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Research on real systems relies now on processing big experimental data volumes. Recognition of short 
oscillatory patterns corresponding to different states of complex non-stationary systems requires new processing methods. 

Design of a mathematical model for objective and expertise-independent recognition of patterns corresponding to 
various states of real systems.
non-stationary multichannel data. A mathematical realization of the model is described in terms of continuous wavelet 
transformation. Human brain activity states can be recognized automatically for the analysis of long EEG registrations. The 
proposed mathematical model application is demonstrated by the example of processing human EEG signals non-invasively 
recorded in the occipital scalp region. We demonstrate successful recognition of various human states based on the analysis 
of EEG from the visual analyzer area. We discuss the analysis of various patterns in experimental data corresponding to 
the state of active visual recognition of objects. This modelling method can be recommended for 
neurophysiological data processing. 
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Introduction

The modern development of natural sciences and 
the practical application of their results poses the 
task of investigating complex objects, described, 
in general, by a large number of recorded noisy sig-
nals coming through many channels. The study of 
such signals is of considerable interest, in particu-
lar, for neurophysiology, and some other scientific 
fields [1–6]. At the same time, special attention is 
drawn to the problems of selection of short time in-
tervals (“patterns”) from the structure of these sig-
nals. A large number of publications are devoted to 
the problems of selection and analysis of patterns 
[1–3, 5]. Today continuous wavelet analysis is one of 
the tools recognized for such processing. However, 
most modern techniques require expert evaluations 
at different stages of processing real signals, which 
makes this processing more difficult and expensive 
and it’s capable of introducing subjective distor-
tions in the analyze results.

Pattern Selection and Classification Model

Let the signal {X(t)} consist of n components: {X(t)}  
 {x1(t), …, xi(t), …, xn(t)}. Each component xi(t) of the 

signal {X(t)} is the recording of a strongly non-station-
ary process of a real system in one of the n channels.

For mathematical modeling, we introduce the 
following assumption. Let each one-dimensional 
signal xi(t), registered in channel i of the multivar-
iate signal {X(t)} in the time period [Ts, Ts t], be a 
linear superposition written in the following form:

 

( ) ( ) ( ) ( ),   (1)

where ( )  — signal component having a closing to 
the stationary frequency  for time registration t 

in a certain interval ,  for j,  is the scale 

factor of the level of the presence of the component 
( )  in the signal xi(t). Further, let us assume that 

the number of components ( )  significant for the 
processing and analysis problems is finite and takes 
the value of np, and the remainder terms of the sum 

( )  can be referred to regular disturbances 

y(t). Then expression (1) takes the form:

 

( ) ( ) ( ) ( ) ( ).

 

 (2)

Performing continuous wavelet transform 
(CWT) for each one-dimensional signal xi(t), we ob-
tain: 
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( , ) ( , )

( , ) ( , ) ( , ).   (3)

The CWT for an arbitrary signal z(t) in the gen-
eral form is defined as follows [7]: 

 

( , ) ( ) * ,   (4)

where s,t0
(t) is the maternal wavelet, complex 

function; s is the time scale defining the width 
of the wavelet; the symbol “*” denotes complex 
conjugation. Note that the time scales s of the CWT 
allow a transition to the classical frequencies f of the 
Fourier spectrum, therefore, for convenience and 
simplicity of the interpretation of the results, we will 
consider the results in the traditional plane (f, t0). 

In considering expression (3), it is easy to see 

that each term of the form ,  is close to 

the stationary value  of the skeleton sc of the 

CWT at time intervals ,  and, in this case, expres-
sion (3) takes the form: 

 

( , ) ( , )

( , ) ( , ).

 

 (5)

Thus, for selection of the desired patterns nec-
essary for the study of experimental signals, it is 
sufficient to introduce the skeleton characteristics 
of the CWP of the original signals in the manner 
described below. For the initial one-dimension-
al signal xi(t) for each instant t0, we introduce the 
instantaneous spectral slice  of the CWT 

, :  

 
, .   (6)

Over the whole significant frequency range f, 
f (Fmin; Fmax) Hz, for each instant t0, we define 

the np extrema max ,  which are the local 

maxima of the dependence  (6) which ,  

where p 1, 2, …, np corresponds to the number of 
the extremum in the order of their decrease; i — 
as well as the registration channel number in the 
multivariate signal {X(t)}. Thus, the skeleton of the 
wavelet transform takes the form: 

 
,  .   (7)

For each channel register with a sampling fre-
quency time exceeding 250 Hz, the multidimen-
sional signal {X(t)} described above can be calculat-

ed origin minimum quantity np 5 skeletons ,  
further calculation is not always possible, leading 
to the situation. 

