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A method for determining the degree of synchronization of intermittent phase synchronization regime from
a time series has been proposed on the basis of estimating the zero conditional Lyapunov exponent. The effi-
ciency of the method has been tested on model systems near the boundary of the appearance of the synchro-
nous regime. The method has been used to determine the degree of synchronization between various regions
of the brain of rats of the WAG/Rij line having a genetic predisposition to epilepsy.
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One of the most widespread types of chaotic syn-
chronization in real physiological systems is the cha-
otic phase synchronization regime [1, 2]. It is a gener-
alization of classical synchronization of periodic oscil-
lations to the case of nonautonomous and coupled
chaotic systems and means the establishment of phase
locking between their states at the absence of correla-
tion between their amplitudes [3, 4].

At the boundary of chaotic phase synchronization,
the behavior is intermittent; i.e., intermittent phase
synchronization occurs [5, 6]. In this case, the phase
locking condition is satisfied only in certain time
intervals corresponding to laminar (synchronous) sec-
tions of the behavior interrupted by short-term inter-
vals of an increase in the phase difference, which are
called turbulent sections. Such a behavior is also char-
acteristic of periodic oscillators subjected to external
noise [7]. It is observed at the development of epileptic
activity of a human being and laboratory animals [8].
In other words, the intermittent phase synchroniza-
tion regime is a fairly widespread behavior characteris-
tic of both model and real biological systems.

When the control parameters of interacting systems
are mismatched quite weakly, the intermittent phase
synchronization regime is usually classified as eyelet
intermittency characterized by very long sections of
the laminar behavior [5, 9]. The degree of synchroni-
zation of the intermittent phase synchronization
regime can be determined by calculating the statistical
characteristics of the durations of laminar phases (dis-
tributions of durations of laminar sections at fixed
control parameters and the dependences of the aver-

age duration of laminar phases on the supercritical
parameter) [5, 9] or the dependence of the zero condi-
tional Lyapunov exponent on the control parameter
[10]. The zero conditional Lyapunov exponent in the
eyelet intermittency regime is negative and its absolute
value can be considered as a characteristic of the
degree of synchronization of the intermittent phase
synchronization regime [10, 11]. Since the laminar
phases of the behavior are responsible for the negative-
ness of the zero conditional Lyapunov exponent (see,
e.g., [10, 12]), it can be assumed that the degree of syn-
chronization of the intermittent phase synchroniza-
tion regime can be estimated by calculating the zero
conditional Lyapunov exponent from the parts of a
time series that correspond only to laminar phases of
the behavior of systems.

The zero conditional Lyapunov exponent for sys-
tems with the explicitly specified evolution operator
can be calculated by classical methods and algorithms
(Benettin algorithm, Gram–Schmidt orthogonaliza-
tion procedure) [13]. At the same time, when analyz-
ing time series, it is necessary to use modified methods
and approaches. In particular, in [11, 14], methods
allowing the determination of the zero conditional
Lyapunov exponent of nonautonomous and coupled
systems in the chaotic phase synchronization regime,
in particular, in the presence of noise, from a time
series are proposed. The aim of this work is the gener-
alization of the previously developed methods and
approaches to the estimation of the degree of intermit-
tent phase synchronization and their application to
model and real physiological systems.
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First, we consider the main stages of the method
for estimating the degree of synchronization of the
intermittent phase synchronization regime from the
time series. It is worth emphasizing that the time
dependence of the phase difference x(t) = Δφ(t) – θ
between two different signals (e.g., obtained from dif-
ferent regions of the brain of a laboratory animal or a
human being) shifted by a certain constant θ (deter-
mined experimentally) should be analyzed. As was
mentioned above, this dependence should contain
only laminar (synchronous) sections of the behavior of
interacting systems. The next stages are the construc-
tion of the signal distribution x(t) and its approxima-
tion by the expression

(1)

where ε and Ω are the control parameters and A is the
normalization coefficient, and the search for the
approximation parameters A, D, ε, and Ω (for more
details, see [11]). Similar to the case of phase synchro-
nization, the last stage is the estimation of the zero
conditional Lyapunov exponent, which determines
the degree of synchronization of the intermittent
phase synchronization regime, by the formula

(2)

The parameters x1 and x2 should be determined empir-
ically from the form of ρ(x).

