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Abstract. We discuss abilities of quantifying low-dimensional chaotic oscillations at the input of two thresh-
old models from the output sequences of interspike intervals in the presence of noise. We propose a mod-
ification of the standard approach for computing the largest Lyapunov exponent from a time series that
verifies the performed estimations for noisy data. We consider features of its application to different types
of point processes.

1 Introduction

Point processes carrying information about systems dy-
namics by times of stereotype events appear in many sci-
entific fields. An important area is neuroscience where the
analysis of point processes is performed when studying
information encoding by neurons and their ensembles [1].
Thus, interspike intervals (ISIs) measured at the output
of a sensory neuron represent the main source of infor-
mation about external stimuli. The generation of point
processes is carried out due to a thresholding of an input
signal and is accompanied by a partial loss of knowledge
about the underlying dynamics. Nevertheless, the remain-
ing information is enough to quantify many important fea-
tures of the input signal. In particular, earlier studies [2–7]
considered the problem of characterizing chaotic oscilla-
tions at the input of several threshold models including
integrate-and-fire (IF) and threshold-crossing (TC) mod-
els. This characterization was based on the reconstruction
of dynamical systems [8–11] from point processes. Unlike
the traditional approach developed for continuous-time
functions, dealing with point processes complicates the
reconstruction.

Previous works [2–5] performed a thorough analysis of
the IF-model, and the ability of attractor reconstruction
from IF ISI series at high firing rate was proved within
Sauer’s embedding theorem [12,13] being an extension of
the standard reconstruction technique to point processes.
As it was shown in [5], an IF ISI sequence represents a
nonlinear transform of the input signal if the firing rate
is high, and many measures of chaotic dynamics such as
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the generalized dimensions or the Lyapunov exponents
can easily be estimated. In order to increase the preci-
sion of their computing, some modifications of the recon-
struction based on IF ISI series were applied [14–16]. The
case of TC ISI series is more complicated, and there are
no strict mathematical results for this type of point pro-
cesses confirming the ability of reconstruction by analogy
with Sauer’s theorem. Due to this, quantifying metric and
dynamical features of chaotic regimes from TC ISIs was
carried out only in numerical studies [6,17]. However, the
obtained results allowed a quantification of complex os-
cillatory dynamics including chaos-hyperchaos transitions
using quite short series of TC ISIs [18].

The aim of the works [2–6,12–18] was to characterize
low-dimensional chaotic dynamics at the input of IF- or
TC-model from the output point processes for a determin-
istic case. The robustness of the used approaches for noisy
ISI sequences was not studied in detail, although the pres-
ence of random fluctuations may essentially influence the
estimated characteristics. Thus, additive noise can lead to
misinterpretation of many types of non-chaotic processes
as being characterized by the positive largest Lyapunov
exponent (LLE) [19]. The standard algorithm for com-
puting LLE [20] assumes but does not confirm exponential
divergence of phase space trajectories. In order to reveal
deterministic dynamics and to distinguish chaotic oscilla-
tions from non-chaotic noisy processes, a careful analysis
of a local exponential divergence should be performed [19].
A robust estimation of LLE from time series was the sub-
ject of many studies during the past two decades [21–25]
that discussed different ways for noise reduction at the
stage of data preprocessing. Such preprocessing improves
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further analysis of trajectories instability in the recon-
structed phase space.

From a general point of view, if noise intensity is
low compared with the amplitude of a chaotic signal
then an additional noise-related trajectories divergence
at small scales is different from the divergence at larger
scales mainly associated with the deterministic dynam-
ics. Within the standard algorithm [20] being applied to
continuous-time signals, this additional noise-related di-
vergence of trajectories can partly be ignored by a thresh-
olding of perturbations comparable with noise intensity. In
the case of point processes such as, e.g., a series of return
times into the Poincaré section, it is more complicated to
determine noise intensity, since spectral methods do not
allow a clear separation between components associated
with noise-free dynamics and fluctuations.

Besides, a direct application of methods for noise re-
duction to point processes is less appropriate as compared
with continuous-time functions. Due to this, the devel-
opment of approaches verifying the LLE estimated from
noisy point processes represents an actual problem that
is discussed in this paper. ISI sequences can be contami-
nated by noise due to several reasons including fluctuating
threshold level and a mixture of signals at the input of a
threshold system when noisy processes are added to an
information signal encoded into a series of spiking events.
Aiming to separate effects of noise and chaotic dynamics,
ideas discussed in [19] can be applied. As an alternative,
we propose here an approach based on the analysis of tra-
jectories divergence depending on the maximal orientation
error. We show that point processes produced by both, IF-
and TC-models, demonstrate similar features of such de-
pendence that can be used for improving the quality of
LLE estimation and determining noise intensity. The pro-
posed approach can be applied to quite short ISI sequences
for quantifying dynamical features of chaotic oscillations
at the input of threshold models at the presence of noise.