... .

In practice, for the signals {X(t)} of the experi-
mental nature, it is often sufficient for an investi-
gation to analyze np  2…3 skeletons .

So, based on the model (5) for each channel xi(t) 
of the multivariate signal {X(t)}, we calculate the dis-
crete set of skeletons {sс}, where p 1…np and i 1…n. 
At each instant t we introduce the Heaviside func-
tion of the following form: 

 

,
( ) .

, ( , )
 

 (8)

Here, the frequencies ,   can be chosen 
both on the basis of exclusively a priori representa-
tions of the desired pattern, i.e., the component 

( )  close to stationarity has the frequency fp and 

, ,  so and by means of automated search 
over the entire frequency range (Fmin; Fmax) Hz. 
Next, we take into account a certain stationarity 
of the frequencies  of the desired patterns in 

the experimental signal xi(t), introducing the time 

analysis of the function ( )  (8): 

 
( ) ,   (9)

where the selection of the parameter t is carried 
out by means of a sliding window with respect to 
the time duration of the recorded signal xi(t) with 
the following condition: 

 
. .   (10)

For a multidimensional signal {X(t)}, one can 
proceed from an analysis of the multidimensional 

function , ..., , ...,  

to a one-dimensional resulting function of the 
following form: 

 

,
 

 (11)

where n is the dimension of the original multivariate 
signal {X(t)} (n — the number of registered 
channels). This integral function  is capable 
of taking a maximum value as 1 and a minimum 
value 0.

We analyze the dynamics of function Hsc(t) for 
the objective separation of experimental signal pat-
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terns. Further classification of patterns is based on 
the analysis of frequencies fp (8), time intervals t 
(9) and their possible dynamics over time of the to-
tal recording time T of the signal {X(t)}. The mathe-
matical modeling carried out is designed to fill the 
lack of automated techniques that would be capable 
of identifying and classifying patterns without in-
volving experts in processing multicomponent mul-
tidimensional experimental {X(t)} signals.

Practical Relevance 

We illustrate the practical using of the devel-
oped model on the neurophysiological data — the 
human electroencephalogram. The electroenceph-
alogram (EEG), which is the sum of electrical cur-
rents that are generated by a small group of neurons 
and recorded using an electrode, is one of the most 
widespread brain signals that are used in research 
[8–11]. Since the neural network of the brain is a 
very complicated oscillatory system, the EEG sig-
nal also has a very complex spectral structure with 
a few frequency ranges (delta, alpha, beta, gamma, 
etc.), different characteristic rhythms, and oscil-
latory patterns that attract interest of researchers 
both during the study of different pathologies (e. g., 
epilepsy) and during analysis of different function-
al tests and cognitive processes [3, 6, 9–11].

Experimental Data

In our physiological experiment with EEG activ-
ity registration we used a set of images based on a 
well-known bistable object, the Necker cube [12] as 
a visual stimulus. Ambiguous (bistable) stimuli are 
a very useful tool for studying the decision-making 
process [13–16]. This is a cube Necker with trans-
parent faces and visible ribs; an observer without 
any perception abnormalities treats the Necker cube 
as a 3D-object thanks to the specific position of the 
cube ribs. Bistability in perception consists in the 
interpretation of this 3D-object as to be oriented in 
two different ways, in particular, if the different 
ribs of the Necker cube are drawn with different in-
tensity. In our experimental works we have used the 
Necker cube images with varying parameter I to be 
the brightness of the cube wires converging in the 
right upper inner corner (Fig. 1, a). The brightness 
of the wires converging in the left lower inner cor-
ner is defined as (1 – I). 

