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A very simple model describing steady-state electron transport along a quantum superlattice of a finite length
taking into account an arbitrary electrical characteristic of the injecting contact is considered. In the single-
miniband approximation, exact formulas for the spatial distribution of the electric field in the superlattice are
derived for different types of contact. Conditions under which the field is uniform are identified. Analytical
expressions for the current–voltage characteristics are obtained. In the context of the developed theory, the
possibility of attaining uniform-field conditions in a diode structure with a natural silicon-carbide superlat-
tice is discussed.
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A standard mathematical model describing the
spatial distributions of the electric field F(X) and the
bulk density of mobile charges N(X) in a one-dimen-
sional solid sample under the conditions of electron
injection from a contact includes Poisson’s equation
and the continuity equation [1]

 (1)

 (2)
along with the boundary condition for the electric-
field strength at the interface between the injecting
contact (emitter) and the sample, i.e., F(X = 0) =
Fe(J). Here, X ∈ [0, L] is the coordinate in the solid
sample of the total length L, Fe is the field at the con-
tact of a negligibly short length, J is the current density
flowing through the entire system including the con-
tact (J is independent of X), Vd(F) is the drift velocity
of electrons, ND > 0 is the density of immobile charges,
εr is the relative permittivity of the sample, ε0 is the
electric constant, and q = –e. This simplest model was
introduced into solid state physics by Mott and Gur-
ney to describe the impact of space charge on the
injection of electrons from an ideal ohmic contact
(Fe = 0) into an ideal insulator (ND = 0) in the case

where the electron mobility is assumed constant (Vd ∝
F) [2]. A straightforward generalization of the Mott–
Gurney model to the case of insulators characterized
by a field-dependent differential mobility μd(F) > 0
(where μd = ) is now widely used to describe
nonuniform field distributions in organic electronic
devices [3]. There, typically, the electric field
increases steadily from the emitter to the collector.

In semiconductors such as GaAs and InP, in addi-
tion to being field-dependent, μd can even become
negative as a result of intervalley electron transfer.
Accordingly, spatial distributions of the field can be
quite complicated owing to the possibility of the for-
mation of static charge domains [4]. An important,
albeit underestimated, contribution here is a paper by
Kroemer [5] motivated by the modeling of the Gunn
effect in GaAs under arbitrary boundary conditions.
In that paper, it was shown in the context of the most
complete variant of the model represented by Eqs. (1)
and (2) with ND ≠ 0 and Fe ≠ 0 that not only increasing
but also decreasing and, under fairly strict conditions,
even spatially uniform distributions of the field can
exist.

A quantum superlattice is a specially designed solid
lattice where the electron mobility is sufficiently high
at least in one direction and the corresponding spatial
period considerably exceeds the typical lattice con-
stants of conventional crystals [6, 7]. The impurity

1 See the supplemental material for this paper at www.jetplet-
ters.ac.ru.
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conductivity along the direction of superperiodicity
(axis of the superlattice) in such nanostructures origi-
nates from the transport of electrons occupying one or
several narrow minibands [6, 8]. The majority of
quantum superlattices in use are semiconductor het-
erostructures [6, 9], although, somewhat later, natural
superlattices in silicon carbide polytypes have also
become the subject of systematic studies [10]. An
important property of superlattices is that they exhibit
negative differential mobility even in moderate electric
fields [6] because of the excitation of relatively long-
lived Bloch oscillations in the miniband [11, 12]. The
capability of superlattices to amplify and generate
electromagnetic waves in the millimeter and submilli-
meter ranges is likely the most interesting property for
applications. This capability can be brought about by
various mechanisms, such as moving charge domains
[13, 14], Bloch oscillations [15, 16], negative effective
mass of electrons [17], and transitions between Wan-
nier–Stark ladders [18]. As a rule, the efficient imple-
mentation of these mechanisms requires a nearly uni-
form field distribution. It should also be mentioned
that superlattice microstructures featuring complex
nonohmic contacts have recently appeared [19–21].
All of the above makes the problem of predicting the
spatial electric-field distribution in superlattice struc-
tures an important issue.

Here, we apply the approach of Kroemer [5] to
determine the spatial profile of the electric field in a
superlattice with an arbitrary injecting contact. We
demonstrate that a model of this kind taking into
account only one conduction band allows an exact
analytical solution. Furthermore, we give a classifica-
tion of the possible spatial distributions of the field. An
important outcome of this analysis is the identification
of two simple sufficient criteria for attaining a uniform
field distribution for both positive and negative differ-
ential mobility of electrons. In both cases, nonohmic
contacts are necessary. Using the results obtained, we
show that the conditions under which terahertz elec-
troluminescence was recently observed in natural SiC
superlattices [16, 20, 22] satisfy our uniform-field cri-
terion.

