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ABSTRACT

Forecasting a system’s behavior is an essential task encountering the complex systems theory. Machine learning offers supervised algorithms,
e.g., recurrent neural networks and reservoir computers that predict the behavior of model systems whose states consist of multidimensional
time series. In real life, we often have limited information about the behavior of complex systems. The brightest example is the brain neural
network described by the electroencephalogram. Forecasting the behavior of these systems is a more challenging task but provides a potential
for real-life application. Here, we trained reservoir computer to predict the macroscopic signal produced by the network of phase oscillators.
The Lyapunov analysis revealed the chaotic nature of the signal and reservoir computer failed to forecast it. Augmenting the feature space using
Takkens’ theorem improved the quality of forecasting. RC achieved the best prediction score when the number of signals coincided with the
embedding dimension estimated via the nearest false neighbors method. We found that short-time prediction required a large number of
features, while long-time prediction utilizes a limited number of features. These results refer to the bias-variance trade-off, an important
concept in machine learning.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0114127

Machine learning (ML) is a state-of-the-art computational instru-
ment that facilitates data analysis in various fields, including
nonlinear dynamics, climate, and medicine. ML has gained pop-
ularity in neuroscience due to its ability to recognize hidden
patterns and nonlinear relations in large sets of multi-modal
neuroimaging data. The latest trends in medicine set tasks to
predict the dynamics of neurophysiological systems. Prediction
is the heart of prognostic medicine aimed at early-stage diag-
nosis and preventive influence on the human nervous system to
preclude developing diseases. Recurrent neural networks (RNNs)
offer a potential model for addressing these challenges. Reser-
voir Computing (RC), a type of RNN, handles this issue by
mapping input signals into higher dimensional computational
spaces through the dynamics of a fixed nonlinear system called
a reservoir. Monitoring brain activity involves the registration of
electroencephalogram (EEG) or magnetoencephalogram (MEG)
signal. EEG/MEG refers to macroscopic signals measuring the
mean electric field produced by thousands of neurons, but the

contribution of each neuron is unknown. Forecasting the behav-
ior of these systems is a more challenging task but provides a
potential for real-life application. Here, we address this issue by
using RC to forecast the macroscopic signal produced by the
adaptive network of Kuramoto phase oscillators. We have shown
that prediction requires a correct choice of the dimensionality of
the reconstructed phase space of a macroscopic signal. To define
dimensionality, we applied the nearest false neighbors method
and estimated the embedding dimension. We have demonstrated
that long-term predicting requires the number of reconstructed
signals equal to or less than the embedding dimension. For the
short-term prediction, the number of reconstructed signals must
exceed the embedding dimension. We hypothesize that these
results refer to the bias-variance trade-off important machine
learning issue. With the high bias, the ML model misses the rel-
evant relations between features and target outputs and fails to
predict the system’s behavior (underfitting). With the high vari-
ance, the ML algorithm models the random noise in the training
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data and lacks generalization to unseen data (overfitting). We
suppose that a growing number of features may increase variance
due to the increasing complexity of the approximated function.
For short-time prediction, it allows fitting the local patterns, but
for long-time prediction, it reduces the algorithm’s ability to fit
more global trends.

I. INTRODUCTION

Machine learning (ML) provides powerful tools for forecast-
ing the dynamics of complex systems of different natures like
weather, climate,1,2 medicine,3,4 neuroscience,5–7 ocean and turbu-
lent streams,8,9 traffic flows,10,11 etc. In medicine, forecasting attracts
interest due to the possibility of predictive intervention to preclude
the development of the pathological activity. The brightest example
is the prediction of epileptic.12,13

Signals received from real-world systems often exhibit chaotic
dynamics that are difficult to predict. ML offers a promising
approach to address these challenges known as reservoir com-
puting (RC).14–17 RC has shown significant success in modeling
the full-order space dynamics of high-dimensional chaotic sys-
tems. Previously, RC has been successfully applied for predicting
chaotic dynamics of finite-dimensional Rössler, Lorenz-63 sys-
tems, and spatially-distributed Kuramoto–Sivashinsky dynamical
systems.15,16,18 Pathak et al.18 have shown that RC may modulate the
system’s dynamics: after correct short-term prediction, the actual
and predicted trajectories start to scatter, but the predicted one
continues to reproduce the system’s attractor.

