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Abstract

This review provides a comprehensive examination of recent developments in both neurofeedback and brain-computer interface (BCI)
within the medical field and rehabilitation. By analyzing and comparing results obtained with various tools and techniques, we aim to of-
fer a systematic understanding of BCI applications concerning different modalities of neurofeedback and input data utilized. Our primary
objective is to address the existing gap in the area of meta-reviews, which provides a more comprehensive outlook on the field, allowing
for the assessment of the current landscape and developments within the scope of BCI. Our main methodologies include meta-analysis,
search queries employing relevant keywords, and a network-based approach. We are dedicated to delivering an unbiased evaluation of
BCI studies, elucidating the primary vectors of research development in this field. Our review encompasses a diverse range of applica-
tions, incorporating the use of brain-computer interfaces for rehabilitation and the treatment of various diagnoses, including those related
to affective spectrum disorders. By encompassing a wide variety of use cases, we aim to offer a more comprehensive perspective on
the utilization of neurofeedback treatments across different contexts. The structured and organized presentation of information, comple-
mented by accompanying visualizations and diagrams, renders this review a valuable resource for scientists and researchers engaged in
the domains of biofeedback and brain-computer interfaces.
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1. Introduction
The study of brain-computer interface (BCI) has been

gaining significance over the past few decades, with a mul-
titude of scientists from various parts of the world contribut-
ing to this domain by creating numerous tools and tech-
niques for brain signal acquisition and processing. This
progress is largely attributed to advancements in cutting-
edge technology, which provide researchers with access to
crucial data: recordings of neural activity. These record-
ings enable scientists to carry out in-depth and productive
research in the field of brain-computer interfaces, allowing
them to gain insights into the workings of the brain.

The use of BCI mainly categorizes into the follow-
ing target populations: patients who lack any motor con-
trol (can barely move), patients with little voluntary move-
ment, and patients with significant neuromuscular control
[1]. BCIs are also used for people with psychiatric disorders
such as attention deficit hyperactivity disorder (ADHD),
neurodegenerative diseases, schizophrenia, and depression
[2–6]. Significant advances in electroencephalography
(EEG)-based BCI provide acceptable signal quality, com-
bine low cost and easy-to-use equipment, allowing its users
new means of communication and control without inter-
ference from peripheral nerves and muscles [7]. More-
over, neuromarketing and the video game industry are in-

creasingly using BCIs to extract affective information from
healthy individuals, bypassing physical interaction, and de-
veloping new levels of control [8]. BCIs help users to be
more relaxed and focused, and make life easier for the end
user if they are able to control the BCI [9,10].

There is an increasing use of BCIs for addressing is-
sues in the fields of psychology and psychiatry, suggesting
a trend towards more widespread adoption of this technol-
ogy in mental health care. Recently, there has been a de-
mand for more diagnostic tools for the objective detection
and monitoring of mental disorders [11–21]. One of the re-
cent reviews focuses on the automated detection of these de-
velopmental and mental disorders using physiological sig-
nals [11]. Another review provides an introduction to var-
ious emotion models, stimuli used for emotion elicitation,
and the background of existing automated emotion recog-
nition systems [12]. Cho and his co-authors [22] undertook
a wide-ranging review of the machine learning algorithms
that have been utilized in the field of mental health, utiliz-
ing speech, neuroimaging, physiological data, and diverse
types of patient information for diagnostic purposes. By ex-
amining the uses of BCIs in the treatment of various mental
disorders, it is possible to provide insight into the potential
benefits and limitations of this technology and its useful-
ness for improving clinical outcomes.
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Currently, a majority of systematic reviews on BCIs
tend to have a specific and limited focus, either on solving a
particular issue or addressing a specific problem [23–25], a
specific application [11–13], or solely on the physical prin-
ciples of BCIs [7]. While these reviews offer the benefit of
providing detailed and focused information, they often lack
a broader perspective on the overall use and application of
BCIs in the medical field [1,23–31]. In light of the afore-
mentioned context, it becomes evident that a gap persists
in the area of meta-reviews, which provide a more compre-
hensive perspective on the field, enabling the consideration
of overall trends in research and development of BCIs for
rehabilitation and the treatment of mental and neurological
conditions [32].

In this meta-review, our aim is to explore the uti-
lization of BCIs in medicine from a data science perspec-
tive. We identify and compare BCI technologies for dif-
ferent data and neurofeedback modalities employed by re-
searchers in various branches of medicine. We conducted
our analysis using data obtained from the PubMed database,
employing meticulously constructed search queries based
on keywords to obtain the most conclusive results with each
query.