Following the model described by Eqs. (1) and (2),
we consider the spatial distributions of the field F(X) in
a superlattice that is uniformly doped with donors to a
bulk density of ND. The field dependence of the elec-
tron drift velocity along the superlattice axis is given by
the Esaki–Tsu formula [6]

 (3)

where Fcr = ℏ/edτ is the critical field corresponding to
the onset of negative differential mobility, V0 = Δd/2ℏ
is the maximum electron velocity in the miniband, Δ
is the miniband width, d is the period of the superlat-
tice, and τ is the characteristic scattering time. For
simplicity, we disregard temperature effects, which
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can easily be taken into account by the corresponding
renormalization of V0 [7, 9].

It is convenient to introduce the following dimen-
sionless variables (represented by lowercase letters):
field strength f = F/Fcr, current density j = J/qNDV0,
and coordinate x = X/L (x ∈ [0, 1]). Evidently, the
Esaki–Tsu critical field and peak current under the
electroneutrality condition (N = ND) correspond to
f = 1 and j = 1/2, respectively. Now, combining
Eqs. (1)–(3), we obtain

 (4)

where α = qLND/Fcrε0εr stands for the dimensionless
NL product. Differential equation (4) has two station-
ary points

 (5)

corresponding to the two possible values f(x) = f+ and
f(x) = f– of the strength of a spatially uniform electric
field that, in principle, can exist in the superlattice.
According to Eq. (5), both fixed points are determined
solely by the current f lowing through the structure.
These dependences are illustrated in Fig. 1a. Evi-
dently, the points f± exist only when the total current
is lower than the Esaki–Tsu peak current, i.e., j ≤ 0.5.
Furthermore, μd(F+) < 0 and μd(F–) > 0; i.e., the val-
ues f+ and f– belong to the regions of positive and
negative differential mobility, respectively.

More complete information on the electric-field
distribution can be obtained by integrating Eq. (4)
with the boundary condition f(0) = fe, which deter-
mines the field strength at the emitter of the structure.
As a result, we obtain the formulas (the details of the
derivation are given in [23])

 (6)

 (7)

where x1(f) and x2(f) should be used for j < 1/2 and j >
1/2, respectively. When the current approaches the
peak value, i.e., j → 0.5, both expressions yield the
same result [23]. We also note that, with the use of
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Eq. (5), the expression for x1(f) can be rewritten in the
compact and symmetric form

 (8)

which demonstrates the importance of the points f+
and f– in defining the shape of the spatial distribution
of the field for j < 1/2.

The spatial distributions f(x) of the electric field
plotted according to the obtained exact solutions for
different values fe = f(0) of the field at the emitter and
three characteristic values of the current j are shown in
Figs. 1b–1d. The calculations were carried out for d =
8.3 nm, Δ = 19.1 meV, L = 115 nm, ND = 3 × 1016 cm–3,
and τ = 250 fs; these parameters correspond to the
GaAs/AlGaAs superlattice investigated experimen-
tally in [24].
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One can see that three types of spatial profile of the
field can be implemented in the superlattice for j < 1/2.
We designate them by roman numerals.

Field distributions of type I occur for fe < f–. In this
case, the field strength increases rapidly with the spa-
tial coordinate and, upon approaching the value of f–,
levels off. We note that, for a low current j, the field is
almost uniform along the greater part of the superlat-
tice length (Fig. 1b).

Field distributions of type II are implemented for
f‒  < fe < f+. They are characterized by a decrease in the
electric-field strength with an increase in the coordi-
nate x. When the current approaches the Esaki–Tsu
peak current, points f– and f+ converge (cf. Figs. 1b
and 1c), and the range of the values of fe supporting
distributions of type II becomes narrower. It is import-
ant that, in this situation, the field strength in a type-II
distribution decreases with increasing coordinate
rather slowly.

Fig. 1. (Color online) (a) Quantities (red solid line) f– and (dashed blue line) f+ versus the current j according to Eq. (5). (b–d)
Electric-field spatial distributions f(x) for different field strengths fe = f(0) at the emitter and the current j = (b) 0.45, (c) 0.49,
and (d) 0.505.
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Spatial distributions of type III occur for fe > f+.
There, for most of the fe values, the field strength
increases rapidly with the coordinate and can achieve
rather high values at the collector of the structure. To
obtain a nearly uniform field distribution, the corre-
sponding value of fe has to be very close to f+.

Finally, when the current attains the peak value
(j = 1/2), the points f± merge and disappear, which
corresponds to a saddle–node bifurcation. Field dis-
tributions taking place for j > 1/2 are shown in Fig. 1d.
In this case, the field strength increases steadily along
the entire length of the system. In agreement with the
previously described behavior, this growth is the slow-
est if the field strength at the emitter is chosen near the
superlattice critical field fe = 1. This is explained by
the proximity to the bifurcation point.

