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Abstract—The purpose of this study is to analyze the ap-
plicability of a two-stage model based on convolutional neural
networks to improve the quality of seizure detection on real EEG
data. Wavelet analysis is used for time-frequency analysis. To
localize epileptic discharges, the seizure detection task was
reduced to the classification task where the prediction process
consists of two steps: the first model provides coarse predictions
which are refined by the second model trained on the first model’s
errors. As a result of using the proposed two-stage model, the F1-
score metric was improved by about 2% compared to a single
coarse model, and at the same time led to a significant increase in
false negative predictions, which shows the tradeoff brought by
the considered approach.

Index Terms—EEG, time-frequency analysis, neural networks

I. INTRODUCTION

Epilepsy is a chronic neurological disorder that manifests
itself in the form of rare recurring seizures caused by abnormal
activity in the brain. As of 2016, more than 50 million people
worldwide suffered from epilepsy [1], however, with timely
detection and proper treatment, up to 70% of patients reach a
state of remission [2], [3]. Nowadays electroencephalography
is the main diagnostic tool for epilepsy.

Electroencephalography (EEG) is a non-invasive measure-
ment of the electrical activity of the brain, in which electrodes
placed on the scalp register voltage potentials resulting from
the passage of current in and around neurons. The most
common approach to EEG analysis is visual analysis, which is
performed by an experienced epileptologist. This approach is a
time-consuming and expensive process since a medical doctor
needs to analyze a huge amount of EEG data. The availability
of an automated tool for detecting epileptic seizures could
significantly speed up the screening process and provide an
alternative opinion. Today, the construction of such a clinical
decision support system (CDSS) is an important scientific task
(4], [5].

There are a large number of studies in the field of EEG
data analysis, and the detection of epileptic seizures is no
exception [6]. In most works, statistical or classical machine
learning models are used to detect seizures [7]-[12]. It is
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worth noting that with the development of deep learning, many
researchers are trying to apply deep neural networks to the task
of seizure detection [13]-[15]. It is also worth mentioning that
approaches using ensembles of models [16] and multi-stage
models [7] are developing and achieving impressive results.

This paper attempts to answer the question about the
applicability of a two-stage model based on convolutional
neural networks to improve the quality of seizure detection
on real EEG data. To answer this question, frequency analysis
methods and the data recorded using a single device and
marked up by an epileptologist are used.

II. DATA

The data under study was provided by the National Medical
and Surgical Center named after N.I. Pirogov of the Ministry
of Health of the Russian Federation (Moscow, Russia). All
medical procedures were held in the Center in accordance
with the Helsinki Declaration and the medical rules of the
Center and were approved by the local ethics committee. All
patients provided written informed consent before participa-
tion. The data set includes anonymized long-term monitoring
data of patients in the Department of Neurology and Clin-
ical Neurophysiology between 2017 and 2019. Monitoring
was performed during daily activities, including sleep and
wakefulness. The duration of the recording varies from 8
to 84 hours, depending on the patient’s condition and the
number of episodes of epileptiform activity required to make
a correct diagnosis. The data contains records of 83 patients
diagnosed pathologically with focal epilepsy. Epileptic focuses
were found in the frontal, temporal, or parietal regions of
the left, right, or both hemispheres. During the observation
period, each patient had from one to five epileptic seizures.
EEG signals were recorded with a sampling rate of 128 Hz
with N = 25 channels according to the international “10-20”
system [17].

III. METHODS

The general scheme of the study is shown in Fig. 1,
where the oval is used to indicate data at different stages of
processing, and the rectangle is responsible for denoting the
specific procedures performed with data. Each individual step
will be discussed later in the article.
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Fig. 1. Modules of the first stage are highlighted in yellow. During this stage, the neural network is trained on the available data, inference is performed,
and obtained coarse predictions are saved. Modules of the second stage are highlighted in green. During this stage, the second neural network is trained on
data containing the first model’s errors, and inference of the second network is performed. Finally, the predictions of both models are aggregated to obtain

refined predictions that will be used for metrics calculation.

A. Two-stage model

In the problems of classical machine learning, multi-stage
algorithms that gradually improve the quality of predictions
using information from previous stages [18], [19] are suc-
cessfully used to solve a wide class of problems and are de
facto the standard in the industry. Also, multi-stage models
are successfully used in deep learning, for example, in such
computer vision tasks as segmentation [20] and alpha matting
[21]. In the seizure detection field there also exist works that
use multi-stage models to achieve better performance [7], but
an approach that combines convolutional neural networks and
multi-stage modeling is not so widespread and studied in the
seizure detection field.

In this paper, the considered solution consists of two stages
illustrated in Fig. 1. Modules related to the first stage of
prediction are marked in yellow. During the first stage, the
neural network is trained on the available data, inference is
performed, and obtained coarse predictions are stored for use
in the next stage. The modules of the second stage are high-
lighted in green. During the second stage, using the predictions
of the first network and the ground truth labels, data containing
the first model’s errors is generated, and training and inference
of the second network are performed on this data. Finally, the
predictions of both models are aggregated to obtain refined
predictions that will be used for the final model performance
evaluation.