In real life, predicting the macroscopic dynamics of complex
network systems is of the greatest importance. The problem is that
signals from many separate objects through a complex communica-
tion structure merge into a single macroscopic signal, which signif-
icantly reduces the dimension of the system, making it impossible
to restore the sources of a signal. In the bulk of real-life networks,
the connections between elements change over time, making their
macroscopic dynamics even more complex and unpredictable.

In a network of neurons in the brain, one has to distinguish
between the signal registered at a microscopic level (the individual
activity of a neuron) and the macroscopic signal, which is instead
produced by a neuronal subnetwork.19 Processes taking place at
the microscopic level (for example, phase synchronization between
neurons, formation of synchronous clusters, etc.) modulate the
features of the macroscopic signal.20,21 In the experiments, the sig-
nals recorded from the head’s surface, e.g., electroencephalograms
(EEGs), are macroscopic signals generated by a particular neuronal
subnetwork. Prediction of these macroscopic signals is necessary for
timely response to possible negative developments in their dynamics
or for facilitating the brain–computer interaction.22

Here, we trained reservoir computer to forecast the macro-
scopic signal generated by the adaptive network and proposed an
approach to increase the prediction quality. As a network model, we
used Kuramoto oscillators connected with the links whose strength
evolved under the homophilic and homeostatic principles. We
showed that the Kuramoto network generated a chaotic signal, and
reservoir computer failed to predict it. To improve the prediction
quality, we reconstructed the phase space by adding the delayed

signals (Takken’s approach) and investigated how the prediction
depends on a number of delays. We demonstrated that the opti-
mal number of the delayed signals is two which corresponds to
the embedding dimension. We also found that adding two delays
provided an accurate long-term prediction, but the correct short-
term prediction required more delays depending on the prediction
horizon.

II. METHODS

A. Model of adaptive network of Kuramoto oscillators

We analyze the dynamics of a network of NK = 100 Kuramoto
phase oscillators analyzed in detail in Refs. 23–25. Each oscillator is
described by the following equation:

φ̇i(t) = ωi +
∑

j6=i

wij(t) sin(φj − φi), (1)

where i = 1, . . . , NK, {ωi} is a set of randomly assigned natural fre-
quencies distributed uniformly in [−π , π] and wij is the weight of
the connection between elements i and j. It is allowed to evolve in
time according to the rule from Ref. 26. For each oscillator i and at
each time t, the set of connection weights {wij} satisfies the condition

NK
∑

j6=i

wij = 1. (2)

The adaptive evolution of weights wij is governed by

ẇij(t) = pij(t) −





∑

k 6=i

pik(t)



 wij(t), (3)

where the time dependent quantity pij(t) is defined as

pij(t) = 1

Tm

∣

∣

∣

∣

∫ t

t−Tm

expi(φi(t
′)−φj(t

′)) dt′
∣

∣

∣

∣

. (4)

Here, pij(t) denotes, at time t, the average phase correlation between
oscillators i and j over a characteristic memory time Tm = 100.
Equations (2) and (3) describe homeostatic and homophilic pro-
cesses, respectively. So, this model describes the adaptive network
of phase oscillators with the competition between homophily and
homeostasis.