The paper is organized as follows. In Section 2 we
briefly describe two models of spike generation, namely,
the integrate-and-fire and the threshold-crossing models.
In Section 3 we consider an approach for estimating LLE
from point processes including its modification for detect-
ing noise intensity and describe features of its application
to different types of point processes. In Section 4 we dis-
cuss restrictions of the used approach for noisy ISI series
and principles of verification of the estimated LLE. Some
concluding remarks are given in Section 5.

2 Models of spike generation

2.1 Integrate-and-fire model

IF-model is widely used as a basic model describing spik-
ing phenomena in the dynamics of neurons [1,2]. Besides,
it is also considered in many other scientific and engineer-
ing fields, e.g., within delta-sigma data converters [26].
This model describes a threshold device with an input sig-
nal S(t) that is integrated up to the time moment when
the integral reaches a value θ. If this threshold is reached,

a spike is generated, and the value of the integral is reset
to zero. The spike train Ti, i = 1, 2, . . . , n is defined by
the equation ∫ Ti+1

Ti

S(t)dt = θ. (1)

Time intervals between subsequent spikes Ii = Ti+1 −
Ti are used to quantify features of the input signal S(t).
The problem of reconstruction based on the output spiking
events consists in the following. If the sequence of time
intervals Ii is known, can the chaotic attractor represented
by a one-dimensional projection S(t) of the phase space
trajectory at the input of IF-model be restored using the
output point process? When the firing rate is high and,
therefore, the mean ISI I is low, the integral (1) is easily
computed using the rectangular rule

∫ Ti+1

Ti

S(t)dt � S(Ti)Ii ⇒ S(Ti) � θ

Ii
. (2)

According to equation (2), the input signal is restored
from an IF ISI series at time moments Ti. Larger mean
ISI is associated with a reduced precision of such restora-
tion. Errors in determining the values S(Ti) at a low firing
rate can be treated as adding noise to S(t). When the in-
put signal is a mixture of a chaotic process and an additive
noise of relatively small intensity, the problem of quantifi-
cation of the deterministic input dynamics from noisy ISI
series becomes more complicated.

Let us note that the samples S(Ti) are non-uniformly
discretized in time. Aiming to apply standard data pro-
cessing techniques, their resampling with a constant time
step Δt needs to be provided. The latter is carried out by
an interpolation with splines or other smooth functions.
Besides the resampling, this procedure allows increasing
the number of data points in the case of large I and re-
ducing errors of vector orientations when computing LLE
with the approach [20]. Since the threshold value θ is typi-
cally unknown, an arbitrary constant quantity can be used
in equation (2). In particular, we may consider θ = 1 that
will not influence further estimations of LLE because it is
convenient to perform a normalization of the attractor size
to the unity interval in order to use algorithmic parame-
ters that do not depend on the oscillations magnitude.

2.2 Threshold-crossing model

TC-model is another basic model describing a transfor-
mation of the input analogous signal S(t) into the output
sequence of stereotype events generated when S(t) crosses
a given threshold Θ. Dealing with a chaotic oscillator used
as the source of a complex dynamical regime at the input
of TC-model, TC ISI series can be interpreted as a se-
quence of return times into a Poincaré section. However,
TC ISI series is a more general definition than a series
of return times because it accounts for the case when a
part of phase space trajectories does not intersect the se-
cant plane given as S(t) = Θ for large Θ. In this case
the corresponding secant plane does not define a Poincaré
section.

http://www.epj.org


Eur. Phys. J. B (2017) 90: 61 Page 3 of 8

Independently on the threshold Θ, the problem to be
solved consists in the estimation of the attractor’s charac-
teristics associated with a chaotic dynamics S(t) from the
output sequence of TC ISIs for the case when the output
point process is contaminated by additive noise.

