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Abstract When processing repetitive visual stimuli, the brain experiences neuronal adaptation, a process
that reduces its response time by pre-activating specific neural groups crucial for handling these stimuli.
While prior research has extensively examined this phenomenon within distinct brain regions, the interac-
tions between these regions during adaptation have remained less understood. In this study, we explored
these inter-regional interactions by assessing functional connectivity using the phase locking value. Our
analysis showed a reduction in functional connectivity both within the occipito-parietal region and between
occipito-parietal and central regions as time spent on task increased. Interestingly, these changes in connec-
tivity were positively correlated with shorter processing times for these stimuli. To determine whether these
connectivity changes could be attributed to increasing fatigue, we also measured the amplitude–velocity
ratio of blinks. Our results revealed no significant correlation between this indicator of fatigue and the
observed shifts in connectivity. This suggests that the noted alterations in functional connectivity are more
likely related to neuronal adaptation mechanisms, rather than merely reflecting changes in fatigue levels
as detected through EEG signals.

1 Introduction

Synchronization between neurons is the basis of operation in the neural network of brain. This synchronization
underlies the interaction between neural ensembles, a phenomenon known as functional connectivity [1]. Functional
connectivity can show two types of patterns. First, there is segregation, where certain brain regions demonstrate
strong synchronization within their own groups of neurons, but have weaker connections between brain regions.
Second, there is integration, synchronous patterns with global properties, where connections are stronger between
neuronal populations from different brain areas [2, 3].

Neurophysiological findings show that neurons synchronize through low-frequency rhythms, such as theta (4–8
Hz), alpha (8–12 Hz), and beta (15–30 Hz). Despite neurons firing electrical impulses (spikes) at high frequencies,
up to 100 Hz, these spikes are effectively relayed from one neuron (presynaptic) to another (post-synaptic) with the
help of low-frequency modulation [4]. For a connection between two neurons to occur, spikes from the presynaptic
neuron need to align with the excitability cycle of the post-synaptic neuron. To facilitate this transmission, low-
frequency rhythms modulate the activity of these neurons [5]. Consequently, these low-frequency components
become noticeable in the spectrum of neuronal activity across different neural populations. Phase relations between
these components hold valuable information about how synchronized these neural populations are.

The low-frequency patterns can be detected by noninvasive electroencephalography (EEG). EEG sensors gather
summarized signals from millions of neighboring neurons in the area of recording electrode. The power spectra
of EEG signal typically show peaks in specific frequency ranges, matching the rhythms mentioned earlier. This
indicates that large numbers of neurons contribute to these spectral components. The stronger and sharper these
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peaks are, the more synchronized the neurons are within that rhythm. By examining EEG signals from different
areas of the cortex and studying the phase relations of the low-frequency components, we can assess the extent of
neurons’ synchronization in these areas. This estimation helps us understand how effectively the neurons exchange
signals [6, 7].

In this context, phase locking value (PLV) is commonly used in research to uncover how neurons interact. This
method builds upon the results found through spectral power analysis [8]. PLV helps to shed light on various
brain activities, such as visual processing [9], motor functions [10], and sleep stages [11]. PLV is also used to create
features that help distinguish between different emotional states [12] and types of movement [13]. Moreover, PLV
is a powerful tool for identifying EEG markers for neurological conditions like epilepsy [14], depression [15], and
Parkinson’s [16].

In our study, we use this metric to understand how the brain network behaves during a prolonged task involving
the interpretation of the repeatedly presented similar visual stimuli. Previous research suggests that when the
same or similar stimulus is shown repeatedly in short time-intervals, the brain becomes quicker at processing it
[17]. Initially, this phenomenon was explored through examining local changes in brain activity. Studies revealed
that as time passes during the task, the brain anticipates and prepares certain groups of neurons that will be
involved in processing of the upcoming information. As a result, it takes less time for these groups of neurons to
engage when processing the next stimulus [18].

The specific network properties contributing to this effect are still not fully understood, although studies report
the vital role of neural interactions in visual information processing [19]. During processing of stimuli, brain activity
involves a coordinated interaction among various regions [3, 20]. In the case of visual processing, this entails a series
of complex steps, starting with initial visual processing in the occipital areas, followed by higher level interpretation
in the frontal regions, and culminating in the execution of motor responses by neural populations in the motor
areas. Therefore, we expect that the brain modulates the interactions between these distinct regions to maintain
the performance of visual processing over an extended task duration [21, 22].