Initially, all the weights wij and phases φi are random. At time
the couplings between the oscillators are changing along with the
topology. As a result, a number of clusters can be formed because of
the adaptation process: the connections between those units, which
are phase correlated across memory time Tm, are getting stronger.
So, Fig. 2(a) represents the resulted network with five clusters, inside
each of them all phase oscillations are phase correlated. Following
the paper (Ref. 19), we consider a macroscopic signal averaged over
all NK = 100 phase oscillators,

Xavr(t) = 1

NK

NK
∑

i=1

sin[φi(t)]. (5)

To solve the differential equations, we use the Runge–Kutta
fourth order method with time step 1t = 0.1 s for T = 7000 s.
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For network structure visualization, we use ForceAtlas2
algorithm in the Gephi Software.27 Based on the adjacency matrix
the algorithm groups, the oscillators with high coupling strengths
and distance are the ones with weak couplings. Due to the adaptation
process, a coupling between two oscillators is strengthened if their
phases are close to each other, so, inside each group, all oscillators
are phase correlated.

B. Reservoir computing

We use a reservoir computer construct known as an echo state
network, which uses a network of nodes as the internal reservoir.18,28

The schematic structure of the network is shown in Fig. 1. The net-
work has the input, hidden (reservoir), and output layers. Every
reservoir node has inputs drawn from other nodes in the reservoir
or the input to the RC, and every input has an associated weight.
Each reservoir node also has an output, described by the following
equation:

ht = tanh(Wh,iot + Wh,hht−1), (6)

where ht is the internal high-dimensional hidden state, which
enables the encoding of temporal dependencies on the past state his-
tory; Wh,i is the input-to-hidden dh × do couplings matrix, which
values are uniformly sampled from [−σin, σin], where σin is the
hyperparameter; dh and do are the numbers of neurons in hidden

and input layers, respectively; Wh,h is the reservoir (hidden-to-
hidden) dh × dh matrix, which is set to a large low-degree matrix
(the mean node degree D is the hyperparameter, the degrees
of all nodes are randomly distributed with the mean value D),
scaled appropriately to possess a spectral radius (absolute value of
the largest eigenvalue) R whose value is also the hyperparameter;
ot is the dh dimensional vector of the inputs. The output layer
(do dimensional vector) is described by

ôt+1 = Wo,hh̃t, (7)

where the augmented hidden state h̃t is the dh-dimensional vector

such that the ith component of h̃t is h̃i
t = hi

t for half of the reservoir

nodes and h̃i
t = (hi

t)
2

for the other half, enriching the dynamics with
the square of the hidden state in half of the nodes; Wo,h is the hidden-
to-output do × dh matrix.

The output of each reservoir node is fed into the output layer
of the RC, which performs a linear operation of the node values to
produce the output of the RC as a whole.

During the training process, we apply a signal from the
Kuramoto network Xavr(t) to the input ot of RC and receive out-
put signal ôt+1. The goal of RC is to approximate the desired outputs
ôt+1 appropriate to the inputs ot+1. To achieve it, for each ot, we use
the Tikhonov regularized regression procedure29 to alleviate overfit-
ting by penalizing large values of the fitting parameters and find an

FIG. 1. Schematic presentation of the RC network in the training mode (a) and predicting (testing) mode (b). The number of input signals is equal to (Nd + 1), where Nd is
the number of the delay coordinates.
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output matrix Wo,h that minimizes the following function:

Ttrain
∑

t=0

∥

∥

∥
Wo,hh̃t − ot+1

∥

∥

∥

2

+ β||Wo,h||2, (8)

where ||Wo,h||2 is the sum of the squares of elements of Wo,h and
Ttrain = 5000 is the time of the training process, β = 10−8.

After training is complete, we start the testing process when RC
tries to predict the signal dynamics by itself. We apply only the first
point of the signal Xavr(t) to the reservoir’s input ot, after that the
output ôt+1 is fed into the input ot+1, and the reservoir system is run
autonomously.

We use the reservoir with NR = 1000 nodes and investigate
reservoir computers with a different number of input nodes. The
number of output nodes is the same as the number of input nodes.