3 Computing the largest Lyapunov exponent
from data series

3.1 Estimation of LLE from continuous-time processes

Estimation of Lyapunov exponents from a scalar time se-
ries is often performed with the method proposed by Wolf
et al. [20] that assumes a reconstruction of the phase space
trajectory with the delay approach [8], although other
techniques [27–31] can also be applied. The method [20]
represents a standard tool for studying chaotic dynamics
from time series. Due to this, here we address only those
its aspects that are necessary for further description of
a modified approach being applicable to noisy point pro-
cesses. If xi = xj(iΔt) is a time series representing the jth
coordinate of the chaotic system

dx

dt
= F (x) (3)

discretized with the time step Δt then the delay
reconstruction

zi =
{
xi, xi+k, xi+2k, . . . , xi+(m−1)k

}
(4)

is carried out, where m is the embedding dimension. For
a weak chaotic regime with an expressed mean orbital
period P , the time delay τ = kΔt is selected as about
P/4. Typically, the reconstruction parameters m and τ
do not essentially influence the result of LLE estima-
tion if their selection is based on quite general require-
ments [8–11]. Nevertheless, a precision of LLE computing
is higher if the results are averaged over variation of these
parameters.

When the reconstruction is done, the mean rate of tra-
jectories divergence is analyzed [20]. For the starting point
z1 of the fiducial trajectory associated with the time mo-
ment t1, a perturbation vector v1 of a small but finite
length r0 is selected [32]. In the direction of the maximal
trajectories divergence its length increases in time as

r(t) = r0e
λ1(t1)(t−t1). (5)

The dependence (5) characterizes a linear approach that
is valid for small r(t). When the perturbation increases,
and the vector v1 is transformed to v′

1 for which the non-
linearity of the system (3) reduces the rate of trajectories
divergence, renormalizations should be performed. An op-
timal way for renormalizations is to choose a new pertur-
bation in the same direction but of smaller size. Dealing
with a finite amount of points zi, however, it is impossi-
ble strictly following the direction, and an orientation er-
ror occurs that influences the precision of LLE estimation.

This error means that the replacement vector v2 (or vk for
further perturbations) has a component being orthogonal
to the direction of the maximal divergence of trajecto-
ries. The latter component does not increase according to
equation (5) and, therefore, the initial length of the vec-
tor becomes larger than in the case when the direction
remains unchanged. As a result, the local value of LLE is
reduced. The LLE is obtained by averaging the rate of ex-
ponential growth of perturbations along the whole fiducial
trajectory.

The presence of noise in time series creates difficulties
in computing λ1. For continuous-time functions such as,
e.g., a time dependence of the phase space coordinate x(t)
produced by the system (3), the noise level can be esti-
mated via spectral analysis and, therefore, one can select a
threshold value lmin for the replacement vector r0 in such
a way that the noise-related divergence of phase space tra-
jectories is excluded (or, at least, it does not provide an
essential influence). In this case one can choose a range
r0 ∈ [lmin, lmax] where the divergence of trajectories is
caused by the dynamics of the analyzed system. Here, lmax

sets the condition of the linear approach, i.e. an exponen-
tial divergence of trajectories. Typically, lmax = 5–10%
of the attractor’s size, and lmin is selected depending on
the noise level. In order to detect and quantify chaotic dy-
namics associated with exponential divergence of nearby
trajectories, lmin should be significantly less than lmax.

3.2 Estimation of LLE from point processes

When dealing with point processes, e.g., the sequence of
return times with added noise, an estimation of noise level
is a more complicated task and it may not be obvious
how to correctly introduce an appropriate threshold lmin.
Due to this reason, the problem of verifying the estimated
λ1 appears. The standard method [20] can be used for
computing LLE from spike trains generated by IF- and
TC-models after data preprocessing. When dealing with
IF-model, this method is applied to data series S(Ti) re-
stored according to equation (2) after the interpolation
with the time step Δt.

In the case of TC-model, an average instantaneous fre-
quency is estimated before applying the method [20]. For
this purpose, an approach proposed in [17] and further
modified in [18] is applied. If Ti are the times of intersec-
tion of the threshold Θ by the input signal S(t), and Ii

are TC ISIs defined as Ii = Ti+1 − Ti, then the values of
the averaged instantaneous frequency can be found as

ω(Ti) =
2π

Ii
. (6)

Equation (6) means that averaging of the values ω(Ti) is
carried out during the current time interval Ii, i.e., using a
varying temporal window [17]. By analogy with IF-model,
the samples ω(Ti) are interpolated by a smooth function
to get a time series ω(jΔt) with the constant time step
Δt. Although this time series does not exactly reconstruct
the instantaneous frequency introduced via the Hilbert
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transform, it still allows estimating metric and dynamical
characteristics of complex oscillations S(t).