Finally, when engaged in prolonged tasks involving information processing, respondents may exhibit increasing
mental fatigue, resulting in decreased performance and diminished neural activity in different areas and frequency
bands [23, 24]. Therefore, it is intriguing to determine if fatigue also induces changes in functional connectivity, and
if so, to distinguish between changes caused by the fatigue and implemented by the brain to maintain performance
during prolonged tasks.

To address these issues, the study aims to test four hypotheses. First, we examine if the response time, which
we consider a measure of performance, decreases with time spent on the task. Second, we check if the ampli-
tude–velocity ratio of blinks, which we regard as an indicator of fatigue, increases with the time spent on the
task. Third, we anticipate changes in functional connectivity between and within different EEG sensor areas as
the experiment progresses. Fourth, we explore whether the changes in functional connectivity are correlated with
observed changes in the response time and the amplitude–velocity ratio of blinks.

2 Materials and methods

2.1 Participants

Twenty-one healthy subjects (seven females) aged 18–26 years (M = 18.9, SD = 1.9) with normal or corrected-to-
normal visual acuity participated in the experiment. All of them provided written informed consent in advance. All
participants were näıve. The study was approved by the local Ethics Committee and was following the Declaration
of Helsinki, except for registration in a database.

2.2 Visual stimuli

We selected an ambiguous 2D representation of a Necker cube as our bistable visual stimulus [25–27]. To a subject
without perceptual abnormalities, this 2D image can appear as a left- or right-oriented 3D object. The ambiguity
and orientation of the 3D cube is defined by the balance in brightness of the inner edges that form left-lower
(bl = 1−a) and right-upper (br = a) intersections in the 2D image, where a ∈ [0, 1] represents a normalized edge’s
luminance in a grayscale palette [28, 29].

In our experiment, we used a series of Necker cube images with a values taken from the set {0.15, 0.25, 0.4,
0.45, 0.55, 0.6, 0.75, 0.85} (Fig. 1A). This set could be categorized into subsets of left-oriented a = {0.15, 0.25,
0.4, 0.45} and right-oriented cubes a = {0.55, 0.6, 0.75, 0.85}. Alternatively, the set could also be divided into
low-ambiguity (LA) images a = {0.15, 0.25, 0.75, 0.85}, easily interpreted by an observer, and high-ambiguity
(HA) images a = {0.40, 0.45, 0.55, 0.60}, which require more cognitive effort for interpretation. Similar to our
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Fig. 1 The set of visual stimuli includes Necker cubes, showcasing both the classical drawing (A) and the mirrored drawing
(B). Each set consists of cubes categorized into low ambiguity (LA) on the top row and high ambiguity (HA) on the bottom
row. Based on spatial orientation, these cubes are further divided into left-oriented and right-oriented. Experimental session
(C) includes the resting state recordings and presentation of 400 stimuli divided into four blocks each including 100 stimuli.
Each stimulus presentation (D) lasts for τi ∈ [1, 1.5] s and is followed by the γi ∈ [3, 5] s pause. The TOI1 represents the
1.5 s time interval preceding the stimulus presentation, TOI2,3—0.5 s intervals following the stimulus onset and preceding
the button press, respectively

recent study [30], all stimuli were mirrored horizontally. The task involved 16 stimuli (Fig. 1A, B): eight cubes
with different contrasts of the inner edges, presented with two possible orientations, classical and mirrored.

There were two main reasons to choose the Necker cube for this study. First, it is a bistable image and, thus, the
stimulus has only two possible interpretations. This results in a simple classification task, which is more suitable
for repeated visual stimuli experiment. Second, the ambiguity of the stimuli can be controlled with parameter a,
and this allows to introduce the complexity of the task. Variations in the task, including its complexity, help to
keep the subject involved during the prolonged experiment.