We apply the method of estimating the degree of
intermittent phase synchronization from the time
series to particular systems. We begin with the consid-
eration of model systems, namely, a classical nonauto-
nomous Van der Pol oscillator under external noise:

(3)
Here, λ = 0.1 is the control parameter, B and ω = 0.98
are the amplitude and frequency of the external
action, and ξ is the stochastic Gaussian process with
zero average and unit standard deviation and two cou-
pled unidirectional chaotic Rössler oscillators:

(4)

where a = 0.15, p = 0.2, c = 10, ω1 = 0.93, and ω2 =
0.95 are the control parameters and ε is the coupling
parameter [11].

At the chosen values of control parameters, the
phase synchronization regime appears at Bc = 0.029 in
system (3) and at εc = 0.042 in system (4). At B ∈
(0.0238; 0.029) and ε = (0.0345; 0.042), systems (3)
and (4) exhibit intermittent behavior: type-I intermit-
tency in the presence of noise in system (3) and eyelet
intermittency in system (4), whose characteristics are
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identical to each other [15]. The time dependences of
the phase difference Δφ(t)1 in both cases contain both
sections of the synchronous behavior (laminar
phases), where the phase difference is limited (|Δφ| <
2π), and periods of a stepwise change in the phase dif-
ference by 2π, which are called turbulent splashes, as
was mentioned above. The application of the above
method only to sections of synchronous dynamics of
interacting systems at various values of the control
parameters B and ε in the ranges indicated above
makes it possible to obtain the distribution of phase
differences satisfying Eq. (1). This statement is illus-
trated in Fig. 1, which shows (a) the time dependences
of the phase difference Δφ(t) of a nonautonomous Van
der Pol oscillator given by Eq. (3) at B = 0.027 in the
laminar phases of the behavior and (b) the distribution
of the phase differences and its approximation by
Eq. (1) with the parameters presented in the figure

1 For the Van der Pol oscillator, Δφ(t) = φ(t) – ωt; for Rössler
systems, Δφ(t) = φ1(t) – φ2(t). The phases of the Van der Pol
oscillator, φ(t), and of interacting Rössler systems, φ1,2(t), can
be introduced traditionally, e.g., as angles in the polar coordi-
nate system in the (x, ) and (x1,2, y1,2) planes, respectively.x�

Fig. 1. (а) Time dependence of the phase difference Δφ =
φ(t) – ωt of the nonautonomous Van der Pol oscillator
given by Eq. (3) at B = 0.027 during the phases of synchro-
nous behavior (n is the discrete time). (b) Distribution of
the phase difference and its approximation by Eq. (1) with
the parameters A = 0.000137, Ω = 0.009, ε = 0.00737, D =
0.0009, x1 = –2, x2 = 1, and θ = 1.0.
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caption. The zero conditional Lyapunov exponent
thus calculated is Λ = –0.00904 (see table), which is in
good agreement with the calculation of a similar Lya-
punov exponent using the Benettin algorithm. A sim-
ilar situation also occurs at other values of the control
parameters of the Van der Pol oscillator given by
Eq. (3) and interacting Rössler systems specified by
Eq. (4). The table summarizes the Lyapunov expo-
nents in the systems under study at several values of the
control parameters as calculated by the proposed
method, as well as by the Benettin algorithm and
Gram–Schmidt orthogonalization procedure. The
same table gives the estimate of the accuracy of the
developed method by the formula

(5)

where Λ is the zero conditional Lyapunov exponent
obtained by the proposed method and Λ0 is the zero
conditional Lyapunov exponent calculated by means
of the Benettin algorithm and Gram–Schmidt
orthogonalization procedure. It is seen that the error is
small in all cases under consideration; consequently,
the developed method is applicable to the determina-
tion of the degree of synchronization of the intermit-
tent phase synchronization regime.

We now discuss the application of the method to
experimental time series for which the direct calcula-
tion of the Lyapunov exponents by classical methods
and algorithms is impossible in view of the absence of
the evolution operator describing the dynamics of the
system (see above). To estimate the Lyapunov expo-
nent, we used real experimental neurophysiological
data: electroencephalogram signals from the thalamic
reticular and ventrobasal nuclei of the brain of a rat of
the WAG/Rij line having a genetic predisposition to
epilepsy. All experiments were performed at the labo-
ratory headed by Prof. Gilles van Luijtelaar, Radboud
Universiteit Nijmegen (Netherlands). They satisfied
ethical norms and included the recording of electroen-
cephalograms of freely moving animals for 24 h.