The approach [17] may lead to spurious identification
of dynamical regimes if the threshold Θ is inappropriately
selected (when a part of oscillations are missed) or the
input signal represents a sum of different variables and
the latter can produce missed events or the generation
of additional spikes. To avoid spurious identification, we
considered an extended method [18] that includes a pre-
liminary data analysis for possible artifacts and additional
estimations depending on the interpolation technique for
point processes characterized by a broad distribution of in-
terspike intervals. Such extensions improve the method’s
performance.

3.3 The proposed modified approach

In this work we propose a modified approach for esti-
mating LLE from point processes generated by IF- and
TC-models at the presence of noise. We consider the case
when noise is added to the series of interspike intervals.
Such noise can be of different origin, including noisy input
signal and fluctuating threshold level.

In general, the algorithm [20] assumes a compromise
between minimizing of both, the length of the replace-
ment vector and the error associated with changes in phase
space orientation. These goals cannot be simultaneously
reached, i.e., a reduction of the angle α between the re-
placement vector v2 and the perturbation vector before
the renormalization (v′

1) restricts abilities to select an
appropriate length of the vector v2. Such a restriction oc-
curs due to a reduced number of available points in the
reconstructed phase space that can be chosen as the start-
ing points for a new perturbation providing an orientation
error less than some value α, e.g., α = π/6. The latter
typically leads to an increased length of the replacement
vector and more frequent renormalizations that need to
be performed for maintaining the condition of the linear
approach. Frequent renormalizations provide an accumu-
lation of orientation errors and, therefore, an underesti-
mated value of λ1 that is obtained as the rate of trajecto-
ries divergence averaged along the whole data set. Within
the fixed evolution time algorithm [20], the minimization
of orientation changes is typically performed. The replace-
ment vector with the length r0 ∈ [lmin, lmax] and the
minimal angle α is searched. In the case of a determin-
istic dynamics, the choice of the renormalization principle
is less crucial, and quite similar results are obtained for
both variants, minimizing of orientation error and of the
length of the replacement vector.

The proposed approach is based on the dependence
of λ1 on the maximal available angle α between the re-
placement vector and the vector before the renormaliza-
tion when a new perturbation is chosen at the condition of
minimizing the vector’s length in the range [lmin, lmax].
From general assumptions it is expected that large ori-
entation errors associated with large values of α provide
an underestimated LLE. Besides, very small α essentially
reduces the ability to select an appropriate replacement

vector. In this case, it becomes necessary to increase the
length of the vector that results in trajectories divergence
being out of the linear approach. Typically, this leads to
a reduced length of the vector v′

1 relative to v1 and un-
derestimated λ1. If the condition r0 ∈ [lmin, lmax] is not
satisfied for an available data set when α is small, the se-
lection of a new perturbation may be provided quite arbi-
trarily that also reduces the estimated value of LLE. Thus,
very small and large α are expected to provide an under-
estimated λ1. An optimal α associated with the maximum
of the dependence λ1(α) allows for a more precise estima-
tion of LLE from point processes. Further we shall show
how a changed character of this dependence can be used
to identify noise level in the analyzed data series.

4 Results and discussion

4.1 Integrate-and-fire model

As a source of low-dimensional complex oscillations S(t)
at the input of IF-model we considered the Rössler system

dx

dt
= −y − z,

dy

dt
= x + ay, (7)

dz

dt
= b + z(x − c)

in a chaotic regime (a = 0.15, b = 0.2, c = 10.0). Aiming
to provide a high firing rate, a translation of the dynamical
variable x(t) of the system (7) was performed as S(t) =
x(t) + 35. The threshold level θ was changed to reveal
restrictions of LLE computing. Noise effects were analyzed
by adding a normally distributed random process Dξ(t)
with the intensity D to S(t), i.e. the signal at the input of
IF-model had the form S(t) + Dξ(t).

Estimation of LLE was carried out with the ap-
proach [20] using the following renormalization principle:
a replacement vector was searched with the orientation er-
ror less than α providing minimization of its length in the
range [lmin, lmax]. Figure 1a shows how the value of λ1

is changed depending on α for the threshold value θ = 10
and different noise intensities including the case of a de-
terministic dynamics.