2.3 Experimental procedure

Necker cubes of 22.55 × 22.55 cm were displayed on a white background using 24” monitor (52.1 × 29.3 cm) with
1920 × 1080 resolution and 60 Hz refresh rate. Participants were seated ∼80 cm away from the monitor, resulting
in a visual angle of ∼0.39 radians. For each participant, experiment lasted approximately 40 min, including 150 s
EEG recordings of eyes-open resting state before and after the main experiment (Fig. 1C).

Necker cubes with predefined a-values (selected from the set shown in Fig. 1A, B) were randomly presented 400
times during the experimental session. Each cube with a specific ambiguity appeared approximately 50 times. The
presentation time interval τi for each stimulus ranged from 1 to 1.5 s. The pauses between consecutive presentations
of the Necker cube images, γi, ranged from 3 s to 5 s, and these intervals contained an abstract image demonstration,
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represented by the white noise picture. The stimulation session was divided into four consecutive blocks, each lasting
10 min and comprising the presentation of 100 stimuli (see Fig. 1C). Participants were instructed to determine the
orientation of the Necker cube (defined by a) and press the corresponding button (left or right) on the joystick.
Using their responses, we calculated the response time (RT) as the duration between the stimulus onset and button
press. For each respondent, we averaged RT across the stimuli belonging to each block resulting in the four RT
values per respondent. In this study we regarded RT as a measure of task’s performance. Another metric, that
could possibly be used for this, is the percentage of correct answers. However, in the current study, this metric
was universally high across all subjects (more than 95%), and thus, it was deemed unrepresentative.

2.4 EEG recording and processing

We captured EEG data using 64 electrodes placed according to the ”10–10” system at a sampling rate of 1 kHz. The
”TP10” electrode served as the reference channel. Our data acquisition utilized actiCHamp amplifier from Brain
Products. Prior to analysis, the data underwent preprocessing to remove various biological artifacts. To eliminate
oculomotor artifacts, we employed the independent component analysis (ICA) within the MNE Python software
package [31]. Specifically, we utilized the ”FastICA” algorithm described in Hyvärinen’s work [32] to extract the
oculomotor component. To optimize the FastICA method’s efficacy, we preprocessed the EEG signal by applying
finite impulse response (FIR) filters, targeting the removal of low-frequency drift and high-frequency noise within
the 1–40 Hz frequency range. After preprocessing, we segmented the EEG signals into 4-s trials, each corresponding
to a single Necker cube presentation. These trials included a 2-s interval before and after the demonstration of
the stimulus, as well as the response period, featuring a 2-s interval before and after the button press. Finally,
we defined three specific time-intervals of interest (TOI): TOI1—1.5 s preceding the stimulus presentation (cube);
TOI2—0.5 s following the stimulus presentation; TOI3—0.5 s preceding the button press (see Fig. 1D).

2.5 Graph construction from EEG data

We computed functional connectivity between EEG signals using PLV, as outlined in [33]. We utilized the PLV
equation PLV = |E[Sxy/(|Sxy|)]|, where E [ ]—time averaging, Sxy—cross-spectral power density between two
EEG time series x (t) and y(t) [34], |Sxy|—absolute value of the cross-spectral power density used for normalizing
phase connectivity. We used a multitaper spectral estimation method [35, 36], and the cross-spectral density was
computed separately for each taper and aggregated using a weighted average, where the weights correspond to the
concentration ratios between the Discrete Prolate Spheroidal Sequences (DPSS) windows.

The MNE software package [31] was employed for these calculations. Connectivity analysis was performed on
EEG data collected for each time interval of interest within three frequency ranges: theta-band (4–8 Hz), alpha-
band (8–13 Hz), and beta-band (15–30 Hz). The results were organized as a 64×64 connectivity matrix, indicating
PLV for all pairs of EEG signals. Across subjects, PLV values within these matrices were averaged across 100 stimuli
presented in blocks 1–4. Given the nature of an undirected graph, we focused solely on the lower half of this matrix,
situated below the main diagonal (Refer to Fig. 2A).

