for different threshold values
Thr = (a) 0, (b) 0.3, and (c) 0.6. The graphs were built using the
Fruchterman–Reingold force-directed algorithm (realized in Net-
workX package in Python), which simulates a force-directed rep-
resentation of the network, treating edges as springs holding nodes
close while treating nodes as repelling objects, sometimes called an
anti-gravity force. The node size corresponds to its strength: the
larger the node, the higher the strength. We change Thr in the
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A

FIG. 1. Schematic representation of the overall structure. Rectangle frames depict steps of data analysis, and oval frames correspond to the input/output data for each step.

range [0, 0.8] because for Thr > 0.8, the graph is likely to become
disconnected and splits into a number of small subgraphs.

D. Statistical analysis

To identify differences in network measures at the group level,
we performed statistical testing both separately for each measure
using the t-test and comprehensively for several network measures
using multivariate analysis of variance (MANOVA). We used the
Shapiro–Wilk test to check normality and Levene’s test to check for
equality of variance. We used the open-source statistical package
Scipy in Python for statistical analysis.

E. Classification

To classify patients with MDD, we use Linear Discriminant
Analysis (LDA), a supervised machine learning method that allows
us to perform dimensionality reduction by projecting the input data
to a linear subspace consisting of the directions which maximize the
separation between classes.46 We use a set of network measures as
features.

First, we split each group of subjects (Control and MDD) into
train and test subsets in the proportion of 60% by 40%. Then, we
apply 100 random permutations for cross-validation, fit the LDA
model with the train set, and test it with the test one by calculating
the accuracy of the model,

Accuracy =
TP + TN

TP + TN + FP + FN
, (5)

where FP (false positive) is indicated as the number of persons for
a MDD group but erroneous for a Control group. FN (false neg-
ative) was indicated as the number of patients for a Control group
but erroneous for a MDD group, and TP (true positive) and TN (true
negative) are classified correctly.

As a result of applying LDA to the dataset, we get a separation
hyper-plane defined as

wTx + b = 0, (6)

where w = {w1, w2, . . . , wn} is the vector of LDA coefficients,
x = {x1, x2, . . . , xn} is the vector of features, b is the constant LDA
coefficient, and ·T is the operator of matrix transposition.

The distance from the ith subject to the separation hyper-plane
is calculated as

D =
wTxi + b

||w||
, (7)

where || · || is a matrix norm.
For classification, we used the open-source scikit-learn package

in Python.

F. Feature selection

To estimate the contribution of each feature, we propose a
wrapper-type feature selection approach.24 Initially, we use all Nf fea-
tures for the LDA model training, then we remove one of them and
use the rest Nf − 1 features. Then, we estimate the contribution of
the ith feature by calculating the difference between the accuracies
for the cases of Nf and Nf − 1 features,

Contribution = Accuracy(Nf) − Accuracy(Nf − 1). (8)

We repeat the procedure for each discardable feature, so we have Nf

repetitions. Then, we choose the feature with the lowest contribution
and discard it. After that, we can repeat the whole procedure as many
times as we need to leave a certain number of the most important
features.
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FIG. 2. The graph representation of the functional connectivity matrix of one healthy subject for different threshold values Thr = (a) 0, (b) 0.3, and (c) 0.6. The node size
corresponds to its strength: the larger the node, the higher the strength. The edge color represents its weight w.

III. RESULTS

A. Analysis of network measures

For each Thr, we calculated the following network measures
for all subjects: mean node strength 〈k〉 [Eq. (1)], average shortest
path length 〈L〉 [Eq. (2)], number of edges Ne, clustering coefficient
C [Eq. (3)], and small-world coefficient σ [Eq. (4)]. Figure 3 illus-
trates the dependencies of these measures on the threshold value Thr
for both groups (MDD and Control). The mean node strength [Fig.
3(a)] and the number of edges [Fig. 3(c)] decrease monotonously
with increasing Thr, with mean values of these measures being very
close to each other for both groups, but the standard deviation

for the MDD group is smaller than for the healthy one. On the
contrary, the average shortest path length [Fig. 3(b)] increases lin-
early with increasing threshold, and it is equal for both groups for
Thr ∈ [0, 0.55], but for Thr > 0.55, 〈L〉 becomes higher for the MDD
group. It means that the connectedness in the functional network is
weaker for subjects with MDD for higher thresholds. The cluster-
ing coefficient [Fig. 3(d)] also linearly increases for Thr ∈ [0, 0.65]
for both groups, but from Thr = 0.65, it starts to decrease. One can
see that for small threshold values, C is higher for the control group,
but for Thr = 0.6, it becomes equal in both groups, and for higher
threshold values, they change places. The dependencies of the small-
world coefficient σ [Fig. 3(e)] are the most different from the other

FIG. 3. The dependencies of the network measures on the threshold value Thr for Control (blue) and MDD (red) groups: (a) mean node strength 〈k〉, (b) average shortest
path length 〈L〉, (c) number of edges Ne, (d) clustering coefficient C, and (e) small-world coefficient σ . Vertical lines correspond to the standard deviation of the measure
inside the group.
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FIG. 4. The dependencies on the threshold value Thr of (a) the accuracy of clas-
sification (mean ± standard deviation due to random permutations) using all five
features, (b) the contribution of each feature to classification outcome, and (c)
the p-value of statistical separability of control and MDD groups using only one
feature.

measures: first, they rapidly decrease for small Thr values, then vary
in a small range of values, and σ is almost equal for both groups.