The experimental studies were performed in ac-
cordance with the ethical standards of the World 
Medical Association [17]. Six healthy subjects from 
a group of unpaid male volunteers, between the 
ages of 20 and 25 with a normal visual acuity par-
ticipated in the experiments. The purpose of this 

experiment is the study of multichannel EEG data 
registration in the unconscious decision on ambig-
uous image interpretation. We demonstrated the 
Necker cube images with different wireframe con-
trasts for a short time, each lasting between 1.0 and 
1.5 s, interrupted by a background abstract picture 
for 5.0–5.5 s. The using of the background abstract 
images allows the neutralization of possible nega-
tive secondary effect of the previous Necker cube 
image. The whole experiment lasted about 40 min 
for each patient. During the experiment we exhib-
ited the pictures of the Necker cube randomly, all 
for about 150 times, and recorded brain activity 
with multi-channel EEG. As a tool for EEG record-
ing we used the electroencephalograph– recorder 
Encephalan-EEGR-19/26 (Russia) with multiple 
EEG channels and the two-button input device. To 
study EEGs the monopolar registration method 
and the classical ten-twenty electrode system were 
used [18]. 

Figure 1, b shows an example of a typical EEG 
data set from EEG registration channels of occip-
ital area, corresponded the visual analyzer area. 
It seems occipital region associated with cognitive 
processes of perception of complex spatial objects, 
which include the Necker cube.

Processing of Experimental Data 

In our experimental studies we recorded EEG da-
ta during the sufficiently regular ambiguous percep-
tion of complex objects. Between the two moments of 
the perception of ambiguous object associated with a 
spatial imagination Necker cube, a pause is enough 

1 s 
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Necker cube

Right 
Necker cube

 a)

O2

O1

P4

P3

Oz

Pz

POz

t, sLeft
Necker cube

Right
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 b)

 Fig. 1. Examples of Necker cube images (a) and typi-
cal segments of the EEG recording from O1, Oz, O2, POz 
P3, Pz, P4 channels (b). Vertical lines show the time mo-
ments of presentation of various Necker cubes images to 
the volunteer
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to restore the background activity is not associated 
with the cognitive process of spatial modeling. At 
the moment, we are not interested in causes, for ex-
ample, the phenomenon of cognitive noise, forcing 
Necker cube with intensity I perceived as the “left” 
and “right” [11, 19–21]. However, we directly fo-
cused on the processes that occur in the perception 
and the internal filling volume of a two-dimensional 
object Necker ambiguous image. 

We consider the main characteristic of the frequ- 
ency range of [Fmin; Fmax]: [Fmin; Fmax]  [8–12] Hz 
for alpha-rhythms, [Fmin; Fmax]  [30–40] Hz for 
betta-rhythms, [Fmin; Fmax]  [4–7] Hz for delta/
theta-rhythms [22].

Next, for each presentation of the cube, we cal-
culate the function (11) for alpha-, beta- and delta/
theta-activity on the EEG data in time intervals cor-
responding to different stages of the visual stimulus 
perception. We distinguish three stages in this ex-
perimental data: (i) the state before the presentation 
of the cube, the passive waiting, (ii) the state when 
the cube is presented, the active recognition, (iii) the 
rest state after the recognition, passive state. To de-
termine the time duration of these stages we used the 
following design of preliminary experiments. After 
each presentation of the cube, the person had to tell 
the character of his recognition of this bistable ob-
ject (the left or right cube of Necker) by pressing the 
remote control. Preliminary studies were conducted 
on 15 volunteers and showed that the duration of the 
active stage is about 0.6 s. Function  (11) was 

calculated for a given time interval t 0.6.

Results

The result of the selection three types of EEG 
patterns shown in Fig. 2 for different states of 
brain visual analyzer. For the Fig. 2 first and last 
states “before/after perception of ambiguous image 
(Necker cube)” are characterized by the predomi-
nance of low frequencies (alpha- and delta-rhythms). 
To obtain this statistic, the calculated function 

 (11) was averaged over all experimental 
events (about 150).

Active state characterized a pronounced high- 
frequency activity is observed. It is clear that visual 
analysis is not enough, and we propose a method for 
an estimation of level and nature of beta-activity 
for occipital region in the human brain. For this, 
well traced throughout the duration of the process-
es associated with the recognition of ambiguous im-
ages for the majority of volunteers. Note that one 
volunteer with displacement of the pattern frequen-
cy to 25–32 Hz was found in the processing data. 
However, it is clear that this fact is easily detected 
and can be corrected adaptation algorithm. Now we 
are limiting our processing of multi-channel EEG 

data exceptionally occipital area of a brain electri-
cal activity registration, in particular O1, Oz, O2, 
POz, P3, Pz, P4 channels of the classical ten-twenty 
electrode system [12, 23–25]. 