0

0

| |,
| |

λ − Λδ =
Λ

It is known that epileptic electroencephalograms
are intermittent time implementations containing pat-
terns of synchronous activity (spike-wave discharges)
alternating with the background activity of the brain
(Fig. 2) [16]. Spike-wave discharges have a high degree
of synchronization. Therefore, they are laminar
phases of the behavior in electroencephalogram sig-
nals, whereas background activity sections can be con-
sidered as turbulent phases. In other words, to estimate
the degree of synchronization of the intermittent
phase synchronization regime from electroencephalo-
gram signals, the developed method should be applied
only to sections containing spike-wave discharges
(gray rectangles in Fig. 2). The separation of spike-
wave discharges from electroencephalogram signals
was performed automatically by the method [17] based
on a continuous wavelet transformation and was con-
trolled by a skilled neurophysiologist. A continuous
wavelet transformation with a Morlet mother wavelet

Calculated conditional zeroth Lyapunov exponents in model systems (3) and (4) with various values of the control param-
eters: Λ is the value obtained by the proposed method with the accuracy δ calculated by Eq. (5) and Λ0 is the value obtained
by means of the Benettin algorithm and the Gram–Schmidt orthogonalization procedure

System Parameter Λ Λ0 δ

Nonautonomous Van der 
Pol oscillator (3)

B = 0.027 –0.00904 ± 0.00037 –0.0091 ± 0.00034 0.0066

B = 0.028 –0.0103 ± 0.00035 –0.0106 ± 0.00028 0.0283

B = 0.029 –0.0115 ± 0.00029 –0.0119 ± 0.00024 0.0336

Unidirectional coupled 
Rössler system (4)

ε = 0.035 –0.0051 ± 0.00106 –0.00547 ± 0.00101 0.0676

ε = 0.037 –0.0081 ± 0.00109 –0.00847 ± 0.00107 0.0437

ε = 0.040 –0.0137 ± 0.00104 –0.01302 ± 0.00102 0.0522

Fig. 2. Electroencephalogram signals from the thalamic
(a) reticular and (b) ventrobasal nuclei of the brain of a rat
of the WAG/Rij line. Gray rectangles mark the electroen-
cephalogram sections corresponding to spike-wave dis-
charges.
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was also used to introduce the phase of analyzed sig-
nals during spike-wave discharges on both electroen-
cephalogram leads [18, 19].

Figure 3 illustrates the application of the method to
electroencephalogram signals under study. This figure
shows (a) the time dependence of the phase difference
between electroencephalogram signals from the tha-
lamic reticular and ventrobasal nuclei of the brain of a
rat of the WAG/Rij line during spike-wave discharges
(n is the discrete time) and (b) the distribution of the
phase difference and its approximation by Eq. (1). It is
seen that analytical formula (1) is a good approxima-
tion of the numerically obtained distribution despite
the presence of “heavy tails.” The Lyapunov exponent
calculated from this distribution is Λ = –0.0524357 s–1,
which indicates intermittent phase synchronization
between indicated regions of the brain. Such a situa-
tion is also characteristic of other regions of the brain
of the rat of the WAG/Rij line. However, the calcula-
tions show that the degree of synchronization of the
intermittent phase synchronization established
between different regions of the brain is also different.

In particular, the zero conditional Lyapunov exponent
calculated from electroencephalogram signals from
the frontal lobe of the cerebral cortex and the thalamic
ventrobasal nucleus is Λ = –0.429936 s–1, whereas the
same Lyapunov exponent obtained from electroen-
cephalogram signals from the occipital lobe of the
cerebral cortex and the thalamic reticular nucleus is
Λ = –0.398955 s–1. This indicates a higher degree of
synchronization of the intermittent phase synchroni-
zation regime established between these lobes of the
brain of a rat as compared to the case presented in
Fig. 3.

To summarize, a method for estimating the degree
of synchronization of the intermittent phase synchro-
nization regime from a time series has been proposed
on the basis of calculating the conditional zeroth Lya-
punov exponent. The efficiency of the method has
been tested on model systems (nonautonomous Van
der Pol oscillator in the presence of noise and two uni-
directionally coupled Rössler systems) allowing the
calculation of the Lyapunov exponents by classical
methods and algorithms. The method has been used to
estimate the degree of synchronization of the regime
established between various regions of the brain of a
rat of the WAG/Rij line. It has been revealed that dif-
ferent regions of the brain are characterized by differ-
ent degrees of synchronization of the intermittent
phase synchronization regime.
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