B. Classification and interpretability

We used the calculated network measures as features for binary
classification of belonging the subject to one of two groups: Control
or MDD group. Figure 4(a) shows how the accuracy of classification
with LDA (mean ± standard deviation due to the random permu-
tations) depends on threshold value Thr. As one can see, maximal
accuracy is achieved for Thr = 0 (Accuracy = 0.826 ± 0.058) and
Thr = 0.7 (Accuracy = 0.825 ± 0.058), while minimal Accuracy
= 0.547 ± 0.067 is achieved for Thr = 0.4. So, increasing Thr leads
first to decreasing the accuracy to almost 0.5, but then it increases
to the previous value. It means that for the best classification, we
need to leave either all the connections in the networks or only the
strongest ones with weights w > 0.7.

For the interpretability of classification results, we estimated
the contribution [Eq. (8)] of each feature to the classification out-
come using the wrapper-type approach described in Sec. II F.
Figure 4(b) illustrates how much each feature contributes to the
outcome accuracy (how much accuracy we lose by removing the
feature) depending on Thr. We revealed that the most important
features are the clustering coefficient C and the mean node strength
〈k〉 for Thr < 0.38, and the clustering coefficient C and the number
of edges Ne for Thr > 0.53. For Thr = 0, the maximal contribution
is made by C, Ne, and 〈k〉. With an increase in the threshold, the

FIG. 5. The dependencies on the threshold value Thr of (a) the accuracy of clas-
sification (mean ± standard deviation due to random permutations) using only
three features (mean node strength 〈k〉, number of edges Ne, and clustering coef-
ficient C), (b) the contribution of each feature to classification outcome, and (c)
the p-value of statistical separability of control and MDD groups using all three
features together.

contribution of all of them decreases. For Thr = 0.45, these mea-
sures reach their minimal contribution, and with further threshold
increasing, Ne and 〈k〉 become the most significant. Herewith, small-
world coefficient σ being insignificant for most threshold values
(contribution is around 0.05) becomes significant with a contribu-
tion of more than 0.1 for 0.38 < Thr < 0.53 when the accuracy of
classification is minimal.

Also, we estimate the statistical separability of each network
measure for control and MDD groups. We consider each measure
separately from others and apply a t-test. As a result, we obtain a
p-value for each measure for the considered threshold value Thr. If
the p-value < 0.05, the groups are considered to be statistically sep-
arable. Figure 4(c) illustrates the dependencies of the p-value for all
measures on Thr. It shows that mostly we cannot statistically sepa-
rate the groups (p-value > 0.05) for all values of Thr using only one
of the calculated measures (except for 〈L〉, which is significant for
Thr > 0.65, but its contribution to classification is low).

In the next step, we reduced the feature space by removing the
features with a low contribution for the most threshold values—the
average shortest path length 〈L〉 and the small-world coefficient σ .
Thus, we used only three features for the LDA model training and
classification: mean node strength 〈k〉, number of edges Ne, and clus-
tering coefficient C. Figure 5(a) shows the classification accuracy
in this case. Maximal accuracy is achieved for Thr = 0 (Accuracy
= 0.83 ± 0.05) and Thr = 0.7 (Accuracy = 0.81 ± 0.06), while
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FIG. 6. (a) The network measures space for control (blue points) and MDD (green points) groups with the LDA separation planes (α,β , γ ) and (b)–(d) the distances
D between each ith subject (points) and the LDA separation plane for different threshold values: (b) Thr = 0.65 (γ plane), (c) Thr = 0.45 (β plane), and (d) Thr = 0
(α plane). Each point represents each subject.

minimal accuracy = 0.56 ± 0.07 is achieved for Thr = 0.45. Com-
paring these results with Fig. 4(a), we can conclude that the accuracy
of classification does not change sufficiently with a reduction in the
number of features from 5 to 3. Then, we estimated the contribution
of each feature to the classification outcome using the wrapper-type
approach [see Fig. 5(b)]. For all threshold values, the contribution of
two features correlates with accuracy: mean node strength 〈k〉 and
clustering coefficient C for Thr ∈ [0, 0.45] and mean node strength
〈k〉 and number of edges Ne for Thr ∈ [0.45, 0.8]. All of them have
almost zero contribution for Thr ∈ [0.4, 0.5] where the accuracy of
classification is close to 0.5.