2. Materials and Methods
As part of the methodology implementation, pub-

lished articles were retrieved from scientific databases us-
ing the PubMed search engine (https://pubmed.ncbi.nlm.ni
h.gov, accessed on 15 October 2023). At the present mo-
ment, a keyword search for BCI yields roughly 6.9 thou-
sand results. In our investigation, we chose not to restrict
our scope of research to a specific time window. Instead,
we conducted searches through a variety of sources and
studies without a specific limit regarding date. The follow-
ing terms were used in the construction of search queries
to perform an analytical review of the current scientific
and technical, regulatory, and methodological literature ad-
dressing the scientific and technical problem of biofeedback
BCI for rehabilitation, as well as the prevention of cogni-
tive disorders and the diagnosis of patients with motor or
cognitive disorders within the framework of rehabilitation
medicine: “brain-computer interface” or “BCI” keywords
were a mandatory part of the query, while terms for the data
(by data, we refer to the type of recorded signal received
from the test subject, e.g., “EEG”), modality (by modality
we refer to a specific type of input or output mechanism,
used to communicate with BCI, e.g., “VR” or “Virtual real-
ity”), and application (e.g., “stroke”) were combined pair-
wise as shown in Table 1. The query construction scheme
is shown in Fig. 1.

At the initial stage of our review, we identified and
highlighted the following key issues that we wish to ad-
dress:

–Which types of BCIs are the most frequently utilized
in medicine? Are there varying preferences for them in dif-

Fig. 1. The query construction scheme for the keywords.
Unique identification numbers were assigned to the specific
areas of focus. BCI, Brain-computer interface.

ferent areas of medicine? If so, what are the reasons behind
these discrepancies?

– Which data types are the most commonly employed
in medicine for BCI? How are the various data types pro-
cessed and utilized in different applications?

– Which types of modalities correspond to which
fields of application?

In the search phase, papers were considered relevant
for review if they contained one of the search terms or
an equivalent restatement in their title, abstract, or key-
words. The papers with paper types “Book”, “Chapter”,
and “Monography”were excluded from the final sample us-
ing PubMed search filters. After collecting the number of
papers found with each query, we selected the most promi-
nent results and features, and conducted a more detailed
review to establish the causes for these features based on
specific cases.

We created a keyword co-occurrence network which
utilized information gathered from around 2000 papers
found in PubMed by using a search query consisting
of keywords “BCI” or “Brain-Computer Interface” using
VOSviewer version 1.6.19 (Center for Science and Tech-
nology Studies, Leiden University, Leiden, The Nether-
lands) [33]. This network allows us to visualize how of-
ten certain terms appear together in the analyzed studies,
providing a better understanding of the underlying trends
and connections within the field. Through the use of net-
work visualization, we identified clusters, or communities,
within the keyword co-occurrence network by color-coding
the items according to the cluster to which they belong. We
utilized the VOSviewer algorithm in our research, which
employs a modularity function to detect these groups [34].
The resulting clusters provide further information and in-
sights into keyword relationships within the field of inter-
est.
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Table 1. Table of the used keywords.
Data type Modality Application

EEG; Audio; limb rehabilitation;
EMG; visual; stroke;
MEG; vibrotactile; neurodegenerative diseases;
NIRS; electrotactile; add or adhd or attention deficit disorder or attention

deficit hyperactivity disorder;
fMRI; TES or Transcranial electric stimulation; autistic;
ECoG. TMS or Transcranial magnetic stimilation; depression;

VR or virtual reality; anxiety;
AR or augmented reality; substances addiction;
RHI or rubber hand illusion; coma;
XR or extended reality. persistent postural-perceptual dizziness or PPPD;

chronic neuropathic pain;
post-traumatic stress disorder or PTSD;
schizophrenia.

EEG, Electroencephalography; EMG, Electromyography; MEG, Magnetoencephalography; NIRS, Near-
infrared spectroscopy; fMRI, Functional magnetic resonance imaging; ECoG, Electrocorticography.

3. Review
3.1 Fundamentals of Brain-Computer Interface (BCI)

By BCI, we refer to a system that allows a user to in-
teract with computers and electronic devices using brain ac-
tivity. BCIs primarily facilitate communication for people
with severe motor impairments [30,32,35–53] who cannot
communicate otherwise, but they can also provide useful
communication and rehabilitation of various disorders for
healthy people or people with less critical motor impair-
ments. BCI research can leverage advances in cognitive
neuroscience in addressing learning, feedback analysis, ac-
cessibility, concentration, exhaustion, stimulation, stress,
and cognitive and psychiatric disorders [1–6,26–29,31,54–
83].

Biofeedback is the primary method of rehabilitation
BCI, and it serves as a treatment and research technology
based on the patient’s or research participant’s ability to
self-regulate. Biofeedback involves learning to voluntar-
ily change a measurable biological parameter that is nor-
mally not regulated consciously but can become control-
lable through exercise. A target signal (e.g., related to a
symptom of a disorder) is measured and then fed back to
the participant, allowing them to find their own strategy to
control that signal and subsequently adjust that strategy to
master self-regulation, which can then be extended to daily
life. In this way, biofeedback and neurofeedback (biofeed-
back directed at brain signals) can be used as treatments or
as research approaches aimed at testing hypotheses about
causal relationships between localized neural activity and
symptoms [30].

