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Abstract—An algorithm for numerically integrating the equations of motion for large particles is formulated.
The algorithm is represented in three forms—an explicit form, a predictor—corrector form, and a modified
form that is intended for simulating the motion of relativistic particles in an electromagnetic field. The order
of precision of the proposed algorithm is analyzed. The results of a comparison with standard algorithms are
presented. The efficiency of this algorithm is demonstrated in considering the test example of a harmonic
oscillator and in numerically simulating the Pierce diode in the mode of virtual-cathode formation.
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INTRODUCTION

State-of-the-art methods for numerically simulat-
ing and analyzing processes accompanying the inter-
action of electron and ion flows with electromagnetic
fields play an ever increasing role in modern electron-
ics and plasma physics [1—7]. In simulating beam—
plasma systems, various particle-method modifica-
tions, which make it possible to solve efficiently rele-
vant problems [1, 7], are some of the most promising
and widely used approaches. We emphasize that, in
simulating electron flows interacting with electromag-
netic fields by using any modification of the particle-
method, it is necessary to solve numerically the equa-
tions of motion for large particles.

The rate and accuracy of these calculations play an
especially important role in employing particle-in-cell
(PIC) methods in which case it is necessary to calcu-
late many times trajectories and velocities for millions
of particles. In the present article, we describe an effi-
cient method intended for numerically integrating
equations of motion and based on the ideas put forth
in [8].

In the nonrelativistic case, the motion of a large
particle is described by Newton’s second law:

Basic parameters that describe the state of a parti-
cle are its coordinate x(f) and its velocity v(¢) and
acceleration a(?).

These quantities are related by the equations
X = v,

X =v=a.
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1. FORMULATION OF THE ALGORITHM

We define the values of a function and its even and
odd derivatives within different time layers [1], as one
can see in the figure. Accordingly, we have

Xevar— % — - (1)
At t+ oAt
2
Xions = X, + VH%AtAf, 2)
t+lAl_ Vi
2 =
1At r+iar
2 3
1
1 = Vf+ -a 1 At.
t+§At 2 Hz_tAf

The value of a. i, is extrapolated by using the

acceleration values at the preceding two time steps
(a,_ »;and a)); that is,
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Disposition of time steps in the finite-difference scheme
being considered.
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= ‘l‘_(sat_at—At)' 4

a |
t+-At
4
Substituting Egs. (4) and (3) into Eq. (2), we obtain
an expression for x, | ,,in the form

X,onr = X+ V,AL+ é(Sa,—a,,A,)AIZ.

In order to refine the value of x, , ,,, we interpolate
ol by using the values of a,and a, , (X, A,); thatis,
4

1
1,, = Zl_(at+At+3at)' (5)

t+-At
4

Substituting Egs. (5) and (3) into Eq. (2), we obtain
the following expression for the corrector of the coor-
dinate:

Xevnr = X+ VAL+ é(at+At + 3ar)At2- (6)

We now find an expression for v,,,, by using
a, . aX; . ar)- As a result, we arrive at

Viear= Y 1y,
2
1 at+§At’ 7
At 4
>
=134, +a) (8)
I+3At 4 1+ At t)-

By using Egs. (1) and (8), we recast expression (7)
into the form

1 2
Viealdt = x,+A,—xt+§(3a,+A,+a,)At . )

Ultimately, the algorithm in the predictor—correc-
tor form is specified as follows.

The predictor is

X, a = X+ V,AL+ é(Sa,—a,_A,)Atz. (10)
The corrector is given by
Xpear = X VAT (a0 +30)AF, (1D
1 —
Vig Al = X0 =X+ §(3a,+A,+a,)At2. (12)

The number of iterations in the corrector can be
controlled by the difference of the values of x;, ,, at
different correction steps.