The EEG sensors were grouped into five spatially neighboring sets (as shown in Fig. 2C). We delineated five
regions of interest: frontal (F), left temporal (TL), central (C), right temporal (TR), and occipito-parietal (OP).
The choice of the regions of interest is supported by our recent findings regarding top–down and bottom–up
mechanisms in processing of the Necker cube [18]. For clear representation, the matrix elements were arranged,
so that those corresponding to a specific area were clustered together, allowing us to partition the matrix into
these five regions (Fig. 2A). Subsequently, we determined both within-region and between-region connectivity.
Within-region connectivity was computed by averaging PLV across pairs of EEG signals captured by sensors
within a specific area. For example, to calculate within-region connectivity for the occipital and frontal regions,
PLV were averaged across areas 1 and 2 of the matrix (highlighted by yellow triangles). On the other hand,
between-region connectivity for a pair of regions involved averaging PLV across all pairs of EEG signals recorded
within those respective areas. For instance, calculating connectivity between occipito-parietal and frontal regions
required averaging PLV across area 3 of the matrix (highlighted by the blue rectangle).

2.6 Amplitude–velocity ratio of blinks

Our chosen indicator of fatigue, amplitude-velocity ratio of blinks (AVR), is calculated based on electrooculogram
(EOG). Since our experimental setup did not include EOG recording, we extracted EOG from EEG data. For
this, we again employed a methodology based on decomposing EEG signals into independent components. We
decomposed the original EEG dataset into independent components, selecting the component associated with eye
movements (EOG signal) based on z -score estimation [37]. From the obtained EOG signal, we identified blinks
and computed the ratio of blink amplitude to peak blink closure velocity, serving as an indicator of fatigue. This
metric was initially introduced by Johns [38] and quantifies the level of fatigue. Subsequently, AVR values were
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Fig. 2 The connectivity matrix (A) displays the PLV for all pairs of EEG signals categorized into 5 regions: frontal (F), left
temporal (TL), central (C), right temporal (TR), and occipito-parietal (OP). Graph (B) represents connections both within
and between these regions, based on PLV. The lines signify the connections between regions, with their width indicating the
average PLV across all connections between nodes belonging to these different regions. The circles represent connectivity
within regions. The circle size corresponds to the average PLV across connections between nodes within that region. Scheme
(C) illustrates EEG sensors belonging to each region

averaged across blocks 1–4 for each subject. We utilized the MNE software package [31] to extract the EOG from
the EEG data. For blink detection and calculation of their characteristics, we employed the neurokit2 Python
software package [39].

2.7 Correlation analysis

To find a correlation between the behavioral metrics and functional connectivity, we used repeated-measures cor-
relation. Repeated-measures correlation (RMC) is a statistical technique used to examine the relationship between
two variables when both variables are measured repeatedly on the same individuals. RMC extends the traditional
Pearson correlation to account for the within-subject correlation structure [40]. We performed correlation analysis
in Python using pingouin package.

3 Results

3.1 Behavioral metrics

We compared RT between four blocks using nonparametric Friedman test. As a result, we found that RT changed
significantly across blocks: χ2(3) = 37.258, p < 0.001. The direction of change is shown in Fig. 3A. RT takes
maximal value (M = 1.051 s, SD = 0.381) in the block 1. In the block 2, RT decreases to (M = 0.832 s, SD =
0.208). In the block 3 and block 4, RT takes even lower values (M = 0.786 s, SD = 0.165) and (M = 0.761 s, SD
= 0.213), respectively.

We compared the AVR between four blocks using nonparametric Friedman test. As a result, we found that this
metric changed significantly across blocks: χ2(3) = 28.861, p < 0.001. The direction of change is shown in Fig. 3B.
The AVR takes the lowest value (M = 4.773, SD = 0.365) in the block 1. In the block 2 (M = 5.082, SD = 0.540)
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Fig. 3 RT (A) and AVR
(B) for each experimental
block. Data are shown as
group mean and 95%
confidence interval.
Significance is estimated
using Friedman test

and block 3 (M = 5.207, SD = 0.621), we observe an increase of this value. Finally, it decreases at block 4 (M =
4.971, SD = 0.480).

3.2 Functional connectivity

We conducted a comparison of within- and between-region PLV across blocks using the nonparametric Friedman
test. To account for multiple comparisons, the alpha-level was adjusted to 0.0025. Initially, we assessed PLV
calculated in the interval preceding the stimulus presentation (TOI1). Our findings indicated significant PLV
changes across two regions: occipito-parietal (OP) region in the theta-band: χ2(3) = 17.971, p < 0.001, and
central (C) region in the alpha-band: χ2(3) = 14.2, p = 0.002. Moreover, PLV between these regions in the
theta-band changed significantly across blocks: χ2(3) = 18.885, p < 0.001, as highlighted in Fig. 4A (marked in
red).