Biofeedback has been utilized in rehabilitation for
over half a century to help establish normal motor patterns
following injury, highlighting the significance of analyzing
recent progress in this field. It is a technique of provid-
ing real-time biological information to patients that would

otherwise be unknown. This information is sometimes re-
ferred to as augmented or external feedback, namely, feed-
back that provides the user with additional information be-
yond what is available to them naturally, as opposed to sen-
sory (or internal) feedback, which provides the user with
information obtained directly from various internal sensory
receptors [30]. Biological feedback typically involves mea-
suring a target biomedical variable and transmitting it to
the user using one of two strategies: direct, such as in the
case of heart rate or respiration mapping [84], and indirect,
where the signal undergoes pre-processing, as seen in the
case of brain electrical activity signals [54].

Neuronal loss due to stroke leads to 80% of patients
undergoing motor rehabilitation, for which brain-computer
interfaces and neurofeedback are utilized. During reha-
bilitation, when patients attempt or imagine performing a
movement, the BCI/neurofeedback system provides them
with synchronized sensory (e.g., tactile) feedback based on
sensorimotor brain activity with the aim of promoting brain
plasticity and motor recovery. The combined activation of
ascending (i.e., somatosensory) and descending (i.e., mo-
tor) networks enables significant functional improvement
in motor skills as well as neurophysiologic changes related
to sensorimotor skills. Somatosensory abilities are neces-
sary for patients to perceive the feedback provided by the
BCI system. Consequently, somatosensory impairments
can significantly reduce the effectiveness of BCI-based mo-
tor rehabilitation [54].

If feedback is explicitly presented, as is common in
most clinical applications, such learning should be referred
to as model-based, where the participant intentionally seeks
reward, leading to a predominance of top-down regulation
involving attention focus and working memory content.
In cases of implicit feedback, model-free learning occurs,
characterized by a predominance of bottom-up processes
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[40]. Dual process theory suggests that conscious and un-
conscious learning processes (top-down and bottom-up) oc-
cur simultaneously. As a result, the learner acquires both
some overt strategies and a hidden “intuition” that cannot
be explicitly articulated. In the first stage, conscious con-
nections prevail, and as the skill is generally learned, uncon-
scious learning becomes a major contributor to its adapta-
tion.

BCIs can employ various approaches, but one of the
most common techniques for limb rehabilitation is known
as motor imagination. Motor imagination is a process used
in BCI systems where users control devices by imagining
themselves moving a limb or part of their body. The user’s
imagined movements are detected by the BCI system us-
ing a suitable neural sensor. This process generates spe-
cific patterns of brain activity, which can then be recog-
nized and transformed into control commands for the asso-
ciated device or computer. Motor imagination is applica-
ble in a wide range of fields: for the development of BCI,
rehabilitation tasks, prediction and prevention of neurode-
generative diseases, psychosis research and diagnosis, and
sports. Regarding the general mechanism, biofeedback and
neurofeedback are often considered to be based on oper-
ant conditioning, meaning that learning to control some bi-
ological signal occurs by repeatedly testing and adjusting
behavior to achieve more frequent reinforcement (positive
feedback) [85]. Biological feedback relies on two basic
cognitive skills: the ability to identify the state for which
a reward is given (internal feedback) and the ability to ad-
just the current state towards the desired direction. There-
fore, biofeedback can be understood as providing missing
information about the performance or outcome of cognitive
effort and aiding in fine-tuning internal feedback.

3.2 Types of Brain-Computer Interface (BCI)

BCI modality refers to a specific type of input or out-
put mechanism used to communicate with a BCI. Regard-
ing the type of BCI modality, respiratory [84], audio [86],
and visual approaches [87,88], vibrotactile [23,37,89–96],
electrotactile [97–100], imagined motion approach [30,32,
35–53,101], virtual reality [8,24,88,102–118], transcranial
magnetic stimulation [47,48,119–121], and direct transcra-
nial electrical stimulation [66,111,122–125] are commonly
recognized (see Fig. 2).

A general operational scheme for the BCI systems is
presented in Fig. 3. In a BCI system, data is collected from
the user’s brain activity. After that, relevant features are
extracted from the data and used to create a control signal.
This control signal influences both active external systems
and simulated sensory input, which then impacts the user’s
performance or experience. This feedback loop provides
the basis for real-time interaction between the user and the
BCI system. Since we are constantly receiving multiple in-
formation inputs simultaneously and from many different
sources, a BCI system that can handle and communicate in

Fig. 2. Classification of modalities most commonly used in
BCI.

a multi-modal way is particularly suitable for this situation.
In view of this, testing an approach that incorporates multi-
sensory feedback in the context of BCI represents a promis-
ing direction [126]. It can be posited that multimodal feed-
back such as visual-tactile or audio-tactile feedback will be
more effective than simple unimodal feedback.

Fig. 3. General scheme of implementation of biofeedback sys-
tem in BCI.

To clarify: modality refers to the ways in which in-
formation is presented to the user, while biofeedback tech-
niques involve measuring brain activity and using this data
to generate a control signal. These techniques can be imple-
mented using different modalities. The following types of
biofeedback can be distinguished according to the methods
of application (Fig. 4).

Motor imagery biofeedback. In this variant, the user
is asked to imagine moving a specific body part, and the
BCI detects and translates brain signals into movements in
a virtual environment. The user receives feedback on their
performance and over time can learn to control the imag-
ined movements with greater accuracy. Real-time mea-
surements and monitoring of physiological responses such
as muscle activity and EEG take place. This method has
been proven effective in improving motor function and
reducing symptoms in various neurological diseases, in-
cluding stroke, Parkinson’s disease, and spinal cord injury
[30,32,35–53].