When D = 0, the dependence λ1(α) demonstrates a
maximum at about αmax � π/25. For angles α < αmax, a
reduction of λ1 is caused by frequent renormalizations.
Small α leads to a low probability of selection an ap-
propriate renormalization vector having the length close
to lmin. Larger vectors require a reduced time duration
between renormalizations. If this time duration remains
unchanged, the perturbation becomes larger than lmax

leading to underestimated LLE. Taking a shorter time du-
ration means an increased number of renormalizations and
an accumulating orientation error. When α is too small,
there may be no appropriate neighboring trajectory be-
cause no point in the reconstructed phase space is satisfied
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Fig. 1. Dependencies λ1(α) estimated from IF ISI series for
different noise intensities and the threshold level θ = 10 leading
to the firing rate about 21 spikes/period (a), slopes of these
dependencies in the range [π/3, π/2] (b), and mean length of
the replacement vector (c). We used the following parameters:
m = 5, τ � P/4, lmin = 0.01, lmax = 0.1.

to the established renormalization principle, and the re-
quirement r0 ∈ [lmin, lmax] needs to be changed to con-
tinue computation of LLE. This typically provides an un-
derestimated λ1.

In the region α > αmax, the values λ1 are reduced with
α due to increased orientation errors that result in smaller
ratios r(t)/r0. The corresponding dependence λ1(α) is

characterized by a negative slope in the interval [π/3, π/2]
(Fig. 1b). At the optimal angle αmax, the estimated LLE
takes the value close to the expected λ1 that is computed
from the equations of the Rössler system [33]. This value
is illustrated by a horizontal line in Figure 1a. The pres-
ence of an optimum at quite small angles is associated
with the most precise estimations of LLE. The character
of the dependence λ1(α) (Fig. 1a, circles) is typical for
deterministic sequences of IF ISIs.

When small noise is added, the dependence λ1(α) has
a different form (Fig. 1a, triangles). In the region of large
α, its slope becomes positive (Fig. 1b) starting from some
value α∗ that depends on both, noise intensity and al-
gorithmic parameters such as the threshold value lmin

defining the minimal distance between the phase space
trajectories. However, the existence of the optimum at
αmax still allows better estimation of LLE. If noise in-
tensity increases, α∗ approaches to αmax, and the local
maximum of the dependence λ1(α) at αmax disappears. In
such case, the estimated LLE may essentially differ from
the expected value related to noise-free dynamics. Thus, a
character of the dependence λ1(α) represents a verifying
marker indicating whether the LLE related to noise-free
dynamics can be estimated. Additionally, the dependence
λ1(α) can be used to compare noise levels presented in the
analyzed ISI series since an increased noise intensity leads
to larger slopes of λ1(α) in the region α > α∗ (Fig. 1b)
and smaller values of α∗. Although the value α∗ may vary
depending on algorithmic parameters such as, e.g., the
minimal available distance between trajectories lmin, the
transition from negative to positive slope of the depen-
dence λ1(α) is kept for noisy data.

Let us point out an additional feature of the depen-
dence λ1(α) for noisy ISI series. When the noise intensity
increases, the estimated value λ1 related to the optimal
angle αmax may be reduced although the values of LLE
for α > αmax are larger than for noise-free IF ISI se-
ries. This circumstance is probably explained by different
lengths of renormalization vectors (Fig. 1c). In the range
α < αmax small angles reduce an ability to select appro-
priate perturbations. As a result, the mean length of the
renormalization vector may be near the limit of the linear
approach. For large vectors, effects of noise consist in a rel-
atively small change of orientation and an increase of vec-
tor’s components in the directions do not associated with
the maximal divergence of trajectories. Besides, the condi-
tion of the linear approach is not satisfied between renor-
malizations. These two reasons lead to a reduced value of
λ1. For large angles, the mean length of the renormaliza-
tion vector is significantly lower. In this case noise-induced
divergence of trajectories at renormalizations can outper-
form their divergence caused by the dynamics. When a
minimization of the perturbation is performed, there is
an increased probability to select a point of a neighboring
trajectory that becomes closer due to a random fluctua-
tion. Therefore, the length of the renormalization vector
is reduced as compared with the noise-free case, and the
LLE increases.

The given conclusions are correct if the firing rate is
high. According to the earlier studies [14–16], if the mean
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Fig. 2. Dependencies λ1(α) estimated from IF ISI series for
different noise intensities and the threshold level θ = 60 leading
to the firing rate about 4 spikes/period.