Employing Eq. (10) to determine the coordinate
and substituting Eq. (10) into Eq. (12), we recast the
algorithm into an explicit form; that is,

13)

1 2
Xepar = X+ VAL+ é(sat_at—At)At )

1
Viear = Vt+§(3ar+At+6at_ar—Ar)At- (14)
The algorithms specified by Egs. (10)—(14) can be
used only in the case where q, is independent of v,. If
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electrons move in a magnetic field or at relativistic
velocities, this condition does not hold. In such cases,
it is also necessary to predict the value of v, ,,; that is,
Viear— YV _ _ l _

A7 =4 1, = 2(3at a;_a1)s

2 (15)

1
Viear = Vi 5(3‘11_ a, )AL

In order to correct the value in (15), we can use
expression (14).

The algorithm that we constructed here is rather
close to Beeman’s (Beeman—Schofield’s) algorithm.
For a comparison to be convenient, both algorithms
are presented in Table 1.

2. DETERMINATION OF THE ORDER
OF PRECISION OF THE ALGORITHM

We now determine the order of precision of the
proposed algorithm. For this, we employ a Taylor
series in basic expressions. For expression (2), we rep-
resent X, , 5, and x, in the form

1
Yrear= xr+%At+%At h xt+%At * EVHlAtAt
(16)
vla AP e Ly | Aarvoar,
8 t+§At 48 f+§At
1
x,=x 1 1 =X 1. — =V At
t+§At—§At t+§At 2 t+§At
(7)
+1a 1 At2—1

—b |, At+O(AD.
8 r+§At 48 t+§Ar

Subtracting Eq. (17) from Eq. (16), we arrive at
_ 1 3 4
Xipnr = X+ vt+%AtAt+ 2—4bt+%mAt +O(Ar). (18)
We now perform similar transformations for
expression (3). We have

=V
f+lAt 1 1

t+-At+-At
2 4 4
1 1 2 3
= 1 + -a 1 At+"—b 1 At +0(At ),
t+-At 4 t+-At 3D t+-At
4 4 4
v, =V
! r+iar-1as
4 4

—v , “Ya aredy | AP O
HZAI 4 HZAI 32 t+1At

After the subtraction, we obtain

_ 1 3
t+%Ar = v, + 5”,+iA,A’+ O(AY). (19)
For expression (4), we have
_ 1 2
aHiAt = a,+ Zlb'AH- O(AY), (20)
a,_n = a,—bAt+O(AF). (21)
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Table 1. Basic relations for the proposed algorithm and for Beeman’s algorithm

Our algorithm

Beeman’s algorithm

Predictor—corrector form

Predictor
Xppnr = X+ VAL+ é(Sat— a,_A,)At2 + O(Ats)
Corrector

X\ a = X+ VAL é(a,+ 3a,)Ar + O(AF)

Vieas = S 1(3a,, o+ a) A1+ O(AT)

Predictor
Xponr = X+ VAL + é(4at— a,_A,)At2 + 0(At4)
Corrector

X\ a0 = X+ VAL+ é(a, +2a,)AF + O(A)

Vieas = S 4 (2a,, 0 A1+ O(AT)

Explicit form

X\ a = X+ VAL+ é(5¢z,—a,w)Az2 + O(AF)

1 3
Viear = Vit §(3ar+m +6a,—a, ,)At+O(Ar)

X\ a = X+ VAL+ é(4a,— a,_\ AP +O(Af"

1 3
Viear = Vit 8(2a,+A,+ S5a,—a,_,)At+ O(Ar)

Modified predictor—corrector form

Predictor

X a = X+ VAL é(Sat—a,_A,)At2+0(At3)

1 3
Vigar = Vit 5(3at— a,_p)At+ O(Ar)
Corrector

X\ p = X+ VAL+ %(a,wﬁ 3a,)AF + O(AF)

1 3
Viear = Vt+ §(3ar+At + 6(1,— at—At)At"' O(At )

Predictor

Xponr = X+ V,AL+ é(4a, - a,_A,)At2 + 0(At4)

1 3
Vigar = Vit 5(3(1,— a,_pn)At+ O(Ar)
Corrector

Xpoar = X, + VAL+ é(aHA, + 2a,)At2 + 0(At4)