C. Methods for estimating networks dynamics

To estimate the effectiveness of the reservoir’s prediction, we
use the Pearson correlation and the normalized root mean square
error. The Pearson linear correlation coefficient is described as
follows:

r(o, ô) =
∑n

i=1(oi − ō)(ôi − ¯̂o)
√

∑n
i=1 (oi − ō)2

√

∑n
i=1 (ôi − ¯̂o)2

, (9)

where o is a target signal, ô is a predicted signal, n is the signal size,

ō = 1
n

∑n
i=1 oi and analogously for ¯̂o. r = 1 or −1 corresponds to

perfect positive and negative correlation, respectively.
The Euclidean norm is described by the following equation:

ε = ||o − ô|| =

√

√

√

√

n
∑

i=1

(oi − ôi)
2
. (10)

To estimate whether the investigated signal’s dynamics are
chaotic or not, we calculate the largest Lyapunov exponent 31 from
an experimental time series by the Wolf algorithm.30,31 We take a
starting point x0 at the original time series, find another point x′

0

close to x0 by distance ||x′
0 − x0|| = ε0 but not close at time, and

consider two time series until the distance between x′
1 and x1 are

greater than εmax, fix time T1 and ratio ε ′
0/ε0, find new point x′′

1 close
to x1 by distance ||x′′

0 − x0|| = ε1 and repeat the algorithm a multi-

ple time, so, 31 =
(

∑K−1
k=0 ln(ε ′

k/εk)
)/(

∑K
k=1 Tk

)

, where K is the

number of algorithm repetitions.
We refer to the largest Lyapunov exponent as the maximal

Lyapunov exponent (MLE) because it determines a notion of pre-
dictability for a dynamical system. Chaotic dynamics of a bounded
trajectory is defined by the condition 31 > 0. It determines the rate
at which typical pairs of nearby orbits separate. To analyze the effec-
tiveness of reservoir’s prediction, we will use the Lyapunov time
T31 = 1/31 instead of common time. It is defined as the time for
the distance between nearby trajectories of the system to increase by
a factor of e.

To estimate the embedding dimension of the analyzed system,
we use False Nearest Neighbor (FNN) algorithm.32 We evaluate the
number of points being the false neighbors in the reconstructed

phase space of dimension d. The point Xi and its nearest point X∗
i

(i = 1, . . . , Nt, where Nt is the number of time points in the signal)
are false neighbors if

√

ε2
i (d + 1) − ε2

i (d)

ε2
i (d)

< δ, (11)

where δ is the distance threshold and ε2
i (d) = ||Xi − X∗

i ||2 is the dis-
tance metric. One then repeats the process at higher dimensions d,
stopping when the proportion of false nearest neighbors becomes
zero or sufficiently small and will remain so from then onward. So,
the estimated embedding dimension d is the smallest value that sat-
isfies the condition pfnn < ξ , where pfnn is the ratio of FNN points to
the total number of points in the reconstructed phase space, ξ is a
small number.

To increase the dimension of the analyzed system to recon-
struct the phase space, we add the delayed signals to the original
one.33

To estimate the delay time, we use average mutual information
(AMI) defined as

AMI(L) =
N

∑

i=1

p(Xi, Xi+L) log

[

p(Xi, Xi+L)

p(Xi)p(Xi+L)

]

, (12)

where N is the length of the time series, L is a delay, and p(X) is a
probability. The time delay τ is set to be the first local minimum of
AMI.

III. RESULTS

We investigate the capability of RC to predict the dynam-
ics of macroscopic signal [Eq. (5)] received from the network of
100 Kuramoto phase oscillators [Eq. (1)] with adaptive topology
[Eqs. (2) and (3)]. The resulted signal [Eq. (5)] and its amplitude
spectrum are shown in Figs. 2(b) and 2(c), respectively. Due to
the adaptation process, the dynamics of the macroscopic signal is
weakly non-stationary. We use one part of the signal (0 ≤ t ≤ 5000)
in a training process and the other (5000 < t ≤ 7000) as a test
sequence. To study how much the adaptation influences the net-
work’s dynamics, we calculate the Morlet-based wavelet spectrum34

of the macroscopic signal [Fig. 2(d)]. As one can see, the macro-
scopic signal is characterized by four frequencies: three lowest ones
remain the same for all time while the highest frequency periodically
appears and disappears because of the adaptation.