ISI (I) becomes less than P/4 where P is the mean or-
bital period, the corresponding sequence of IF ISIs does
not allow computing dynamical characteristics of an oscil-
latory regime at the input of IF-model, and the variation
of the amout of data does not significantly improve the
performed estimations.

Let us consider the threshold level θ = 60 related to
the case when the requirement I < P/4 is not valid. Large
ISIs mean that the input signal is restored with significant
errors being analogous to adding noise to IF ISI series.
Due to this, even in the case of a deterministic dynamics
(D = 0), the dependence λ1(α) (Fig. 2) becomes similar
to estimations performed for noisy input signals. The ab-
sence of an optimal value of α does not allow verifying the
performed estimations of LLE. Small noise (D = 0.0005)
does not change the character of the corresponding depen-
dence since the values of S(t) are larger as compared with
the threshold level θ = 10 (Fig. 1a). With increased noise
level, however, the slope of λ1(α) becomes larger similar
to Figure 1a. Thus, a low firing rate has an analogy with
noisy IF ISI series when computing LLE.

4.2 Threshold-crossing model

Analysis of TC ISI series reflecting the dynamics of a low-
dimensional chaotic system was also performed for the
Rössler model (7) with the x(t) coordinate considered as
the input signal, and the threshold level Θ = 0. Aiming to
compare effects of noise, a normally distributed random
process with the intensity D was added to the sequence
of TC ISIs. Figure 3a illustrates the dependencies λ1(α)
estimated by analogy with the IF-model.

In the case of noise-free dynamics, λ1(α) estimated
from TC ISI series is similar to the corresponding de-
pendence given in Figure 1a. Again, there is an optimal
angle αmax related to the maximum of the dependence
λ1(α). LLE associated with this optimal value is nearly
close to the expected value of λ1 shown by the horizontal
line in Figure 3a. Underestimated λ1 are related to both
regions, α < αmax and α > αmax due to a large length
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Fig. 3. Dependencies λ1(α) estimated from TC ISI series for
different noise intensities (a), and mean length of the replace-
ment vector (b) for noise intensity D = 0.01.

of renormalization vectors (Fig. 3b) and increased orien-
tation errors, respectively.

When noise is added to TC ISI series, the form of λ1(α)
is changed. As for the IF-model, a positive slope of this
dependence appears at large α, and it increases with noise
intensity. Besides, the value of λ1 becomes lower in the re-
gion of αmax related to the noise-free dynamics, although
the estimated LLE increases at larger α. A possible expla-
nation is analogous to the case of IF-model because the
dependence of the mean length of the replacement vec-
tor on the angle α (Fig. 3b) is quite similar to the curve
shown in Figure 1c. At small α, the divergence of trajecto-
ries related to the system’s dynamics outperforms changes
caused by noise. On the contrary, at large α noise-induced
changes of the vector’s length are more significant. By
analogy with the IF-model, this leads to smaller initial
perturbations and larger LLE. Again, a character of the
dependence λ1(α) allows confirming the estimations of λ1

related to noise-free dynamics at the presence of an opti-
mal α and effects of noise based on the slope of λ1(α) at
large α. Larger noise intensities increase the correspond-
ing slope. The absence of an optimal α in the latter case
does not allow estimations of λ1 of noise-free dynamics.
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4.3 Other examples

In the previous subsections, possibilities and limitations of
the considered approach were examined using the Rössler
system that demonstrates rather smooth oscillations. Let
us now discuss other examples in order to show similarity
of the observed phenomena and consider a burst oscillator
described by the pancreatic β-cell model [34]

dV

dt
= (−ICa − IK − gSS (V − VK)) /τ

dn

dt
= μ(n∞ − n)/τ (8)

dS

dt
= (S∞ − S)/τS

ICa(V ) = gCam∞(V − VCa)
IK(V, n) = gKn(V − VK)

x∞ =
1

1 + exp((Vx − V )/θx)
, x = m, n, S

with the following parameter set: gCa = 3.6, gK = 10.0,
gS = 4.0, τ = 20 ms, τS = 35 s, VCa = 25 mV, VK =
−75 mV, Vm = −20 mV, Vn = −16 mV, VS = −40 mV,
θm = 12 mV, θn = 5.6 mV, θS = 10 mV, μ = 0.85. In the
model (8), V is the voltage across the cell membrane, n is
the fraction of potassium channels, and S represents the
intracellular calcium concentration.