Steady State Visual Evoked Potential (SSVEP) stands
for Steady State Visual Evoked Potential. This refers to the
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Fig. 4. Types of biofeedback distinguished according to the
techniques of application. SSVEP, Steady State Visual Evoked
Potential.

pattern of brain activity elicited by visual stimulation, such
as from a computer screen or monitor, displaying a con-
stantly changing pattern of light or color. The specific pat-
terns of brain activity associated with the SSVEP stimulus
can be extracted from the measurements and used to control
a BCI device. In this variant, the user is presented with a
grid of options and asked to focus on the desired outcome.
This type of BCI utilizes the potential, which is specific and
arises in response to a visual stimulus.

P300 stands for the positive component occurring 300
milliseconds after the onset of a target stimulus. In the P300
neurofeedback system, the user is presented with a series of
stimuli and asked to focus on a specific stimulus that will
elicit the greatest P300 response. When the user focuses
their attention on the target stimulus, they receive a posi-
tive reinforcement cue, such as a sound or visual cue. Over
time, the user learns to produce larger and more consistent
P300 responses to the target stimulus. The BCI detects and
decodes the brain signals associated with the response and
displays them on a screen. The user receives feedback on
their accuracy and can learn to manipulate the brain signals
to enhance control speed. The P300 is used to treat a variety
of conditions, including ADHD, depression, and anxiety. It
is a non-invasive and safe technique that has been demon-
strated to be effective in improving attention, cognition, and
emotional regulation [58,61,93,94].

Biofeedback Self-Paced Therapy. In this variant, the
user is asked to performmovements, such as turning a door-
knob, picking up an object, or squeezing a ball. The BCI de-
tects and translates brain signals into movements in a virtual
environment, providing feedback on the user’s progress and
results. As the user gains skill in managing their brain ac-
tivity, they are encouraged to increase the difficulty of the
tasks. The BCI provides real-time feedback on the user’s
performance and adapts the parameters of the training pro-
gram accordingly. Self-learning therapy can help people
with neurological conditions, such as stroke, to improve up-
per extremity function [127,128].

Biofeedbackwith real-time translation. In this system,
the user wears an BCI device that reads brain signals and

translates them into speech, which can be synthesized and
delivered either through a speaker or a headset. The user
can communicate by thinking of the words they want to say
[129–131]. Biofeedback with real-time translation is not
always limited to the use of speech; nonverbal communi-
cation techniques, such as blinking, facial expressions, and
hand gestures, or motor signals, like muscle contractions
and eye movements, can also be utilized. The technology
is based on the concept of neuroplasticity—the ability of the
nervous system to adapt to changes in the environment or
injury. By providing real-time feedback to the user’s brain
signals, the BCI can train the user’s brain to produce the
brain patterns necessary for speech production. This op-
tion is also promising for self-learning foreign languages.
In this variant, the user is asked to listen to spoken words
and translate them into another language. The BCI detects
and translates their brain signals into the desired language,
providing real-time feedback. This option can help people
learning a new language and people with speech impair-
ments [100,132–134].

3.3 Results and Findings
The VOSviewer analysis identified seven large clus-

ters (each with more than five items), which can be inter-
preted based on the keywords they contain (Fig. 5, Ref.
[135]). First, a signal processing cluster (red lines) includes
modalities such as auditory, visual, and P300. Second, is a
psychology-related cluster (green lines) which includes vi-
sual feedback, transcranial magnetic stimulation, mood and
anxiety disorders, depression, and similar applications. The
third cluster (blue lines) includes conditions connected with
consciousness (coma, wakefulness, locked-in syndrome) as
well as functional near-infrared spectroscopy and ECoG
methods. Fourth cluster (yellow) is connected with learn-
ing approaches, e.g., neural networks, artificial intelligence,
virtual reality, with primary applications including autism
disorders. The fifth cluster (purple) is the attention cluster
consisting of ADHD/ADD (attention deficit disorder ), cog-
nition, pediatrics, and similar keywords. The sixth (cyan) is
a neurology cluster focused on neuropathic pains, paralysis,
cord and brain injuries, and functional electric stimulation
as the main method. Finally, the seventh cluster (orange) is
connectedwith stroke rehabilitation, including hemiparesis,
motor recovery, and neurorehabilitation, with transcranial
direct current stimulation also included.

Looking at the current trends in the field, as presented
in Fig. 6, we can see that clusters 2, 4, and 6, which are
associated with cutting-edge strategies such as artificial in-
telligence and relatively modern applications, exhibit the
highest level of activity. Conversely, clusters 1 and 3, rep-
resenting ideas with a lesser degree of novelty or a narrower
focus on specific topics, have experienced a decrease in ac-
tivity in recent years, potentially due to the lack of innova-
tion or their specialization.
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Fig. 5. The co-occurrence network constructed using VOSviewer. The size of the nodes is determined by the weight of the correspond-
ing item, indicating the importance of the item, and the color is determined by the cluster to which the item belongs. The methodology
of the VOSviewer visualization technique is detailed in [135].