When considering the direction of change, we observed the following trends. In the occipito-parietal area, theta-
band PLV reached its peak value (M = 0.925, SD = 0.020) in block 1. This decreased to (M = 0.916, SD = 0.023)
in block 2, further reducing in blocks 3 (M = 0.915, SD = 0.022) and block 4 (M = 0.914, SD = 0.025) (Fig. 4B).
Within the central region, alpha-band PLV attained its maximum in block 4 (M = 0.910, SD = 0.018). It decreased
from block 4 to block 3 (M = 0.904, SD = 0.018), and from block 3 to block 2 (M = 0.900, SD = 0.020). Finally,
for block 1, PLV was (M = 0.903, SD = 0.017) (Fig. 4C). Regarding theta-band PLV between occipito-parietal
and central regions, the maximal value occurred in block 1 (M = 0.800, SD = 0.028). This declined to (M =
0.789, SD = 0.034) in block 2, (M = 0.787, SD = 0.033) in block 3, and stabilized at (M = 0.789, SD = 0.034)
in block 4 (Fig. 4D).

Finally, no statistically significant differences were observed between blocks when considering PLV in the time-
intervals following the stimulus presentation (TOI2) or preceding the response (TOI3).

3.3 Correlation between behavioral metrics and functional connectivity

We analyzed correlation between behavioral metrics including RT and AVR and PLV in the theta-band in the
parietal region, alpha-band in the central region, and theta-band between central and parietal regions using RMC
analysis. We adjusted alpha-level to 0.01 to account for multiple hypothesis testing. The results of correlation
analysis are shown in Fig. 5, where dots of different color show data of different respondents and all lines have the
same slope fitted to the data.

Correlation analysis revealed several findings. First, we observed a moderate positive correlation between RT
and PLV in the theta-band in the parietal region: r(62) = 0.441, p < 0.001. This indicates that the decrease
in RT between blocks is associated with decreasing functional connectivity among neuronal populations in the
parietal region (Fig. 5A). Second, no correlation was observed between RT and PLV in the alpha-band in the
central region: r(62) = −0.116, p = 0.357. This suggests no association between decreasing RT between blocks
and changes in the functional connectivity among neuronal populations in the central region (Fig. 5B). Third, we
observed a moderate positive correlation between RT and PLV in the theta-band between central and parietal
regions: r(62) = 0.441, p < 0.001. This indicates that the decrease in RT between blocks is correlated with
decreasing functional connectivity between these regions (Fig. 5C). Fourth, we observed weak-to-moderate negative
correlation between AVR and PLV in the theta-band in the parietal region: r(62) = −0.286, p = 0.046. This finding
deemed insignificant after adjusting the alpha-level, suggests no association between changes in AVR between
blocks and changes in functional connectivity between neuronal populations in this area (Fig. 5D). Fifth, there
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Fig. 4 Representation of
the graph restored based on
the functional connectivity
between EEG signals (A).
Each node corresponds to
the EEG sensor region and
reflects within-region PLV.
Each edge corresponds to
the PLV between these
regions. Red color marks
the regions and
between-region edge where
PLV changes significantly
between four blocks.
Bar-plots illustrate the way
the PLV changes between
blocks: theta-band PLV in
the occipito-parietal (OP)
region (B), alpha-band
PLV in the central (C)
region (C), and theta-band
PLV between
occipito-parietal and central
regions (D). Significance is
estimated using Friedman
test, uncorrected

was no correlation between AVR and PLV in the alpha-band in the central region: r(62) = −0.134, p = 0.355.
This implies that changes in AVR between blocks do not associate with changes in functional connectivity between
neuronal populations in this region (Fig. 5E). Finally, there was no correlation observed between AVR and PLV
in the theta-band between central and parietal regions: r(62) = −0.245, p = 0.088. This suggests that changes in
AVR between blocks do not associate with changes in connectivity between these regions (Fig. 5F).