To estimate whether the investigated macroscopic signal’s
dynamics is chaotic or not, we calculate the maximal Lyapunov
exponent 31 = 0.8, which defines the dynamics of the signal as
chaotic (Sec. II C). The corresponding Lyapunov time for the ana-
lyzed system is T31 = 1.25 s.

The construction of reservoir computer is described in Sec. II B.
For training process, we use the first part of the macroscopic signal
for 0 ≤ t ≤ 5000 [Fig. 2(a)]. After the training is complete, we apply
the first point of the testing part of the macroscopic signal (5000 < t
≤ 7000) as an initial condition for RC and compare the actual sig-
nal and the predicted one. We repeat the described procedure for a
set of reservoir hyperparameters: 2 ≤ D ≤ 10, 0.4 ≤ R ≤ 1.2, 0.001
≤ σin ≤ 1.0.
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FIG. 2. (a) Schematic presentation of the topology of 100 Kuramoto phase oscillators network with the adaptation of the couplings. (b) The macroscopic signal [Eq. (5)]
obtained from the Kuramoto network by averaging the dynamics of all network’s elements. One part of the signal is used in the training process and the other in the predicting
process. (c) Fourier and (d) wavelet spectra of the considered macroscopic signal. The vertical dashed curves in (b) and (d) separate the training and testing parts of the
signal. The horizontal dashed line in (d) separates regions below it where edge effects are significant.

To find the optimal triplet of hyperparameters (D, R, σin), we
calculate Pearson’s linear correlation coefficient r [Eq. (9)] for the
actual and predicted signals for 25T31 Lyapunov times. The maxi-
mal correlation r = 0.863 is achieved for D = 9, R = 1.2, σin = 0.3.
The prediction for time interval t ∈ [0, 125T31 ] is shown in Fig. 3(a)
for the optimal set of reservoir hyperparameters. As one can see,
the quality of such prediction is low, only the first oscillation is

well predicted, the next seven reservoir’s oscillations coincide with
the actual ones by phase and some of them are similar by ampli-
tude. After 25 Lyapunov times, the predicted and actual trajectories
become almost uncorrelated.

To compare the actual and predicted dynamics, we calculate
amplitude spectra for them [Fig. 3(b)]. One can see, that RC learns
to reproduce only one the highest frequency of 0.4 Hz. It also shows

FIG. 3. (a) The state prediction (red) of the reservoir and the actual trajectory (blue) of the macroscopic signal of the adaptive Kuramoto network and (b) the corresponding
amplitude spectra for the actual and predicting macroscopic signals for the case when we use only the initial signal Xavr(t) as the reservoir input. Hyperparameters of RC is
D = 9,R = 1.2, σin = 0.3. T31 = 1.25 s.
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FIG. 4. (a) The state prediction (red) of the reservoir and the actual trajectory (blue) of the macroscopic signal of the adaptive Kuramoto network and (b) the corre-
sponding amplitude spectra for the actual and predicting macroscopic signals for the case when we add Nd = 2 delayed signals to the original one to the reservoir input.
Hyperparameters of RC is D = 2,R = 0.8, σin = 0.1. T31 = 1.25 s.

oscillations at the frequency close to the most powerful spectral com-
ponent of 0.15 Hz and does not reproduce the other two frequencies
0.07 and 0.23 Hz.