Figure 4 illustrates the dependencies λ1(α) for deter-
ministic (D = 0) and noisy (D = 0.05) ISI series. Again,
general features of these dependencies are similar to the
case of the Rössler system.

In the case of noise-free quasi-periodic dynamics
(Fig. 5), the dependence λ1(α) is nearly constant with
the value λ1 ≈ 0.002 for small values of α that is compa-
rable with the available error of the method [20] for non-
chaotic regimes. The absence of an optimum of λ1(α) in
the left part of the given dependence is typical for regular
regimes. Noise provides a growth of the estimated λ1 for
large angles, and the behavior of λ1(α) becomes similar to
the corresponding dependence for chaotic point processes
contaminated by noise (see, e.g., Fig. 3a, D = 0.1).

Finally, let us consider the case when the sequence
of TC ISIs does not contain a low-dimensional dynamics.
As an example, we may take a color noise as Ii. Figure 6
illustrates a monotonically increased dependence λ1(α) for
such ISI-series.

In the case of high dimensional chaos generated by
time-delay systems such as, e.g., the Mackey-Glass model,
the method does not provide estimations of λ1 that are
close to the expected value of the LLE when dealing with
quite short sequences of ISIs. The latter is in accordance
with the fundamental limitations for estimating Lyapunov
exponents in dynamical systems [35] explaining that ex-
tremely long time series are required for the performed
estimations. High-dimensional chaotic systems and inter-
mittent chaos are discussed in [36,37].

Thus, the characteristic dependence λ1(α) with an op-
timum in the range of quite small angles is typical for low-
dimensional chaotic ISI-series contaminated by noise when

0 π/6 π/3 π/2
α

0.006

0.008

0.010

0.012

0.014

λ1

D=0
D=0.05

 

Fig. 4. Dependencies λ1(α) estimated from TC ISI series pro-
duced by the pancreatic β-cell model for D = 0 and D = 0.05.
Dashed line marks the value λ1 = 0.011 estimated using the
equations of the model (8).

0 π/6 π/3 π/2
α

0.000

0.012

0.024

0.036

λ1

D=0
D=0.001
D=0.005

 

Fig. 5. Dependencies λ1(α) estimated from TC ISI series re-
lated to noisy quasi-periodic oscillations.

noise intensity is small. Let us note that we change the
range of the considered scales for perturbations by varying
the angle α that is clearly seen from Figures 1c and 3b.
For large α, we mainly deal with small scales, while for
small α we consider significantly larger scales. However,
the range of the considered scales is quite broad within
the approach [20], and the dependences r0(α) shown in
Figures 1c and 3b illustrate the behavior of mean length
of the replacement vectors. In order to analyze how the
divergence of nearby trajectories depends on the scale in
more detail, the concept of scale-dependent Lyapunov ex-
ponent [23–25] may be useful. It can be applied, e.g., to
study the case of large noise intensities when the approach
considered in the given paper provides similar results.

5 Conclusion

In this paper we discussed abilities of quantifying dy-
namical features of low-dimensional chaotic oscillations at
the input of two threshold models (IF and TC) from the
output sequences of interspike intervals at the presence
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Fig. 6. Dependence λ1(α) estimated from ISI-series represent-
ing a color noise.

of noise. For IF-model, the largest Lyapunov exponent is
quite easily estimated at high firing rate in the case of
a deterministic dynamics. When the firing rate is low or
the output spike train is contaminated by noise, the prob-
lem of determining dynamical characteristics from point
processes becomes more complicated. Here, we proposed
an approach for verifying LLE estimation for noisy data
that consists in computing the dependence of LLE ver-
sus the maximal available angle at renormalizations. The
existence of a clear optimum of this dependence confirms
the ability to estimate the characteristics of noise-free dy-
namics, while a positive slope of λ1(α) is typical for noisy
ISI series or for the case of low firing rate when errors in
restoration of the input signal are similar to the effect of
additive fluctuations.

We considered analogous features of the used approach
for TC ISI series. Again, two informative signs of the de-
pendence λ1(α) are revealed, namely, the existence of an
optimum associated with LLE that approaches the value
estimated from the equations of chaotic oscillator, and a
change from a negative to a positive slope of λ1(α) at large
angles for noisy data. Thus, we conclude that the proposed
modification of the approach for computing LLE from ISI
series can be applied to different types of point processes
analyzed at the presence of fluctuations.
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