Fig. 6. The co-occurrence network constructed using VOSviewer. The size of the nodes is determined by the weight of the corre-
sponding item, indicating the importance of the item, and the color is determined by the publishing activity per year (blue color denotes
nodes with the majority of publications in 2016 year, and yellow denotes nodes where corresponding publications are from 2022–2023).

Main tables for the various keyword combinations are
shown in Figs. 7,8,9. As a first interesting observation from
our review, we note the varying popularity of different data
types used in BCIs for medical purposes. Some data types
seem to be more widely utilized in certain applications,
while others are primarily favored in others. Wewill further

explore the topic of data types and their utilization through-
out our review.

3.3.1 Electroencephalography (EEG)

EEG is by far the most popular data acquisition
method for BCI applications. This is due to its safety, flex-
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Fig. 7. Amount of publications by Application/Data keywords. Box-whiskers plots denote median (red line), standard deviation
(whiskers) and quartile range (box) of the corresponding data row or column. PTSD, Post-traumatic stress disorder.

ibility, ease of use, frequency resolution, and affordability.
EEG is a quick and easy data gathering method that can be
used in practically any environment. In addition, the data
can be sampled at high frequency (around 200 Hz or more)
which allows for higher resolution and more accurate data
collection. The main disadvantage of EEG is low spatial
resolution [136–138]. EEG studies are well suited to char-
acterize developing attention disorders such as ADHD (at-
tention deficit hyperactivity disorder) [58–60], and can re-
liably measure brain function across a wide age range, even
in infants, and during wakefulness and sleep. A wide vari-
ety of biofeedback applications have used EEG-based BCI
systems to improve healthy individuals’ cognitive abilities,
speech skills, affect, and pain management, as well as to
treat attention deficit, learning disabilities, depression, and
autistic disorders [10].

3.3.2 Magnetoencephalography (MEG)

While similar to EEG technology, the magnetoen-
cephalography (MEG) technique offers several advantages,
including less signal interference, superior temporal resolu-
tion, and higher spatial resolution compared to EEG. This
makes MEG a crucial tool for classifying epilepsy patients
and assisting with surgical planning. Despite its numerous

benefits, MEG also has drawbacks. Firstly, it can only mea-
sure magnetic fields oriented parallel to the neural surface,
which restricts its access to deep-lying areas. Secondly, it’s
an exceptionally pricey technology. Additionally, MEG is
prone to external noise interference, which makes it less
popular for BCI use [139]. As evident from Figs. 7,8, the
number of studies dedicated to MEG is sparse; however,
the field of research appears to have potential that remains
unexplored. Despite the limited amount of studies concern-
ing the application of MEG, there are promising results for
rehabilitation after a stroke and tetraplegia that suggest the
field is worth further exploration [140–142].

3.3.3 Functional Magnetic Resonance Imaging (fMRI)

The prevalence of neurofeedback BCIs based on func-
tional magnetic resonance imaging (fMRI) processing in
studies on cognitive distortions and disorders is noteworthy
[4,29,31,55,68,69,81]. This phenomenon is explained by
the combination of low speed of data acquisition and high
accuracy offered by fMRI technology. For motor rehabili-
tation, speed and rapidity are important to ensure comfort-
able limb control, which requires minimal latency. Delays
for fMRI acquisition are typically within seconds, and the
machines for acquiring such signals are bulky. However, in
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Fig. 8. Amount of publications by Modality/Data keywords. Box-whiskers plots denote median (red line), standard deviation
(whiskers) and quartile range (box) of the corresponding data row or column.

Fig. 9. Amount of publications by Application/Modality keywords. PPPD, Persistent postural-perceptual dizziness.
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the case of cognitive distortions, this delay does not play a
major role, as more time is required to think about a task or
to elicit a complex psycho-emotional response. In addition,
fMRI can more accurately identify the areas responsible for
realizing a specific response [143].

So far, fMRI BCI has successfully utilized a variety
of mental activities that can be classified into four cate-
gories: higher-order cognitive tasks (e.g., mental calcula-
tion), covert language-related tasks (e.g., mental speech and
mental singing), imagination-related tasks (motor, visual,
auditory, tactile, and emotional imagination), and selective
attention tasks (visual, auditory, and tactile attention). Al-
though the finite spatial and temporal resolution of fMRI is
limited by the physiological properties of the hemodynamic
response, technical and analytical advances have led to sig-
nificantly improved solutions with a more natural character
during stimulations [87].

3.3.4 Functional Near-Infrared Spectroscopy (fNIRS)
Functional near-infrared spectroscopy (fNIRS) mea-

sures the blood flow changes in the local capillary network
caused by neuronal activations [144,145]. fNIRS’s main
advantages are its relatively low cost, portability, safety,
low noise (compared to fMRI), and ease of use. Unlike
EEG and MEG, its signals are not as susceptible to elec-
trical noise, since it is an optical imaging modality. The
most common brain areas in fNIRS BCI are the primary
motor and the prefrontal cortices. In relation to the motor
cortex, motor imagery tasks were preferred to motor execu-
tion tasks since possible proprioceptive feedback could be
avoided. In relation to the prefrontal cortex, fNIRS showed
a significant advantage due to diminished hair influence in
detecting cognitive tasks like mental arithmetic, music im-
agery, and emotion induction [108,144,146].

