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Abstract—To model the picture of the external environment,
the brain uses data coming from the sensory system. However,
it is believed that the brain’s representation of the external
environment is formed not only by sensory information, but
also by a priori knowledge, the so-called predictions. This
work considers how the previous sensory information (sensory
prehistory) influences the processing of the current visual stimuli.
Bistable images of the Necker cube with varying degrees of
ambiguity were used as visual stimuli. We found EEG biomarkers
possibly reflecting the effect of prehistory on the brain state and
the ongoing stimulus processing.

Index Terms—ambiguous visual stimuli, EEG, wavelet trans-
formation

I. INTRODUCTION

Analyzing neural activity in the brain is a popular task

that combines physics, mathematics, neurophysiology, etc. It

includes but not limited to the study of epileptic seizures [1],

motor imagery [2], and cognitive functions [3]. Along with

the fundamental meaning, progress in these field may facilitate

the development of both passive [4] [5] [6], and active brain-

computer interfaces [7].

An important topic in neuroscience is studying mechanisms

that the brain uses to interact with the external environment.

It is believed that the formation of the brain’s representation

of the external environment occurs not only due to incoming

sensory information, but also due to a priori knowledge,

called predictions. [8] [9]. Information processing is organized

hierarchically: low levels detail the information, while high

levels interpret the information as a whole. In this concept,

predictions are usually considered by scientists as high-level

processes that act on mechanisms at a lower level in the

processing hierarchy.

The literature shows that the formation of stimuli patterns

occurs due to top-down expectations [10] [11] [12]. The

brain correlates these patterns with external factual information

[13]: patterns are transmitted from high levels to low levels,
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while signals going in the opposite direction encode the

corresponding errors [14]. Thus, predictive signaling reflects

top-down processes, and predictive error signaling represents

bottom-up processing. These processes are interdependent and

always interact with each other [15].

In this work, the subjects were consistently presented with

bistable visual stimuli with different levels of ambiguity.

We have considered the neurophysiological mechanism of

brain processing of these visual stimuli. We analyzed how

the ambiguity of the previous visual information affects the

processing of the current visual stimulus by the brain. We

hypothesized that the previous stimulus might modulate the

subject’s expectation and, therefore, influence the processing

of the next stimulus.

II. METHODS

A. Participants

The experiments involved twenty healthy subjects (16 men

and 4 women) aged 20 to 36 years with normal or adjusted

to normal visual acuity. All the subjects were instructed and

familiarized in detail with the experimental task, and also

signed an informed consent before the start of the experimental

sessions. All participants of the experiment confirmed that

they had not participated in such experiments for the last

6 months. The works on the experiment were conducted in

accordance with the Helsinki Declaration and approved by the

local research ethics committee of Innopolis University.

B. Task

The Necker cube was used as an ambiguous visual stimulus.

All images were divided into two groups: images with high

degree of ambiguity (HA stimuli) and images with low degree

of ambiguity (LA stimuli). The entire experiment lasted about

40 minutes for each participant, including short EEG record-

ings at rest before and after the main part of the experiment

[16]. During the experiment, subjects perceived the cubes

with varying degrees of ambiguity presented on the screen in

random order. Participants in the experiment were instructed
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to determine the orientation of each Necker cube and report

their choice using the joystick (the left button corresponds to

the left orientation of the image, the right button corresponds

to the right orientation of the image). To assess the behavioral

response of the subjects, we measured the reaction time to each

visual stimulus (RT). RT was calculated as the time elapsed

from the moment the visual stimulus was presented to the

moment the subjects pressed the button.

C. EEG recording

To register EEG signals, we used the method of monopolar

registration, as well as an extended classical scheme of the

arrangement of electrodes 10-10. We recorded 31 signals with

two reference electrodes A1 and A2 on the earlobes and a

ground electrode N just above the forehead.The signals were

obtained using Ag/AgCl adhesive electrodes. The electrodes

were attached to the surface of the head using Tien–20

paste (Weaver and Company, Colorado, USA). Increasing the

conductivity of the skin, as well as reducing its resistance,

was carried out using an abrasive gel ”NuPrep” (Weaver and

Company, Colorado, USA).