1 3
Viear = Vit é(zat+At+ 5a,—a,_p)At+ O(Ar)

By using the representations in (20) and (21), we
express a, , »,in two ways: first, we multiply Eq. (20) by
the factor of 4 and add Eq. (21) to the result; second,
we multiply Eq. (20) by the factor of 3 and add Eq. (21)
to the result. We then obtain the expressions

1
%ty = ;‘(Sa,—a,_A,)+0(Ar2), (22)
_ 1 1 2
s = 3(4a-a, ) = b A+ O(AY).  (23)

Substituting in turn Egs. (22) and (23) into Eq. (19)
and thereupon the result into Eq. (18), we obtain
expressions for the predicted particle coordinate in the
form

1
Xipar =X, VAl + é(saz_ atht)At2

1

+ 2—4b,Ar3 +O(AF) = x, + v, At (24)

+ é(Sa,— a, AP +O(AF),

X, = X+ v,Al+ é(4at—a,_N)At2+0(At4). (25)

Expression (25) corresponds to Beeman’s algo-
rithm [8]. From Eq. (24), one can see that the pro-
posed algorithm determines the position to the third
order of precision, but, at small values of A7 and b, (this

depends on the character of motion), the term 2i4 bAP

may tend to zero (for example, in the case of motion at
a constant acceleration). It should also be noted that
the coefficient 1/8 = 0.125, which is a decimal frac-
tion, is used in Eq. (24) in contrast to the coefficient
1/6 in Beeman’s algorithm. The latter leads to the
appearance of a rounding error because of the replace-
ment of an infinite decimal fraction by a finite frac-
tion.

In a similar way, one can determine the order of
precision for the remaining expressions.
2014
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For relations (6) and (9), we have

X,on =X, + VAL + é(“nm + 3a,)At2
(26)
+ L p AP v oA
24" ’

1 2
Vi aAlAE =Xy n— X+ §(3at+At +a,)At
| (27)
— —b,AL +O(AT).
Lar+o(ar)

After the substitution of Eq. (26) into expression (27),
which is of the second order of precision, we obtain an
expression corresponding to Eq. (14) and ensuring the
third order of precision; that is,

1
Viear = Vi §(3at+Af+ 601_ atht)At'i' O(Ats)-

The results obtained by estimating the order of pre-
cision for all forms of our algorithm are given in Table 1.

Table 1 shows that Beeman’s algorithm determines
the coordinate to the fourth order of precision and the
velocity to the third order of precision; thus, this algo-
rithm has a total error of the third order. The method
that we proposed has the second order of precision in
the predictor—corrector form and the third order of
precision in the explicit form and in the modified pre-
dictor—corrector form. In addition, our algorithm is
more stable, as was shown above, with respect to
rounding errors owing to the use of the coefficient 1/8
instead of 1/6. We also note that a high degree of
energy conservation and a low sensitivity to rounding
errors owing to the fact that the difference of markedly
different numbers (4a, — a,_,,) is calculated in Bee-
man’s algorithm, are advantages of this algorithm. In
our algorithm, one calculates the difference (5a, — a,_ »,)
of numbers that differ more strongly (than in Bee-
man’s algorithm).

3. NUMERICAL COMPARISON
WITH OTHER ALGORITHMS

In order to evaluate the properties of our algorithm
in practical applications and to perform a comparison
with other methods, we will simulate numerically the
motion of a harmonic oscillator. In one-dimensional
space, its equation of motion has the form

a=-ox (28)

The analytic solution of this equation is
x = C,cos(w?) + Cysin(w?).