Despite holding immense promise and showcasing
impressive results when applied in BCI initiatives, the
fNIRS-based approach still has two prominent limitations.
The first is the low data transfer rate, and the second is
the relatively high level of error in the recognition systems.
Both of these limitations hinder real-world applications, al-
though extensive research efforts are underway to address
these drawbacks [144,147,148].

3.3.5 Electrocorticography (ECoG)
Electrocorticography (ECoG) is a neurosurgical pro-

cedure that involves placing electrodes directly on the sur-
face of the brain to record electrical activity. As a result, it is
mainly used to treat severe epilepsy and brain tumor cases,
where the surgery is already necessary and the benefits out-
weigh the risks. Additionally, there are no cases of appli-
cation for psychiatric tasks. The limited use of ECoG in
mental health conditions may be due to the invasive nature
of the procedure, as well as the lack of clear guidelines for
its use in this field [149–151]. While the number of studies
on ECoG applications is still confined, there is a flourish-

ing evolution of decoding algorithms happening in recent
years [125,152–154]. Various strategies are being consid-
ered, such as the use of switching models and the adaptation
of algorithms. Furthermore, a thorough examination of the
ECoG approaches can be found in the study by Volkova and
her co-authors [155].

3.3.6 Comparison

While the limited use of ECoG for the most severe
cases, such as stroke, can be explained by the danger of
complications and the complexity of the procedure, and
there are no cases of application for psychiatric tasks, the
low popularity of relatively safe fNIRS and MEG is dis-
appointing (see Fig. 7). The lack of popularity of fNIRS
and MEG is likely due to their high cost, limited availabil-
ity, and relatively complex equipment configurations. Ad-
ditionally, research groups in these fields often have lim-
ited funding, leading to a lack of resources necessary for
widespread adoption [156–158]. Despite these limitations,
both fNIRS and MEG have the potential to provide valu-
able insight into the brain’s functions and might be useful
in diagnosing and treating certain mental health conditions
[159].

The limited use of EEG-based BCI in psychiatric tasks
can be attributed to the difficulty of interpreting the data and
the potential for false positives. Additionally, the risk of
side effects from the procedure, such as psychogenic dizzi-
ness or seizures, makes it unsuitable for psychiatric appli-
cations [160,161]. This is in contrast to the more widely
used functional magnetic resonance imaging (MRI), which
boasts a higher degree of accuracy and precision in identi-
fying neural activity associated with mental disorders [162–
164].

When making a comparison between different types
of data, the visual data type is seen to be the predominant
one. This is not surprising due to its availability, although
research using virtual realit (VR), extended reality (XR),
and augmented reality (AR) has been steadily increasing in
popularity. The most common combination is EEG plus
visual neurofeedback. As an alternative variant, fMRI plus
VR is quite popular (see Fig. 8).

When analyzing the popularity of queries specifying
both application and modality areas of interest, we can see
in Fig. 9 that the most common keyword lines are “stroke”
and “limb rehabilitation”. In a similar manner to our anal-
ysis of queries specifying data and modality pairs, the most
commonly searched-for modalities are those related to vi-
sual and VR. However, if we disregard the most popu-
lar use cases, it is interesting to note that the next most
common application and modality categories are related
to the treatment of neurodegenerative diseases and atten-
tion deficit hyperactivity disorder. In both of the cases
we have mentioned regarding neurodegenerative diseases
and ADD/ADHD, the most favored modalities of treatment
are still visual and VR, followed by transcranial magnetic

9

https://www.imrpress.com


stimilation (TMS). On the flip side, the least often-selected
modality is electrotactile stimulation. Electrotactile stim-
ulation is the least popular modality for BCI researchers
for a few reasons. Compared to the more traditional haptic
and tactile systems, the subject’s ability to enumerate elec-
trotactile stimuli decreased with increasing the number of
active electrodes [165]. Additionally, although it can still
provide useful information, it requires a more complicated
setup with multiple electrodes, making this modality much
less popular for research and application. It just fails to pro-
vide the level of accuracy and convenience as traditional
haptic and tactile feedbacks.

4. Discussion
The field of rehabilitation BCI seems to have its

own research traditions that define its strengths and weak-
nesses. Specifically, the procedure’s description is one of
its strengths, offering a clear understanding of the process
and providing important insights into its inner workings.
Many studies, even those with somewhat flawed method-
ology, contain an in-depth description of their procedure or
at least cite a previously published protocol in reference to
their own methods.

This level of transparency and dedication to the de-
scription of the procedures used in research provides clar-
ity and a better understanding of the study for readers. On
the other hand, the tendency to study the effect of com-
bined treatments, e.g., BCI with biofeedback plus relax-
ation training, should be noted, as it is the intervention using
biofeedback alone that should be investigated more thor-
oughly. Most studies also contain a sufficient description
of the sample and (to a lesser extent) all necessary infor-
mation about statistical treatment. From a methodological
point of view, most controlled studies randomize partici-
pants [2,3,5,6,82,83].