4 Discussion

In this study, we utilized PLV, a metric analyzing brain connectivity via EEG signals. Our objective was to
examine alterations in neural networks, while participants engaged in a prolonged task of perceiving similar visual
stimuli, delivered successively in brief intervals. The EEG sensors placed across the scalp were segregated into
five spatial zones, and PLV calculations were used to gauge communication strength within and between these
zones. We collected and analyzed several metrics: response time (indicative of the speed of stimulus interpretation),
the amplitude-velocity ratio of blinks (reflective of fatigue), and EEG connectivity patterns. The experiment was
divided into four blocks, each comprising 100 stimuli, to observe behavioral and connectivity metric change over
time.

Our studies resulted in several significant observations:

(i) participants showed improved response times, indicating enhanced stimulus recognition ability;
(ii) the amplitude–velocity ratio of blinks escalated throughout the experiment;
(iii) dynamic alterations in brain connectivity patterns were evident, particularly preceding stimulus presentation;
(iv) in the theta-band, connectivity within the occipito-parietal area was diminished, alongside decreased con-

nectivity between the occipito-parietal and central regions;
(v) in the alpha-band, there was an increase in within-zone connectivity within the central area:
(vi) changes in theta-band connectivity correlated with shorter response times, while alpha-band connectivity

changes did not.
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Fig. 5 The top row displays the correlation between RT and PLV in the theta-band in the parietal region (A), the alpha-
band in the central region (B), and the theta-band between central and parietal regions (C). The bottom row illustrates
the correlation between AVR and PLV in the theta-band in the parietal region (A), the alpha-band in the central region
(B), and the theta-band between central and parietal regions (C)

Notably, none of these connectivity patterns aligned with fatigue levels.
Based on these observations, we made the following conclusions.
In tasks involving repeated exposure to similar stimuli, individuals tend to become quicker at processing these

stimuli. Our behavioral analysis revealed a 20% reduction in response time from ∼1 to 0.8 s, aligning with find-
ings from our previous experiments and corroborating similar outcomes from different studies conducted across
various laboratories and using different equipment [18, 41]. Additionally, these results align with findings from
other researchers, who have reported shorter response times and higher identification rates for repeated stimuli
compared to unrepeated ones (for review, see [17]). In our research, despite the shorter response times, accuracy
remained consistent throughout the experiment. This indicates that participants made informed decisions rather
than randomly pressed buttons, maintaining their accuracy despite the time efficiency.

In prolonged tasks involving repeated exposure to similar stimuli, individuals showed an increase in the ampli-
tude–velocity ratio of blinks, suggesting progressing fatigue. In our study, we utilized a metric known as the
amplitude–velocity ratio of blinks, which is proposed as a measure to assess drowsiness levels [38]. This metric is
based on the principle that a complete blink lasts for about 100–300 milliseconds in an alert state, and extends
beyond 500 milliseconds in a drowsy state due to the eyelids remaining closed longer, presumably because tonic
contraction of the orbicularis oculi muscles is inhibited for an extended period. This indicates that blink velocity
decreases with drowsiness. It is also established that the velocity of blinks is highly correlated with their amplitude,
meaning that the larger the blink, the higher its velocity. However, in states of drowsiness, blinks become relatively
slower for a given amplitude. Therefore, a higher amplitude–velocity ratio of blinks indicates increased drowsiness.
In our experiment, we observed an approximately 10% increase in the amplitude–velocity ratio of blinks from 4.8
to 5.2, which led us to conclusion that the respondents’ fatigue had increased over the course of the experiment.
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Changes in the connectivity structure are observed before the stimulus onset, indicating that the brain pre-
organizes its structure to prepare for stimulus processing, rather than altering the processing mechanisms them-
selves. Our results indicate that changes in functional connectivity across the experiment occurred in the pres-
timulus EEG segments. Conversely, there were no changes in functional connectivity within the EEG segments
related to stimulus processing and response formation throughout the experiment. This suggests that the brain
establishes an optimal connectivity structure beforehand, preparing for effective stimulus processing. These find-
ings align with a recent paper on time–frequency analysis [18] reporting increased spectral power of EEG signals
in the time-intervals preceding stimulus presentation in tasks involving the repeated presentation of similar visual
stimuli. Furthermore, these results contribute to the fundamental theory of neural adaptation [42]. Neuronal adap-
tation is known so far as a phenomenon of reduced neuronal response to repeated stimuli compared to unrepeated
ones [43]. Its mechanisms have been studied at the single-cell level and at the level of local neuronal ensembles in
various brain areas, such as the occipital [44], parietal [45], and frontal [46]. In this respect, our results suggest
that neuronal adaptation may manifest at the level of functional networks; the brain may prepare its connectivity
structure prior to stimulus onset to reduce the effort of forming functional connections after stimulus onset, thereby
reducing the response time needed to process stimuli.