The constants C; and C, depend on initial condi-
tions

We performed calculations on the basis of the fol-
lowing methods: (i) the velocity Verlet algorithm,
(ii) Beeman’s algorithm in the explicit form, (iii) fourth-
order Runge—Kutta method [the second-order equa-
No. 3
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Table 2. Implementation time, ms
Number of points
Algorithm
10° 104 10° 10° 107

Verlet 0.67 6.82 57 552 5585
Beeman’s 0.63 6.07 59 610 6102
RK4 34.4 351 3544 | 35203 | 351758
Our 0.63 5.95 58 601 6001

tion in (28) was reduced to a set of first-order equa-
tions], and (iv) our algorithm in the explicit form.
The velocity Verlet algorithm is a numerical
method that is intended for solving equations of
motion. Beeman’s algorithm is its modification that
preserves energy better.
The velocity Verlet algorithm can written as

X;onr = X, + VAL+ %a,Atz,

1
Viear = Vit é(at+At+at)At'

The Verlet algorithm, Beeman’s algorithm, and the
algorithm proposed in the present study are special
algorithms intended for integrating second-order dif-
ferential equations. A higher rate of respective calcula-
tions is their basic advantage over algorithms for first-
order differential equations. The calculation of the
force (or acceleration) at each time step is performed
four times in the Runge—Kutta method but only once
in the algorithms quoted above. It follows that, in the
case where the calculation of the force consumes a
dominant portion of computer time, the above special
algorithms are four times faster. But if the determina-
tion of the force requires a smaller volume of calcula-
tions than the algorithm itself, then the special algo-
rithms prove to be faster by a factor of several tens. For
the example being considered, in particular, the spe-
cial algorithms are more than 60 times as fast as the
Runge—Kutta method (see Table 2).

In the methods being considered, the error in eval-
uating the coordinate manifests itself differently. In
the Runge—Kutta method, there occurs an accumula-
tion of the error, and the solution becomes degenerate
at large values of the step and for a wide interval of the
calculations; within the above special methods, the
error in calculating the coordinate leads to a change in
the oscillation frequency, but the amplitude and
energy remain virtually unchanged, which makes it
possible to perform calculations with a large step and
over arbitrarily wide intervals.

Energy conservation is an important factor in sim-
ulating the motion of a particle. Within the special
methods in question, the error in determining energy
does not go beyond specific boundaries over the whole
interval of the calculations. The application of the
Runge—Kutta method entails an accumulation of the
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Table 3. Maximum error in determining energy at = 1000, %

dt, s
Method
0.001 0.01 0.02 0.08 0.1 0.3
Verlet 2.5%10°° 2.5% 1073 0.01 0.15 0.25 2.3
Beeman’s 8 x 107° 8.5x 1074 3.3x1073 0.05 0.08 0.65
RK4 6 x 10712 1.5%x 1077 45x10°° 45x1073 0.015 3.3
Our 6x107° 6.5% 107 4.8x% 1073 3.8x 1073 5% 1073 0.3

error, with the result that that this method preserves
energy poorer over wide intervals of the calculations.

Tables 3 and 4 give the errors in determining the
energy versus, respectively, the step and interval of
integration. These data show that the proposed algo-
rithm preserves energy substantially better than the
other special algorithms. It is noteworthy that the
Runge—Kutta method becomes inferior to the pro-
posed algorithm as the step or interval of the calcula-
tions grows substantially.

4. NUMERICAL SIMULATION
OF NONSTATIONARY DYNAMICS
IN THE CASE OF THE PIERCE DIODE
IN THE MODE OF VIRTUAL-CATHODE
FORMATION

Let us now consider the Pierce diode [7, 9], which
is a classic example of a UHF electronics system fea-
turing intricate nonstationary chaotic dynamics. The
Pierce diode is formed by two infinite plane parallel
grids traversed by an indefinitely wide flow of
monoenergetic electrons. The charge density p, and
the flow velocity v, at the inlet of the diode gap are
maintained at a constant level. The space between the
grids is filled with a neutralizing background of immo-
bile ions, whose density is denoted by p,. The neutral-
izing-charge density is equal to the unperturbed
charge density in the electron flow (p, = —p,).

