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Abstract—The influence exerted by random dopant-concentration fluctuations on the current–voltage char-
acteristics of the current f lowing through a semiconductor superlattice has been studied. It was shown that
the characteristics of the current f lowing through the superlattice noticeably vary with the amplitude of f luc-
tuations of nanostructure parameters. It was possible to find for a small sample the probability-density dis-
tribution of the integrated absolute values of the difference of currents at various amplitudes of the dopant-
concentration f luctuations.
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The object of the present study is a heterostructure
constituted by alternating layers (with layer widths, as
a rule, not exceeding several tens of nanometers) of
various semiconductor materials with close lattice
constants, i.e., a semiconductor superlattice [1, 2].
Superlattices serve as a convenient model for study of
various quantum-mechanical effects [3, 4]. Of no less
interest is the collective dynamics of electrons upon
application of a dc voltage to a superlattice because
spatial–temporal electronic structures, called
“domains” (by analogy with the domains in a Gann
diode [5, 6]), can be formed in the structure in this
case. The transition of domains across the semicon-
ductor superlattice gives rise to oscillations of the cur-
rent f lowing through the structure, with the frequency
of these oscillations being, as a rule, several tens of
gigahertz [7, 8]. It should be noted that researchers are
paying steadily increasing attention to considering the
electron transport across a semiconductor superlattice
in terms of the nonlinear dynamics. In this way, vari-
ous effects observed in the system under study can be
revealed and explained [7–11].

It is an important that a large number of various
spatial heterogeneities (e.g., random dopant-concen-
tration f luctuations [12, 13]), which affect the charac-
teristics of a superlattice, can appear in development of
semiconductor heterostructures. In addition to the
occurrence of random fluctuations, it is possible to
deliberately change the dopant concentration so as to
improve the characteristics of a device [14, 15]. In this
study, we examine how the level of random dopant-
concentration f luctuations affects the characteristics
of a semiconductor superlattice.

A typical model in description of charge-transport
processes in a semiconductor superlattice is a system
of equations that includes the continuity equation,
Poisson’s equation, and expression for the current
density with consideration for the electron-drift veloc-
ity [2, 9]:

(1)
Here, t designates time and coordinate x corresponds
to the electron-motion direction in the semiconductor
superlattice. Quantities n(x, t), F(x, t), and J(x, t) iden-
tify, respectively, the concentration, electric-field
strength, and current density. Parameters ε0 and εr =
12.5 are the permittivity of free space and relative per-
mittivity, nD0 = 3 × 1022 m–3 is the equilibrium electron
concentration, vd is the electron-drift velocity calcu-
lated for average electric-field strength , and e > 0 is
elementary charge. The dependence of the drift veloc-
ity appearing in Eq. (1) on the electric-field strength is
determined by the Esaki–Tsu formula [4].

We proceed from the assumption that the dopant
concentration in each layer differs from the equilib-
rium concentration nD0 by a random value [12]. Then,
to take into account random fluctuations, we modify
Poisson’s equation from (1) as follows:

(2)

∂ ∂=
∂ ∂

,n Je
t x

∂ = −
∂ ε ε 0

0

( ),D
r

F e n n
x

= ( ).dJ en Fv

F

∂ = − +
∂ ε ε 10

0

[ ( ( ))],D nD
r

F e n n D x
x



TECHNICAL PHYSICS LETTERS  Vol. 43  No. 10  2017

A STUDY OF THE EFFECT OF RANDOM DOPANT-CONCENTRATION FLUCTUATIONS 913

where nD1(x) is the uniform distribution of a random
quantity within the range [–0.5; 0.5] in accordance
with [12] and D is the amplitude of the dopant-con-
centration f luctuations.

An important characteristic of the collective elec-
tron dynamics is the current–voltage (I–V) character-
istic. The beginning of the falling portion in the I–V
curve corresponds to the onset of generation of current
oscillations. To plot this portion of the I–V character-
istic, the current was time-averaged. The method for
construction of I–V characteristics and their run for
the case in which dopant-concentration f luctuations
are disregarded (nD1(x) = 0 along the entire superlat-
tice) was described in [11] (Fig. 1). It can be seen in the
figure that the I–V characteristics depart from the case
without f luctuations for various dopant concentration
profiles (at the same fluctuation amplitude D).