B. Models training

For the sake of simplicity, the neural network training
procedure is the same for models from each stage. The
detection of epileptic seizures on the EEG recording was
reduced to the task of classifying non-intersecting segments
of the EEG recording of a fixed length (in this work — 10
seconds) after the continuous wavelet transform (CWT) [22].
These segments can be considered as 25-channel images, and,
therefore, the seizure detection task can be considered as an
image classification problem. In this formulation, the best
performance, in various benchmarks such as ImageNet [23],
is achieved by neural networks. Therefore, the neural network

of the ResNet-18 [24] architecture was chosen as a model,
which is the standard choice for the classification task.

Original data was transformed to input to the network using
continuous wavelet transform. The CWT performs convolution
for each of the 25 EEG signals x,,(t) [27] with the basic
function (n):

Waltito) = VT [ a0 (- ), M
where N is the number of channels in the EEG
recording, f is the frequency, ¢t is the time,

Wy(f,t) are the coefficients of the wavelet transform.
The sign * denotes a complex conjugate function. The Morlet
wavelet was used as the basis function of the CWT:

1 om 2
e(n) = \7—;6]“’“"6_ 7, 2

where wg = 27 is the central frequency of the wavelet. Finally,
the power of the obtained spectrum for each channel in the
frequency range of 1-40 Hz was considered as an input for
the models.

It is important to note that the existing data set is highly
unbalanced - more than 99% of the total recording time
corresponds to the normal activity. Therefore, during the
training of the coarse network from the first stage, for each
patient, 50 segments with normal activity and 50 segments
with epileptic activity were randomly selected. To train the
refinement network from the second stage 100 segments
containing the first model’s errors were added to 100 randomly
chosen segments.

Both models were trained for 10 epochs, with a mini-batch
size of 4, a learning rate of 0.001, Adam optimizer, and binary
cross entropy as a loss function. To make models more robust
and suppress the effects of overfitting SpecAugment [25] and
MixUp [26] techniques were used.

C. Fusion and evaluation

Once both coarse and refinement models are trained we
need to develop a fusion mechanism for their predictions to
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use a two-stage model. This was achieved in the following
way (illustrated in Fig. 2):

o The coarse model trained on the original data predicts
whether or not 10-second segments contain epileptic
activity

o In case the coarse model predicted that the current
segment contains an epileptic activity then we use the
refinement model trained on errors of the coarse model
to obtain a refined prediction.

Predictions fusion

Preprocessed Coarse Contains epileptic Use coarse
segment model activity? prediciton
Use refined
prediciton model

Fig. 2. Predictions fusion mechanism. The coarse model predicts whether
or not EEG segments contain epileptic activity. In case the coarse model
predicted that the current segment contains an epileptic activity then the
refinement model refines prediction

The threshold for assigning a segment to a positive or
negative class was selected based on the training data. After
receiving the predictions of the coarse network, a large number
of false positive network responses were observed only on one
consecutive segment of 10 seconds. To solve this problem a
median filter with a kernel size of k = 7 was used.

After the fusion and filtration were performed the quality
of the model was evaluated using standard metrics for the
classification task — precision(P), recall(R) and Fi:

TP
P=Tp 1P 3)
TP
R=7p7FN “)
2.-P-R
=2t 5
1 P+R7 ()

where T'P is the number of true positive predictions of the
model, T'N is the number of true negative predictions of the
model, F'P is the number of false positive predictions of the
model, and F'N is the number of false negative predictions of
the model.

IV. RESULTS AND DISCUSSION

In this paper, a two-stage model based on convolutional
neural networks of the ResNet18 architecture was proposed for
the detection of epileptic seizures. The results of the proposed
model are presented in table I. To demonstrate the effect of
the two-stage approach results of a single coarse model were
added.

From the table I it can be seen that refinement network
addition leads to better average F) and precision metrics
but at the same time to a significant loss in terms of average
recall metric. This is a natural result due to the fact that the

TABLE I
TRAINING RESULTS

Model name precision | recall | Fy
Coarse model 0.4196 0.7308 | 0.4382
Two-stage model | 0.5339 0.4404 | 0.4566

coarse model produces a huge amount of false positives and
small false negatives and therefore refinement model learns to
predict positive class more carefully, which was reflected in the
recall metric. On the other hand, the noticeable improvement
in the precision metric is a positive event since usually,
seizure detection models suffer from too many false positive
responses, which makes it impossible to use such models as
CDSS.

V. CONCLUSION

In this paper, the applicability of a two-stage model based on
convolutional neural networks to improve the quality of seizure
detection on real EEG data was studied. Usage of the proposed
approach leads to fewer false positive predictions but at the
same time tends to have noticeably more false negatives which
increases the probability of missing a true epileptic seizure
event. This is the reason why further research is needed to
find a solution that can provide fewer false positives without
significantly increasing the number of false negatives.
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