We monitored the resistance of the electrodes through-

out all the experimental sessions. Typically, these values

did not exceed 2-5 kΩ. For amplification and analog-to -

digital conversion of EEG signals, an electroencephalograph

“Encephalan-EEG-19/26”(Medikom MTD company, Tagan-

rog, Russian Federation) with several EEG channels and a

two-button input device (keyboard) was used.

D. EEG preprocessing

The raw EEG signals were filtered by a bandpass filter with

a finite pulse response with cut-off points of 1 Hz and 100 Hz

and a 50 Hz notch filter using an integrated hardware and

software package. The removal of eye blinking and heartbeat

artifacts was performed by independent component analysis

(ICA) using the EEGLAB software. Since artifacts with high

amplitudes were present on the EEG recordings, we excluded

the tests where such artifacts were present. As a result, out of

the initial 400 trials, we left 320.

We divided the received EEG signals into equal segments

of 4 seconds in length. Each such segment contained an EEG

recording associated with the demonstration of one Necker

cube, including a 2-second interval before and a 2-second

interval after the demonstration of the Necker cube.

We grouped the cubes LA and HA based on the ambiguity

level of the previous cube. In addition, we took into account

the ambiguity of the cube represented by two cubes earlier

(the second is the previous one). Finally, we have formed

four conditions for the HA and LA stimuli: condition 1 –

both previous cubes have a low level of ambiguity (LA-

LA); condition 2 – the first previous cube has a low level

of ambiguity, and the second previous cube has a high level

of ambiguity (HA-LA); condition 3 – the first previous cube

has a high level of ambiguity, and the second previous cube

has a low level of ambiguity (LA-HA); condition 4 – both

previous cubes have a high level of ambiguity (HA-HA). We

leveled the number of EEG recordings for all conditions. As

a result, 16 records were considered for each condition.

E. EEG analysis

We calculated the spectral power for each trials in the

frequency range 4-40 Hz using the Morlet wavelet. The

number of cycles (n) was defined as n = f , where f is the

frequency of the signal. The wavelet analysis was performed

in the Matlab environment using the Fieldtrip toolkit. Intervals

of 0.5 seconds on each side of the record were reserved

for calculating the power of the wavelet. As a result, we

considered the power of the wavelet at the interval of 3

s, including the prestimul state (from -1.5 to 0 s) and the

activity associated with the stimulus (from 0 s to 1.5 s). For

the resulting wavelet power, we considered the event-related

spectral perturbations (ERSP) (visual stimulus demonstration)

using the baseline correction [stimulus – baseline]/baseline.

III. RESULTS

The analysis of behavioral responses showed that the ambi-

guity of the previous visual stimulus affected the time that the

subject spent on identifying the current image. The response

time was lower if the previous and current visual stimuli

had the same level of ambiguity. Based on these results, we

compared the prestimulus activity between condition 1 and

condition 4. We found a significant negative cluster in the

frequency range of 16 - 18.75 Hz, localized in the occipital

and parietal regions of the brain (O2, Pz, CPz channels). The

spectral power of this cluster in condition 4 was higher than

in condition 1.

IV. CONCLUSION

We analyzed the response time and cortical activity at the

sensor level in a group of subjects during ambiguous visual

stimuli classification task. A cluster in the pre-stimulus state

was found to correlate with the effect of previous visual

stimuli on the processing of the current visual stimulus. At the

same time, there were no significant differences between the

conditions either for the time of presentation of the current

Necker cube, or for the ratio of orientations of the current

visual stimuli. Thus, we conclude that the observed change

in spectral power was caused only by the ambiguity of the

previous stimulus, but not by the duration of the experiment

or the current orientation of the stimulus.
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