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NONLINEAR MICROWAVES
IN CRYSTALS

Transition to Microwave Generation in Semiconductor Superlattice
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Abstract—We investigate excitation of microwave generation in a semiconductor superlattice under the
effect of the applied constant voltage at near-zero temperature in the absence of the external magnetic field.
It is shown that the generation is caused by the positive feedback arising from the total constant voltage
drop across the superlattice.
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1. INTRODUCTION

Semiconductor superlattices proposed in [1] are
an important subject both for the study and under-
standing of processes in solid state physics [2, 3] and
for the investigation of the observed phenomena from
the standpoint of nonlinear dynamics [4−7]. Due
to the additional potential produced by alternating
thin (about 10 nm) layers of various semiconductor
materials, superlattices show a number of interesting
properties that are not typical of ordinary semicon-
ductors. Interest in semiconductor superlattices is
also maintained by a prospect of creating devices that
operate both in the generation mode [8] and as ampli-
fiers of microwave signals [9]. It is known that the dc
voltage applied to the superlattices can generate, at
its particular value, high-frequency oscillation of the
current through this structure.

Loss of stability of a steady state was theoreti-
cally investigated in [10], but dynamic mechanisms
which cause loss of stability have not been quite
understood so far. In particular, it is not clear what
processes result in formation of traveling charge do-
mains: whether it is due to the fact that the injection
current exceeds a particular critical value or the cause
is the positive feedback which arises from the voltage
drop across the lattice contacts and is able, at certain
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voltage values, to maintain self-oscillation processes.
The study of these mechanisms can be helpful for
predicting processes that take place in the semicon-
ductor superlattice at the pregeneration regime, as in
the Gunn diode [10−12].

In this work we analyze the steady state of the
semiconductor superlattice and processes that lead to
the generation. It is shown that loss of stability of the
steady-state solution and transition to generation are
associated with the feedback effect that maintains a
constant potential difference at the boundaries of the
system.

2. SYSTEM UNDER INVESTIGATION

To describe electron transport in superlattices, we
use the miniband model based on the semiclassical
approach. In this approach the collective dynamics
of charge carriers in the semiconductor superlattices
is described by a self-consistent system of differential
equations, which includes the continuity equation (1)
describing electron concentration variation with time
and the Poisson equation (2) describing electric field
distribution along the superlattice:

∂n

∂t
= −∂J

∂x
, (1)

∂F

∂x
= R(n − 1). (2)

Here we introduce the dimensionless variables n(x, t),
the bulk density of charge carriers, and F (x, t), the
electric field distribution; J(x, t) is the density of
the current through the superlattice, x and t are the
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coordinate and the time, and the constant R = 0.1146
plays the role of a control parameter. Conversion to
dimensionful quantities is through the relations

x =
x′

d′
, t = ω′

B0t
′, n =

n′

n′
D

,

J =
J ′

en′
Dω′

B0d
′ , F =

F ′

F ′
0

, (3)

ω′
B0 =

ed′F ′
0

�
, R =

ed′n′
D

F ′
0ε0εr

,

where d′ = 8.3 nm is the superlattice period, n′
D =

3×1022 m−3 is the equilibrium concentration of elec-
trons determined by the doping level, e> 0 is the
electron charge, F ′

0 = 3.145×106 V m−1 is the nor-
malization value of the electric field, ω′

B0 is the fre-
quency of the Bloch oscillations of electron in the
external electric field F ′

0, and ε0 and εr = 12.5 are
the electric constant and relative permittivity of the
material, respectively. Dimensionful values of the
control parameters are chosen in accordance with the
parameters of the semiconductor superlattices used in
the experiments [6].

Within the drift approximation, the current density
J(x, t) is defined as

J = nvd(F ) + D(F )
∂n

∂x
, (4)

where vd(F ) is the drift velocity of electrons (vd =
v′d/ω′

B0d
′) and D(F ) is the diffusion coefficient defined

as

D(F ) = vd(F )
exp(−κF )

1 − exp(−κF )
, κ =

eF ′
0d

′

k′
BT ′ . (5)

At low temperatures T ′ the current density is cal-
culated with the diffusion term ignored,

J = nvd(F ). (6)

Dependence of the electron drift velocity vd(F )
on the electric field strength plays an important part
in the model. It is this dependence that contains
information on the spatial structure (period d′) and
energy characteristics of the semiconductor nano-
structure, external magnetic field1 B′, and tempera-
ture T ′. Though such parameters as the miniband
width Δ′ (in our case Δ′ = 19.1 meV), the vector of
the magnetic induction B′, and the temperature T ′ do
not explicitly appear in the model equations (1) and

1The external tilted magnetic field can substantially change
the character of the motion of electrons; under particular
conditions electrons are capable of making chaotic oscilla-
tions as a result the resonance between the cyclotron and
Bloch oscillations of the electrons, which in turn causes con-
siderable changes in the generation characteristics [6, 13].

(2) which describe dynamics of charge domains, they
substantially affect the character of the drift velocity
dependence on the electric field strength, vd(F ), and
consequently on the dynamic regimes in the semicon-
ductor superlattice.

