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Abstract—People of advanced age experience changes in the
brain structure, which cause motor and somatosensory systems’
decline. To prevent and improve impaired functioning of the aged
brain different intervention strategies are proposed. Sensorimotor
training, encompassing both sensory and motor brain functions,
seems to be one of the most accessible approaches. In this short
report, we focus on the age-related effect of short-term training
on cortical activation, particularly on the task-related low-
frequency rhythms of electrical neural activity. We demonstrate
the differential brain-wide changes in theta-band spectral power
in considered age groups between the early and late stages of a
training session.

Index Terms—aging, sensorimotor integration, training, EEG

I. INTRODUCTION

Healthy aging affects structural and functional organization

of the human brain [1], [2]. It causes inevitable negative

behavioral outcomes in advanced age, such as reduced reaction

time, delayed motor skills, slow speech, etc. [3]–[6].

Training of sensorimotor integration, a neural process en-

compassing sensory and cognitive functions, may be consid-

ered as a promising strategy for intervention or diagnostics

of mild cognitive impairments [7]–[10]. While the attention is

mostly focused on the outcomes of long-term training [11],

[12], less is known about short-term effects. We suppose that

particularly short session is an accessible way for patients in

advanced age to improve their basic cognitive functions, or to

detect abnormalities of the brain plasticity and learning.

Here, we report the results of neurophysiological study

aimed at identifying age-related changes in cortical activation

in the course of sensorimotor training. We witness a differen-

tial effect of a single-session sensorimotor training on cortical

theta-band oscillations in the groups of young and elderly adult

subjects. Our results suggest that considered age group may

develop different sensory processing strategies during training

session.

II. MATERIALS AND METHODS

Participants. The groups of 11 elderly adult (aged 64.2±5.3

SD, 4 females) and 13 young subjects (aged 25.5±5.3 SD,
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4 females) were recruited for this study. The participants had

no history of brain trauma and neurological disorders. The

study on the human subjects was approved by the local ethics

committee and conducted according to the Declaration of

Helsinki.

Task. The volunteers from both age groups underwent a

single sensorimotor training session consisting in repetitive

execution of a fine motor task paced by auditory command.

Specifically, one had to perform left- or right-hand movement,

if the presented auditory signal was short (250 ms) or long

(750 ms). Overall number of repetitions was N = 60 (30 per

hand). The same experimental design was previously reported

in [6].

EEG acquisition and preprocessing. The whole-scalp multi-

channel EEG were acquired throughout the session using EEG

recorder Encephalan-EEGR-19/26 (Medicom MTD, Russia).

31 Ag/AgCl sensors were applied in accordance with ex-

tended 10-20 layout. EEG signals were recorded at sampling

rate fs = 250Hz and additionally filtered within the range

[1, 100] Hz. Physiological artifacts were removed via inde-

pendent component analysis (ICA) [13] using MNE package

for Python [14]. Artifact-free EEG signals were segmented

into task-related epochs according to experimental protocol

containing 2.5s prestimulus and 1s poststimulus activity and

centered at stimulus presentation. For further analysis, we used

the first 10 epochs (5 per stimulus) to capture Early stage of

training. The last 10 epochs (5 per stimulus) were considered

as Late stage of training.

Time-frequency analysis. Using Morlet wavelets, we es-

timated spectral power (SP) in theta, lower-alpha1, lower-

alpha2, and upper-alpha bands, anchored to the individual al-

pha frequency [15]. For each band, we computed the difference

in pre- and poststimulus SP between Late and Early stages

of training. Than, we compared corresponding SP differences

between groups using a non-parametric statistical test [16]

to reveal a significant interaction between Training and Age.

Finally, cluster-averaged SPs were compared via a mixed-

design ANOVA using JASP software [17].

III. RESULTS

Prestimulus spectral power. A significant cluster-level effect
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A. Prestimulus spectral power
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Fig. 1. Differential age-related effect of training on prestimulus (A) and
postsimulus (B) theta-band SP. Left panels shows between-group F -maps,
and right panel presents group means and standard deviations of theta-band
SP.

was evaluated in theta-band (Fig. 1A). The cluster comprised

of occipital sensors was found at αcl = .05, Fcl(1, 22) =
4.30. A mixed-design ANOVA of cluster-averaged SP demon-

strated a significant interaction between Training and Age

(F (1, 22) = 9.54, p = .005, η2 = .30). Young participants

experience a significant increase of prestimulus theta-band SP

from Early to Late stages (t(12) = 2.82, p = .016, d = .78).

Poststimulus spectral power. A significant cluster-level ef-

fect was evaluated again in theta-band at 412-812 ms (Fig. 1B).

The cluster comprised of frontal and frontal-central sensors

was found at αcl = .015, Fcl(1, 22) = 6.96. A mixed-design

ANOVA of cluster-averaged SP demonstrated a significant

interaction between Training and Age (F (1, 22) = 12.79,

p = .002, η2 = .37). Young participants showed a significant

decrease of poststimulus theta-band SP from Early to Late

stages (t(12) = −2.75, p = .018, d = −.76). In turn, elderly

adult subjects experienced a growth of poststimulus theta-band

SP (W = 4.0, p = .007).

IV. CONCLUSIONS

A significant effect of sensorimotor training on pre- and

poststimulus theta-band SP was demonstrated. While young

participants increase prestimulus theta-band SP in occipital

sensors and decrease frontal theta-band SP, elderly adults

exhibit growth of frontal theta-band SP 412-812 ms post

stimulus. Obtained results may indicate differential sensory

processing strategies developed in considered age groups in

the course of training.
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