Reduced connectivity in the theta-band within the occipito-parietal region and between the occipito-parietal
and central regions correlates with improved stimulus processing speed, rather than fatigue. We observed that
decreased phase locking values (PLV) in the occipito-parietal region, as well as between the occipito-parietal
and central regions, were associated with shorter response times during the experiment. Notably, there was no
correlation between these PLV changes and the amplitude–velocity ratio of blinks, an indicator of fatigue. Another
study by Mockel et al. [47] highlights that time-on-task effects are not limited to mental fatigue. Instead, they
propose that adaptation during a task influences performance and neurophysiological parameters. Furthermore,
they emphasize the importance of considering adaptation when studying time-on-task effects. In line with these
findings, our study suggests that the observed changes in neural activity likely reflect adaptation mechanisms.
Specifically, we found reduced connectivity in the theta-band within the occipito-parietal region and between the
occipito-parietal and central regions, which may indicate neural adaptation to repeated visual stimuli.

Limitations. Our study has few limitations. First, the sample size is small. Power analysis indicates that sample
size of 20 participants provides 80% chance of rejecting the null hypothesis at the 5% alpha-level for a large effect
size (Cohen’s d > 0.6). Therefore, future studies with a larger sample size (> 50 participants) are required to
capture medium-sized effects.

Second, our study utilizes brain activity signals registered non-invasively from the surface of the skull. As a
result, we could not measure the activation of deep brain structures or estimate functional connectivity between
them. Meanwhile, a recent study [48] based on fMRI reported that fatigue might also cause decreasing functional
connectivity between some regions within the so-called ”fatigue network”. In our case, we were unable to find a
correlation between changes in functional connectivity and fatigue. We suggest that using fMRI may help identify
functional connectivity structures associated with both fatigue and adaptation and distinguish between them.
Additionally, in our work, connectivity was investigated on the sensor level, i.e., EEG channels. We believe that
switching to the source level could also help to study functional connectivity between deep brain structures.

Third, we introduced the complexity of visual classification task via ambiguity of the Necker cube. We believe that
taking it into consideration can help to reveal some subtle effects in brain functional connectivity. For example, we
may theorize that tasks with low and high complexity lead to formation of somewhat different functional networks.
However, the design of experimental study and chosen methods of analysis were ill-suited for introduction of
complexity as a factor. Thus, the effects of task’s complexity remain the scope of the future research.

Fourth, we assessed the subject’s fatigue via eyetracking characteristics alone. Eyetracking can provide indicative
markers of fatigue; however, amplitude–velocity ratio of blinks was developed with very tired subjects in mind,
and such levels of fatigue may be unattainable in our study. Therefore, future studies will implement methods
for finer evaluation of fatigue. Additionally, some other modalities can be used for this purpose—for instance,
electromyogram (EMG).

Fifth, we used only PLV to assess functional connectivity in brain. In future, we will explore other metrics such
as Phase Lag Index or entropy-based measures.

5 Conclusion

We tested whether the brain adjusts its functional connectivity structure to enhance behavioral performance during
a prolonged task involving the perception of repeatedly presented similar visual stimuli.

Our results showed that respondents improved their behavioral performance by decreasing response time by more
than 10%. We also observed a ∼ 10% increase in the amplitude–velocity ratio of blinks, indicating increased fatigue
among the respondents as the experiment progressed. Brain activity analysis revealed reduced connectivity in the
theta-band within the occipito-parietal region and between the occipito-parietal and central regions. Importantly,
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these connectivity changes were correlated with improved stimulus processing speed rather than fatigue. We suggest
that these alterations in functional connectivity represent mechanisms of neuronal adaptation, which the brain
employs to enhance the processing of repeatedly presented stimuli.
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