We used the MANOVA statistical test for the estimation of the
statistical separability of control and MDD groups using the con-
sidered three features (〈k〉, Ne, and C) together. The obtained results
correlate with the capability of LDA to classify the groups [Fig. 5(c)]:
for 0.36 < Thr < 0.53, the p-value is higher than 0.05, and LDA can-
not separate the control and MDD groups, while for other threshold
values, p-value < 0.05 and accuracy of classification >0.6.

Hence, using only one network measure, we cannot statisti-
cally separate the considered control and MDD groups, but when

we introduce a set of measures, the groups become separable in the
feature space. Using all couplings or only the strongest ones allows
obtaining the maximal accuracy of classification, while using cou-
plings with strength w > 0.35 leads to the inability of LDA to classify
the experimental groups.

Finally, we analyze the network measures space (as feature
space) depending on the threshold value [Fig. 6(a)]. Here, all sub-
jects are depicted as points in the three-dimensional feature space
(the control group is blue and MDD one is green) for three different
threshold values Thr = 0, 0.45, 0.65. For each Thr, we plot the corre-
sponding LDA separation plane (α, β , and γ , respectively) described
by Eq. (6). For all participants, their measures lie approximately on
the measures plane, and the planes for healthy and MDD groups
are close to each other, but still, LDA is able to build a plane to
separate them for the most number of cases. To illustrate the posi-
tion of points relative to the plane for both groups, we calculate the
distance from the point to the plane [Eq. (7)] for each subject for
Thr = 0.65 [Fig. 6(b)], Thr = 0.45 [Fig. 6(c)], Thr = 0 [Fig. 6(d)].
As one can see, for the high threshold value [Fig. 6(b)], blue points
(control subjects) are below the separation plane (purple line), and
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green points (subjects with MDD) are above the plane, but for
the low threshold, their relative to the plane locations are reversed
[Fig. 6(d)]. For the middle value Thr = 0.45 [Fig. 6(c)], correspond-
ing to the low accuracy of classification, both groups are shuffled,
and it becomes impossible to separate them. More specifically, the
parametric planes of two groups move and rotate in the feature space
with the increasing threshold value [Fig. 6(a)], and their intersec-
tion increases with approaching Thr = 0.45, for which classification
accuracy is minimal. It is caused by changing the network measures
with the increasing threshold value. Due to all subjects lying on the
measures plane regardless of the threshold value, we can suppose the
connectivity between the measures.

IV. CONCLUSION

We have applied linear discriminant analysis for discrimina-
tion between patients with major depressive disorder and healthy
controls by using functional connectivity networks derived from
resting-state fMRI data. Unlike many previous papers,34 we have
utilized not the networks themselves but their global characteristics
(measures): mean node strength, average shortest path length, num-
ber of edges, clustering coefficient, and small-world coefficient. We
applied statistical methods in combination with the wrapper-type
approach for feature selection and interpretation of the LDA model
classification results.

These methods have shown that the classes are indistinguish-
able in the univariate feature space, i.e., individually, the network
measures are close for the MDD and control groups. However,
these classes become distinguishable in the three-dimensional fea-
ture space formed by the most important features (mean node
strength, clustering coefficient, and the number of edges), which the
proposed wrapper-type feature selection algorithm allowed to iden-
tify. The results of the statistical analysis confirmed the selection of
these features as the most significant.

We have also investigated how the thresholding of connection
weights in the functional networks (Thr parameter) influences clas-
sification accuracy. In the case of the three most significant features,
we revealed that LDA achieves the highest accuracy (81%–83%)
when we consider the network with all connections (Thr = 0) or
only the strongest ones (Thr > 0.7). When the thresholding param-
eter lies in the range [0.35, 0.55], the LDA model cannot separate
the control and MDD groups, and the average accuracy is only
56%. Thus, we revealed the optimal ranges of the thresholding
parameter.

In the three-dimensional space of the most significant mea-
sures, the points corresponding to individual subjects lie on the
parametric plane, with the planes for control and MDD groups
being close to each other. This explains the difficulty of classi-
fying the considered classes. Moreover, this result means that a
linear combination of the most significant features allows us to
distinguish the considered classes. We revealed that the paramet-
ric planes of two groups rotate in the feature space with increas-
ing the thresholding parameter, and their intersection increases
with approaching Thr = 0.45, for which classification accuracy is
minimal.

Thus, the proposed combined approach solved the problem of
selecting the most significant features and the optimal thresholding

parameter to achieve high accuracy of MDD patients’ discrimination
while allowing full interpretability of the results and the classi-
fier operation. Moreover, this approach allowed us to analyze the
separability of classes in the multidimensional feature space.

The proposed approach can be applied to other ML tasks
when classifying the complex networks. It allows us to estimate the
most important network features for the maximal separability of
the groups depending on the external parameter. The results of the
application of the proposed approach are easy to interpret because
a user always knows which features lead to achieving high accu-
racy, and their further analysis allows understanding the nature of
the compared groups. Particularly, one can estimate the number
of the most different features between healthy and unhealthy brain
networks in our case.
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