To improve the quality of prediction, we reconstruct the phase
space of the macroscopic signal by adding the delayed signals
to the original one:33 X = {Xavr(t), Xavr(t − τ), Xavr(t − 2τ), . . . , Xavr

(t − Ndτ)}T, where Nd is the number of delay coordinates.
We estimate the embedding dimension of the considered signal

by using FNN algorithm32 and find that the embedding dimension
is 3. So, we add Nd = 2 delayed signals to the original one with
time delay τ = 4.5 s and apply three signals {Xavr(t), Xavr(t − τ), Xavr

(t − 2τ)} to the input of RC. The time delay τ = 4.5 s was defined
by using Average Mutual Information [Eq. (12)].

Similar to the case with one input signal, we find the opti-
mal triplet of hyperparameters. The maximal correlation r = 0.993
for 25T31 Lyapunov times is achieved for D = 2, R = 0.8, σin = 0.1.
The prediction is shown in Fig. 4(a) for the obtained optimal set
of hyperparameters. For 50 Lyapunov times, the predicted signal
demonstrates very similar dynamics to the original one. All phases
of the signals during this time are the same, amplitudes of origi-
nal and predicted signals are close to each other. Amplitude spectra
of the signals are shown in Fig. 4(b). As one can see, adding two
delayed signals to RC’s input improves the quality of prediction,
RC reproduces all four frequencies of the original signal with high
accuracy.

We investigate the sensitivity of the reported results to a par-
ticular trajectory (initial conditions and time step). We choose
Nd = 2, D = 2, R = 0.8, σin = 0.1 and change the initial conditions
of the testing sequence in a range of the signal oscillations. As a
result, the correlation r = 0.976 ± 1.76% for 25T31 Lyapunov times
changes in a small range from 0.959 to 0.993 with mean value 0.976.
Increasing the time step of the signal (both training and testing
parts) by 2, 3, 4, and 5 times reduces the correlation by 1.2%, 4.7%,
7.3%, and 10.4%, respectively.

The delay time τ = 4.5 s for all calculations presented.
Figure 5(a) illustrates the maximum achievable correlations vs
the number of delay coordinates Nd. The blue line corresponds
to the correlation calculated during 25 Lyapunov times, the red

one—during 125 Lyapunov times. It is clearly seen that adding
one delayed signal does not increase the correlation sufficiently,
but adding two signals highly increases both correlations. Fur-
ther increasing the number of input signals (Nd + 1) only slightly
increases rmax during time interval 125T31 .

We also calculate the maximal time during which the
correlation r is more than 0.8 for a different number of the delay

FIG. 5. (a) The maximal correlation rmax between the actual and predicted macro-
scopic signals during 25 (black) and 125 (red) Lyapunov times T31 vs the
number of the delayed coordinates Nd . (b) The dependence of the time interval
t0 during which the correlation r > 0.8 on the number of delay coordinates Nd .
T31 = 1.25 s.
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FIG. 6. Time dependencies of (a) the maximal correlation rmax and (b) the normalized error ε/
√
Nd + 1 [Eq. (10)] between the actual and predicted macroscopic signals

and among all the considered parameters (D,R, σin) for different number of delayed coordinates Nd ∈ [0, 8]. (c) The number of delay coordinates Nd for which correlation in
Fig. (a) is maximal. (d) The number of delay coordinates Nd for which ε/

√
Nd + 1 in Fig. (b) is minimal.

coordinates Nd [Fig. 5(b)]. We find that the longest time during
which rmax > 0.8 is equal to 375T31 and corresponds to three input
signals (Nd = 2). This result correlates with the estimated embed-
ding dimension of the original signal, which is equal to 3. Further
increasing the number of delayed signals leads to decreasing the pre-
diction time. So, adding Nd = 2 delays is the most universal solution
for the task of dynamics prediction for the investigated Kuramoto
network system because it allows us to predict its macroscopic
dynamics correctly for the longest time.