Until now, we considered the electric field at the
emitter fe and the current j as two independent param-
eters in the model. However, more typical is a bound-
ary condition that defines the dependence of fe on the
current according to some electrical characteristic of
the contact j = jem(fe) [5]. As an example of such char-
acteristic, we consider the linear dependence j = sfe,
where s is the dimensionless conductance of the emit-
ter. On one hand, this model dependence is conve-
nient for describing the transition from an ideal ohmic
contact (s ≫ 1) to a blocking contact (s ≪ 1) [25]. On
the other hand, apart from contacts described by
Ohm’s law, these linear characteristics describe other
types of contact as well [26].

Figure 2a shows three typical contact characteris-
tics (straight lines 1–3) along with the Esaki–Tsu
curve, which represents the ratio of Vd/V0 in these
variables (see Eq. (3)). The Esaki–Tsu curve may be
considered as the combination of the curves f–( j) and
f+( j) (see Fig. 1a). Thus, each point of its intersection
with a straight line, where fe( j) = f±( j), corresponds to
those values of the field strength f(x) = fe and the cur-
rent that, for a given parameter s, determine the spa-
tially uniform solution. Furthermore, regions I, II,
and III on the ( fe, j) plane correspond to the boundary
conditions for which the three previously described
types of field distribution are implemented. One can
see that straight line 1, which describes an ohmic con-
tact, lies in region I and, thus, cannot intersect the f+
curve. This illustrates that a uniform field distribution
cannot be attained under the conditions of negative
differential mobility in a structure with a purely ohmic
contact. Straight line 2 (for j < 0.5) lies mostly in
region II close to the f– curve and intersects it at j ≈
0.47. In this case, both type-I and type-II distributions
may occur. Straight line 3, corresponding to a contact
with a low conductance, intersects the f+ curve at j ≈
0.3. There, fe > 1, which corresponds to the condition
of negative differential mobility μd < 0. Uniform states
of this type, which can exist in various quantum super-
lattices, are of the most physical interest.

In experimental studies [16, 20, 22], terahertz elec-
troluminescence in a 6H–SiC diode microstructure
was observed and attributed by the authors to the onset
of Bloch oscillations in this natural superlattice. In our

Fig. 2. (Color online) (a) Three regions in the parameter plane (fe, j | j ≤ ) corresponding to the field distributions of types I, II,

and III and (red solid and blue dashed lines) the Esaki–Tsu curve along with linear characteristics of emitters with dimensionless
conductances s = (1) 17, (2) 0.7, and (3) 0.1. (b) Current–voltage characteristics j(u) of the superlattice corresponding to contact
electrical characteristics 1–3.

1
2
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notation, this regime corresponds to f = ωBτ > 1,

where ωB =  is the Bloch frequency [6]. Intense

emission was observed for a current of I = 210 mA. For
superlattice parameters d = 0.75 nm, Δ = 260 meV,
ND = 1016 cm–3, the cross-sectional area S = 3 ×
10‒5 cm–2 [16, 20], and τ = 3 × 10–13 s [27], we have
j = 0.3 < 0.5 (j ≡ I/qNDV0S). Then, according to
Eq. (5), f+ = 3 or F+ = 87 kV/cm. This value is close to
the estimate Frad = 84 kV/cm of the field correspond-
ing to the onset of generation obtained in [16] directly
from the analysis of the experimental data. Another
important fact is that the structure under study had a
nonohmic injecting contact in which the nonlinearity
of the electrical characteristic was caused by the break-
down of impurity centers. Thus, in spite of a consider-
able ambiguity in determining the values of Fcr and
Frad, the emission of terahertz radiation observed in
[16, 20, 22] can be quite confidently associated with a
transition of the SiC superlattice into a spatially uni-
form state.

Within the considered model, one can also find the

dependence of the voltage drop U =  across
the superlattice on the current J. Let us introduce the
dimensionless variables u = U/FcrL and fc = F(L)/Fcr,
where F(L) is the field strength at the collector of the
structure. Integrating by parts, we obtain [23]

 (9)

and

 (10)

for j < 1/2 and j > 1/2, respectively. In turn, the values
of fc are determined by solving the equations x1,2( fc) =
1, where x1,2( f) are defined by Eqs. (6) and (7). The
occurrence of the field fc at the collector in Eqs. (9)
and (10) presents some inconvenience when using
these formulas. However, this dependence is inevita-
ble in models where spatially nonuniform electric-
field distributions are considered [28, 29]. Figure 2b
shows the dependences j(u) calculated according to
Eq. (9) for superlattice parameters from [24]. Cur-
rent–voltage characteristics of this shape are typical of
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various miniband superlattices with no moving charge
domains [19, 20, 30].

Thus, in the framework of a well-proven model, we
have obtained analytical results that can be used to cal-
culate the spatial distributions of the electric field and
current–voltage characteristics in a broad class of
superlattice structures. Generalization of these results
to the case of a superlattice subjected to a magnetic
field is of interest for applications [31, 32].
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