According to modern concepts of betta and al-
pha, EEG activity in the occipital region of the 
scalp is related to the processes of human visual 
analyzers [24–27]. With alpha activity, the process-
es of human relaxation are traditionally associat-
ed, occurring either with closed eyes, or in a calm 
environment without pronounced external stimuli. 
Betta-processes are associated, most likely, with 
the activity of the visual analyzer when recogniz-
ing complex objects and/or with processes of focus-
ing on visual objects.

In Fig. 2, the recognition of the stage of human 
recognition of a visual bistable object (stage “per-
ception”), associated with a fall in the level of alpha 
activity and an increase in betta. At the same time, 
the delta activity sharply disappears in the active 
stage and remains at a single level for the passive 
stages. However, the stage after recognition shows 
a somewhat higher level than in the process of wait-
ing for the next visual stimulus.

All the results obtained, as shown, lie in the 
mainstream of modern science, allowing demon-
stration of the activation of visual analyzer in the 
process of periodic recognition of a complex visual 
object. At the same time, it was possible to reveal 
a nontrivial effect of increasing the delta/theta-ac-
tivity at the end of stimulus recognition, than with 
its expectation.

Conclusion

We propose a new method of short episodes of ac-
tivity (patterns) modeling for complex nonstation-
ary multichannel data. A mathematical realization 
of the model is described in the terms of a continu-

Before
perception

Perception After
perception

< 7>

< 7>
< 7>

0

1

< 7>

< 7>
< 7>

< 7>

< 7>

< 7>

 Fig. 2. Averaged criteria < 7>, < 7>, < 7> during 
different phases of bistable stimulus perception
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ous wavelet transform. The application of the pro-
posed mathematical model is demonstrated by the 
example of the processing of human EEG signals 
non-invasive recorded in the scalp occipital region. 

We demonstrate the success of recognition of 
various human states based on analysis of the EEG 
from visual analyzer area. The results of these 
studies appear promising for further study of the 
dynamics and the activity of the cerebral cortex in 

cognitive processes of various kinds. The technique 
is based on the calculation of the wavelet skeleton, 
it is universal for the study of various processes. 
Furthermore, this approach is highly customizable 
to individual features volunteers that allows the 
theoretical possibility of that using in the biofeed-
back systems.

This work has been supported by Russian Science 
Foundation (grant No. 16-12-10100).
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Математическая модель выделения паттернов сложных многоканальных сигналов в применении к обработке 
электроэнцефалографических данных 

Руннова А. Е.а, канд. физ.-мат. наук, доцент, orcid.org/0000-0002-2102-164X, anefila@gmail.com
аСаратовский государственный технический университет им. Гагарина Ю. А., Политехническая ул., 77, Саратов, 

410054, РФ 

Введение: в настоящее время исследование реальных систем опирается на обработку больших объeмов экспериментальных 
данных. Распознавание коротких колебательных паттернов, соответствующих различным состояниям сложных нестационарных 
систем, требует новых методов обработки. Цель: разработка математической модели для объективного и независимого от экс-
пертных оценок распознавания паттернов, соответствующих различным состояниям реальных систем. Результаты: предложен 
новый метод моделирования коротких колебательных событий (паттернов) для сложных нестационарных многоканальных дан-
ных. Описано применение модели на основе подхода непрерывного вейвлет-преобразования. В автоматическом режиме может 
осуществляться поиск искомых состояний активности мозга человека для анализа длительных ЭЭГ-регистраций. Применение 
представленной математической модели демонстрируется на примере обработки человеческих ЭЭГ-сигналов, регистрируемых 
неинвазивным методом в затылочной зоне скальпа. Показано успешное распознавание различных состояний человека, основан-
ное на анализе электроэнцефалографических данных проекции зрительного анализатора. Описан анализ различных паттернов в 
экспериментальных данных, соответствующих активному состоянию зрительного распознавания объектов. Практическое при-
менение: использование описанной математической модели может быть рекомендовано для обработки нейрофизиологических 
данных.

Ключевые слова — математическое моделирование, нестационарные сигналы, непрерывное вейвлет-преобразование, элек-
троэнцефалография, математическая обработка ЭЭГ.
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