Let us introduce quantity Θ that determines the
departure of the I–V characteristic from the case with-
out dopant-concentration f luctuations. This quantity
is calculated as follows:

(3)

where I(V) is the current at a voltage V, and I0(V) is the
current at the given voltage in the absence of f luctua-
tions (f luctuation amplitude D tends to zero). This
quantity will be different for each profile with random
dopant concentrations.

In practice, it is important, when developing real
devices, including those based on semiconductor
superlattices, to evaluate the departure of characteris-
tics at a fixed f luctuation amplitude of device param-
eters (on the assumption that this amplitude depends
on the technological process). Methods for finding
device characteristics from a small sample are import-
ant for obtaining this estimate, which seems reason-

−
Θ = ∫

∫
0

0

| ( ) ( )|
,

( )

I V I V dV

I V dV

able for cost-cutting in development of device proto-
types. The problem of finding from a small sample the
manner in which device characteristics are distributed
is also encountered in a computer simulation, because
each calculation of device parameters requires a great
expenditure of computer time. This problem can be
solved by using a ranked distribution. The ranked dis-
tribution is more convenient in that no data reduction
occurs in this case, in contrast to that in which the cor-
responding histogram is plotted [16, 17]. The ranked
distributions for 200 random profiles and different
amplitudes obtained by numerical simulation are
shown in Fig. 2a. Rank 1 is assigned to the smallest
value of Θ, rank 2 to the next larger value, and so on
until the largest rank is assigned to the maximum value
of Θ. For a great number of events, the rank can be
considered a continuous quantity. Then, based on the
ideology described in [18], we can find how the ranked
distribution of Θ is related to the probability-density
distribution of Θ; i.e.,

(4)ρ Θ = Θ( ) / ,dr d

Fig. 1. Examples of I–V characteristics for several dopant-
concentration profiles at f luctuation amplitude D = 0.5
(the heavy line represents the case without f luctuations).
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Fig. 2. (a) Integrated absolute value of the difference of
currents, Θ, in increasing order for various f luctuation
amplitudes D; (b) ranked distributions of the integrated
absolute value of the difference of currents, Θ, for various
fluctuation amplitudes D: (1) 0.25, (2) 0.5, (3) 0.75.
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where r is rank. Figure 2b shows the ranked distribu-
tions as functions of Θ, which corresponds to expres-
sion (4) and simplifies further analysis. In this form,
the dependence of the rank on Θ can be used to easily
find the approximation, which appears as

(5)
Here, N = 200 is the total number of random profiles
and b = 2200 is a constant parameter. These approx-
imations for various f luctuations amplitudes D are
represented in Fig. 2b by lines, with good agreement
observed between the approximation and ranked

= − − Θ + Θ(1 exp( / )(1 / )).r N b D b D

dependences. Now, we can find, using (5), the dis-
tribution law of the probability density for Θ with
the aid of relation (4). It can be easily seen that it has
the form

(6)

Figure 3 shows the numerically obtained probabil-
ity-density distributions for Θ in the form of histo-
grams at various f luctuations amplitudes D. The
lines in the figure are the curves that correspond to
formula (6). It can be seen that, on the whole, the
numerically found probability-density distributions
for Θ are in a rather good agreement with the laws (6)
previously obtained for various f luctuation ampli-
tudes.

Thus, we demonstrated how random dopant-con-
centration fluctuations affect the I–V characteristics
in a semiconductor superlattice. To take into account
the related changes, we introduced integral quantity Θ
and examined how it depends on the amplitude of
dopant-concentration fluctuations. A comparatively
small sample of dopant-concentration profiles
(200 profiles at a fixed level of random fluctuations)
was used to obtain via data ranking the probability-
density distribution of Θ for an arbitrary amplitude of
fluctuations. The proposed method can be applied to
small samples of prototypes of real devices, including
ones based on semiconductor superlattices, to find
how departures of characteristics are distributed at
random fluctuations of parameters of the devices,
which appear in their fabrication.
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