Finally, we study how the optimal number Nd of delays depends
on the time we need to predict. To do this, we fix time interval and
calculate correlations between the actual and predicted signals for
the time over all parameters. Then, we choose the maximal correla-
tion rmax, increase the time, and repeat. The resulting dependencies
are shown in Fig. 6(a) for different values of Nd. Based on these
results, we choose the number of delays Nd for which the corre-
lation is maximal for the time we need to predict for [Fig. 6(c)].
As one can see, for small time (t < 38T31 ), the best prediction is
achieved when we use Nd = 8 delay coordinates. For bigger time

(38 < t/T31 < 320), we need to decrease Nd to 6 for the best accu-
racy. If the prediction time is bigger, then 320T31 the number of
delays should be decreased to 2. So, the more time we need to pre-
dict, the less input signals for reservoir we need to use to maintain
the best prediction quality.

Based on the results above, we make an assumption that
increasing the number of delays Nd has a positive and a negative
impact: more delays give more information about the signal to the
reservoir but contribute to a faster increase in error during the iter-
ative process. To prove it, we calculate an error ε [Eq. (10)] as the
norm of the difference between actual and predicted signals on each
iteration for the different values of Nd. Figure 6(b) demonstrates the
corresponding dependences of error ε on time t. For small predic-
tion times (t < 100T31 ), the error is small, and the positive effect
of a large number of input signals prevails. As the prediction time
increases, the error ε increases during the iterative process in the
reservoir, and input information from large inputs (Nd + 1) stops to
dominate over error. It leads to decreasing the optimal number of
the used delays Nd. As a result, Fig. 6(d) shows the same tendency
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as illustrated in Fig. 6(c): the more time we need to predict, the less
input signals we need to use for achieving better results. Notably, the
optimal number of delays for both (c) and (d) are only 8, 6, and 2.

IV. CONCLUSION

We investigated the capability of reservoir computing to pre-
dict the macroscopic signal generated by the adaptive network. As an
analyzed model, we used the network of Kuramoto phase oscillators
where the coupling between nodes changed over time according to
adaptive rules. Using Lyapunov analysis, we confirmed the chaotic
nature of the generated macroscopic signal.

We demonstrated that the reservoir trained on the raw macro-
scopic signal failed to predict it. To improve the prediction quality,
we reconstructed the phase space of the macroscopic signal using
Takken’s approach, i.e., by adding the delayed signals. Using these
delayed signals as the reservoir input increased the accuracy of the
prediction.

We studied how the number of delayed signals influenced the
quality and time horizon of the prediction. We found that the corre-
lation between the original and the predicted signal peaked for two
delays and remained unchanged with a further increase in the delays.
We defined the prediction horizon as a time interval for which
the correlation exceeded 0.8. The maximum horizon of prediction
was also achieved for two delays. The observed optimal number
of delays correlated with the embedding dimension of the original
signal estimated via the nearest false neighbors method.

We found that the optimal number of delays depended on the
prediction horizon: the long-term prediction required fewer input
signals and vice versa. The potential reason is that increasing the
number of delays has a positive and a negative impact: more delays
give more information about the macroscopic signal to the reser-
voir but contribute to a faster increase in error during the iterative
process.

We hypothesize that these results refer to the bias-variance
trade-off important machine learning issue. With the high bias, the
ML model misses the relevant relations between features and tar-
get outputs and fails to predict the system’s behavior (underfitting).
With the high variance, the ML algorithm models the random noise
in the training data and lacks generalization to unseen data (overfit-
ting). We suppose that a growing number of features may increase
variance due to the increasing complexity of the approximated func-
tion. For short-time prediction, it allows fitting the local patterns,
but for long-time prediction, it reduces the algorithm’s ability to fit
more global trends.

We believe that our results will be useful in the application of
RC for the signals obtained from the real systems when the data
are not enough for the sufficient training of a neural network. The
approach proposed in the current paper could be combined with
other methods to work with specific data. For example, while work-
ing with a multistable system, one needs to combine our approach
with “the blending technique” explained in Refs. 35 and 36.
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