However, some studies show difficulties in rehabilita-
tion in cases where somatosensory imagery included only
two contralateral body parts that are relatively far apart in
physical and somatotopic space and whose representations
are on contralateral sides of the body. The classification ob-
tained by the BCI may have been based solely on less spe-
cific images associated with a side of the body. However,
the fact that classification success was highest in primary
somatosensory cortex and related to the degree of somato-
topy in discriminative weighting maps indicates that sub-
jects used a limb-specific somatosensory imagery strategy
rather than a body-side-related strategy [166].

In addition, several clinical studies have reported that
repeated use of BCI systems after stroke can induce neuro-
logic recovery, but the clinical efficacy and effect size of
repeated BCI-based neurorehabilitation training were pre-
viously unknown. At the same time, the effect of BCI-based
neurorehabilitation on upper limb motor function in studies
where effect size was indicated was larger than with other
traditional treatments. In addition to motor outcomes, sev-

eral studies also reported BCI-induced functional and struc-
tural neuroplasticity at the subclinical level, some of which
also correlated with improved motor outcomes. Additional
studies with larger sample sizes are needed to improve the
reliability of these results.

In motor rehabilitation after stroke, research shows
that BCI combined with functional electrical stimulation
induces significant, clinically meaningful, and long-lasting
recovery of motor function in chronic stroke survivors more
effectively than sham electrical stimulation. Such recov-
ery is associated with quantitative evidence of functional
neuroplasticity. Patients with BCI demonstrate significant
functional recovery after intervention, which persists 6–12
months after the end of therapy. Electroencephalography
analysis reveals significant differences in favor of the BCI
groups, mainly consisting of an increase in functional con-
nectivity between motor areas in the affected hemisphere.
This increase correlates significantly with functional im-
provement. The results show how therapy can promote
significant functional recovery and goal-directed plasticity
through conditioned activation of the body’s natural effer-
ent and afferent pathways [112,117,120].

BCI is being used in a variety of mental health ap-
plications, including the monitoring of stress and mood
[167,168], the detection of abnormal thoughts and emotions
[56,62], and the delivery of cognitive-behavioral therapies
[55]. One of themainways BCI is being used to treatmental
conditions is through the implementation of brain-computer
interfaces for neuromodulation [169–171]. These devices
use brain activity as input to deliver targeted stimulation to
specific areas in the brain, which can be used to modulate
brain activity and improve symptoms for a range of men-
tal disorders and neuropsychiatric conditions. Additionally,
biofeedback allows patients to learn how to control and im-
prove their mood and cognitive condition.

It is worth noting the success of training incorporat-
ing biofeedback to reduce clinically assessed depression, as
measured byMontgomery-Asberg Depression Rating Scale
(MADRS) [172] and Hamilton Depression Rating Scale
(HAM-D) [173], and changes in frontal and central theta
and alpha bands. In a group of drug addicts convicted
of robbery, some improvement in the HAM-D scale was
shown after infra-low frequency (0.01–0.02 Hz) neurofeed-
back with simultaneous suppression of a number of fre-
quency bands between 1–40 Hz [174]. Neurofeedback im-
proves impulsivity and clinical symptoms of anxiety and
depression in long-term abstainers from cocaine and heroin
better than placebo [54].

Let’s delve into further advances in the perspective
of tactile BCIs for rehabilitation tasks. A neuromor-
phic artificial sense of touch should be highlighted as one
of the promising directions in the development of tactile
paradigms. This system enables the encoding of tactile in-
formation using a sequence of spikes, closely mimicking
the neural dynamics of human mechanoreceptors. The neu-
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romorphic fingertip demonstrated the capability to encode
naturalistic textures with a remarkably high degree of dis-
criminability, achieving up to 97% accuracy at a 10% prob-
ability level, as detailed in the work of Rongala et al. [175].

However, the literature on interoceptive processes
[176] suggests that an individual’s psychophysiological
control potentially influences components of embodiment,
such as body ownership. It is hypothesized that breathing
biofeedback techniques [177], similar to those employed in
contemplative mental training and biofeedback, may exert
an influence on the embodiment process related to limb con-
trol. A study conducted by Barresi et al. [84] presents pre-
liminary results indicating how self-regulation techniques,
particularly via breath control, can enhance the processes of
limb mastery underlying virtual right-hand embodiment.

We examined BCIs for rehabilitation and treatment in
the review, but there are numerous other equally impor-
tant applications, including Locked-In Syndrome (LiS) and
Amyotrophic Lateral Sclerosis (ALS), which require fur-
ther development to facilitate communication with the user
[131,178]. The general principles of BCI usage in support
of individuals with LiS were rigorously examined in a study
by Kübler [129]. Another study on LiS BCI by Branco et
al. [130] demonstrated that individuals with LiS consider
both direct and indirect communication, general computer
use, and environmental control to be essential features of a
BCI. Additionally, they showed that attempted speech and
movement as control strategies are preferred over reactive
strategies such as P300 and SSVEPs.