We consider the case where the temperature T ′ is
close to zero and there is no external tilted magnetic
field2. In this case, the dependence vd(F ) can be
obtained analytically,

vd(F ) = δv0
Fτ

1 + (Fτ)2
, (7)

where v0 = Δ′/2eF ′
0d

′, δ =
√

τ ′
e/(τ ′

e + τ ′
i ), and τ =

ω′
B0τ

′ (τ ′ = δτ ′
i ) are the parameters characterizing

elastic and inelastic electron scattering. We use the
values τ = 9.9 (τ ′ = 250 fs), v0 = 0.366, and δ = 1/8.5.
Assuming that the emitter and the collector have
ohmic contacts and the density of the current through
the emitter, J(0, t), is governed by the conductivity of
the contact, we obtain from Ohm’s law the boundary
condition

J(0, t) = sF (0, t), (8)

where s = δ′F ′
0/en′

Dω′
B0d

′ = 7.5315 is the emitter
conductance, and δ′ = 3788 cm−1. The voltage V =
V ′/F ′

0d
′ applied to the superlattice can be found from

the condition

V = U + USL, USL =

L∫

0

F dx, (9)

where integration is carried out over the length of the
system L = L′/d′ (in our case L = 13.90). The quan-
tity U = U ′/F ′

0d
′ determines the voltage drop across

the contacts, and USL = =U ′
SL/F ′

0d
′ is the voltage

drop across the semiconductor sample.

3. NUMERICAL MODEL
AND LOSS OF STABILITY

To develop the finite difference model which de-
scribes processes occurring in the system, the super-
lattice is divided into N narrow layers with the width
Δx (we use N = 480 and Δx = L/N = 2.896×10−2).
The system of equations (1) and (2) in the finite
difference representation has the form

Δx
∂n

∂t
= Jm−1 − Jm, m = 1, ..., N, (10)

Fm+1 = R(nm − 1) + Fm, m = 1, ..., N. (11)

2If necessary, the effect of the temperature and the magnetic
field on the drift velocity can be numerically taken into ac-
count by the method described in [14].
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Time realizations of the current through the superlattice: (a) boundary condition J0 = const = 0.0236 and (b) boundary
condition USL = const = 2.446.

The system of (10) and (11) is numerically inte-
grated using the explicit scheme and the step in time
Δt = 0.005. In the generation regime, the current
density is deduced from (6) using the drift velocity
vd = vd(F̄ ) calculated for the average electric field
strength F̄ in the given layer. The total voltage drop
across the superlattice is defined by the relation

V = U +
Δx

2

N∑
m=1

(Fm+1 + Fm), (12)

where U is the voltage drop across the contacts.
Considering formation of regions with a higher con-
centration of charge carriers near the emitter and their
lower concentration near the collector, we describe U
as

U = 2F0Δxl − F0(Δxs + Δxq) + F1Δxs

+ FN+1Δxq −
Rn0(Δxq)2

2
+ F0SR. (13)

Here Δxl = 6.02 is the length of the contacts, Δxs =
1.8 and Δxq = FN+1 − F0/Rn0 are the lengths of
the regions with higher and lower concentrations of
electrons near the contacts, n0 = n′

0/nD = 3.3 is the
concentration of electrons in the contact layer, and
SR = RcAσ′/d′, where Rc = 17 Ω is the contact re-
sistance including the resistance of the measuring
line and A = 5×10−10 m2 is the area of the contact
[4, 6, 8].

The overall current through the superlattice is

J =
A

N + 1

N∑
m=0

Jm. (14)

The results of the numerical integration show that
when the constant voltage Vc ≈ 13.79 is applied to the
sample, periodic current oscillation is generated in the
semiconductor superlattice. However, mechanisms
for the loss of stability of the steady state have not
been established so far; it can be assumed that the
loss of stability results either from the excess of a par-
ticular critical value for J(0, t) (which triggers devel-
opment of instability in the nonlinear active medium)
or from the effect of the positive feedback occurring
through the constant drop of the voltage V. These two
assumptions were verified by integrating the equation
with different boundary conditions imposed. To verify
the first mechanism, the current density at the en-
trance to the superlattice J0 = J(0, t) was kept con-
stant and then gradually increased to the critical value
J0 = Jc ≈ 0.0227 (corresponding to the voltage Vc).
To verify the second mechanism (feedback through
providing a fixed voltage drop across the superlattice),
the boundary condition was given as USL = const and,
accordingly, USL was gradually increased. Note also
that the voltage U at the contacts was ignored in the
numerical integration.

The results of the numerical simulation unam-
biguously indicate that the loss of stability of the
steady state is due to the feedback arising from the
constant potential difference in the superlattice. The
figure shows time dependences of the current. For
convenience, all quantities are given in dimensional
units.

The figure (a) corresponds to the boundary condi-
tion J0 = const = 0.0236 (USL = 2.446) with the cur-
rent J0 being higher than the critical value Jc. The
figure (b) shows a similar dependence under the con-
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dition USL = const = 2.446. It is seen that the mag-
nitude of the current through the superlattice varies
with time, i.e., the steady state is unstable and peri-
odic oscillation occurs in the system.

4. CONCLUSIONS

Thus, the efficiency evaluations of the alternative
mechanisms for the loss of stability of the steady state
have shown that generation in the system is due to
the feedback arising from the constant voltage drop
across the superlattice.
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T. M. Fromhold, “Bifurcations and Chaos in Semi-
conductor Superlattices with a Tilted Magnetic
Field,” Phys. Rev. E. 77(2), 026209 (2008).

8. M. T. Greenaway, A. G. Balanov, E. Schöll, and
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