Newer reviews on ALS indicate that the most promi-
nent applications for machine learning methods in BCI in-
volve diagnosis (72.22%), communication (22.22%), and
survival prediction (5.56%) [179,180]. Invasive speech-
based BCI platforms are known to face certain challenges,
including the need for retraining and recalibration of the
decoding algorithm over a prolonged timeframe [181].
However, recent advances in the development of speech-
BCIs demonstrate that a chronically implanted ECoG-based
speech BCI can reliably control assistive devices over ex-
tended periods with only initial model training and calibra-
tion [181].

The field of BCIs is replete with numerous challenges
and potential outlooks for the future [11,27,40,136,137].
These challenges encompass various areas, including the
improvement of decoding algorithms, the enhancement of
neural signal processing, and the development of tech-
nologies and designs that are more user-friendly and cost-
effective. One of the major issues in this field is explain-
ability and uncertainty quantification: BCI systems gener-
ate predictions that inherently possess a degree of uncer-
tainty [182]. There is a pressing need to devise methods for
quantifying and evaluating this uncertainty in a transparent
manner for users to interpret meaningfully. These advance-
ments are closely linked to explainability, which pertains to
the capacity to elucidate the workings of a complex black-

box system, such as BCIs, to users. Providing comprehen-
sible explanations for BCI system predictions is crucial for
fostering adoption [183].

Themost prevalent terms that have gained prominence
over the past two years, some ofwhich are outlined in Fig. 6,
include depression, mood disorders, artificial intelligence,
neuroimaging, ADHD, and functional electrical stimula-
tion. It is logical to expect more research and work related
to BCI in these areas in the near future.

As for the instrumental challenges, we can highlight
several directions. The first direction includes engineer-
ing problems associated with cumbersome EEG systems.
These challenges are being addressed through the develop-
ment of more compact and affordable EEG devices, as well
as dry EEG technology, which offers increased comfort for
the user [184–186].

The second challenge pertains to the usage of passive
BCIs. Efforts are beingmade to develop personalized appli-
cations of this technology, including fatigue monitoring and
personalized medicine. A systematic review of BCI stud-
ies for mental fatigue detection using artificial intelligence
(AI) techniques was conducted by Yaacob et al. [187]. Al-
though the field of passive BCIs is not widely discussed, a
few concise reviews, especially those focused on personal-
ized medicine, have been published in the last three years
[188–190].

A major weakness in the field of research in the area
of BCI is the prevalence of a large number of pilot stud-
ies. While these studies play an essential role in laying the
groundwork for future research, the vast majority of data
from such studies cannot be replicated or confirmed, lead-
ing to an overall decrease in the quality of research in the
field. Small-scale studies are beneficial in the early stages
of developing a technology or protocol as they provide im-
portant insights and data that can be used to fine-tune the
overall design. It is understandable that these types of stud-
ies are limited in number, especially when the protocols are
only described in one or two previous papers. However, the
lack of a control group makes it impossible to account for
any influence factors unrelated to treatment, such as spon-
taneous seasonal variations in depression severity.

A second weakness is the absence of rigorous re-
peated studies. Independent replicated studies are partic-
ularly needed in the field of BCI using fMRI biofeedback,
which may currently be hindered by the complexity of the
technology and the limited number of research groups con-
ducting studies in parallel to EEG biofeedback protocols,
such as frontal alpha asymmetry, environmental rhythm
variability regulation, and training [174].

It is important to highlight that our research has certain
limitations. Firstly, we acknowledge that we were unable
to conduct a rigorous examination of every paper for com-
pliance with its respective field of interest. Given that we
utilized a large sample of papers obtained from the PubMed
database, it was not feasible to manually review each one.
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We attempted to address this limitation by implementing
various filters and inclusion criteria to generate appropriate
keywords for selection. However, it is important to note
that using this methodology does not guarantee the exclu-
sion of unsuitable papers from the final sample, as there is
always the possibility of some irrelevant articles being in-
cluded. Nevertheless, we can assert that the number of such
papers is relatively small and did not significantly impact
our results due to the thorough screening process and the
utilization of appropriate filters and inclusion criteria.

5. Conclusions
BCIs have been used for many years to assist patients

and clinicians during rehabilitation. This paper reviews the
applications of BCIs with various types of input data and
modalities currently utilized in rehabilitation and catego-
rizes different biofeedback techniques. We identify clusters
of methods and applications that show a rapid increase in
publications, reflecting changing trends in the field. There
is an increasing focus on AI and newer applications related
to ADHD and anxiety disorders.

While exploring the advantages and drawbacks of the
various data types and modalities for BCIs, it becomes evi-
dent that each has its unique strengths andweaknesses. This
discussion emphasizes the necessity for a comprehensive
understanding of each method so that engineers can prop-
erly design and build BCI systems, optimizing the use of
these distinct options.

The information presented in this meta-review is or-
ganized and compiled in an easy-to-digest manner, making
it particularly useful for specialists working in the field of
biofeedback, brain-computer interfaces, and related medi-
cal disciplines. By providing a clear overview of the vari-
ous options and their associated benefits and limitations, the
paper serves as a valuable guide and reference material for
professionals seeking to apply and utilize different methods
and approaches in their work.
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