The development of a nonradiative instability,
called the Pierce instability [9, 10], is possible in this
system under some specific conditions. This instability
is associated with the existence of an external feedback
through the circuit connecting the grids, since they are
grounded [10]. The condition o = ®,L/v, > nt, which

Table 4. Maximum error in determining energy at df = 0.04, %

Method b

103 103 104 10°
Verlet 4%x1072| 4x1072| 4x107%| 4x107?
Beeman’s | 1.4x 1072 | 1.4x 1072 | 1.4x 1072 | 1.4 x 1072
RK4 14x 107 | 1.4x107* | 1.4 x 1073 | 1.4 x 1072
Our 45%x1074.5x107*|4.5x 107* | 4.5x 10~*

leads to the formation of a virtual cathode—a region
lying in the interaction space, reflecting some elec-
trons toward the injection plane, and executing oscil-
lations in space and time [7]—is the condition of
development of the Pierce instability. In [11—13], it
was shown that, in such a system, various regimes of
oscillations, including chaotic dynamics, are possible
in the mode of virtual-cathode formation.

In order to analyze the nonstationary nonlinear
dynamics of a virtual cathode, it is necessary to use a
numerical simulation by the PIC method [1]. In flat
geometry, the electron flow is represented in the form
of large particles (charged sheets) injected at regular
time intervals with a constant velocity into the interac-
tion space. The problem was solved in terms of the
dimensionless variables p = p'/|pol, v = v'/v, t =
t'vy/L,x=Xx/L,and E= E'/o,v,.

For each sheet, one solves the dimensionless non-
relativistic equations of motion

d’x,
——EI = _E(xi)>
dt

where X; is the coordinate of the ith charged sheet and
E(x,) is the strength of the spatial-charge field at the
point whose coordinate is x;.

(29)

In order to calculate the strength and potential of
the spatial-charge field, as well as the charge density,
we introduce an equidistant spatial mesh with a step Ax;.
In the electrostatic approximation, the potential of the
spatial-charge field is determined from Poisson’s
equation, which, in the one-dimensional approxima-
tion, is given by

2
29 - a2 p(x)-1)
dx

(30)

and which is solved for the following boundary condi-
tions: @(0) = @(L) = 0. The strength of the spatial-
charge field is determined by numerically differentiat-
ing the potential values obtained in this way.

In order to calculate the spatial-charge density, we
applied the procedure of linearly weighing particles
(sheets) on the spatial mesh. Within this method, the
spatial-charge density at the ith node of the spatial
mesh—that is, at the point whose coordinate is x,—
can be written as

TECHNICAL PHYSICS Vol. 59
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N
1
x) == O(x;—-x,), 31

P(x) n(); (%, = %)) 31
where x; is the coordinate of the ith particle, N is the
total number of large particles, #, is a computational-
scheme parameter that is equal to the number of par-
ticles per cell in an unperturbed state, and

O(n) = 1—|n/Ax],
0, [nl>Ax

Inl < Ax

is a shape function that determines the procedure of
weighing a large particle on the spatial mesh with a
step Ax.

The problem was solved at the following values of
the numerical-scheme parameters: n, = 8 and Ax =
8.3 x 10~*. This corresponds to the number N, = 1200
of spatial-mesh nodes and to the number N = 19200
of particles in an unperturbed state.

We have considered the following schemes for solv-
ing the equation of motion in (29): the leapfrog algo-
rithm [1], which is the simplest and most frequently
used in dealing with such problems; the Verlet algo-
rithm; and the new algorithm proposed in the present
study. In our test calculations, we have considered two
values of the Pierce parameter, o,; = 1.3t and a,, = 1.2m.
These values correspond to the cases where the regime
of oscillations in the spatially distributed beam—
plasma system is close to a simple periodic regime for the
former and is intricate chaotic for the latter [11—14].
Table 5 gives the results of an analysis of oscillation
regimes for the dimensionless-time step fixed at A =
1.04 x 10~*. In Table 5, we present the results obtained
by estimating the relative inaccuracy 6 = Ae/ Wy in ful-
fillment of the energy-conservation law—following
[1], we define it as the ratio of the macroscopic change
in the total energy, Ag, to the field energy, Wp.

One can clearly see that, in dealing with the Pierce
diode problem, the method that we proposed in the
present study provides an accuracy that is substantially
higher than the accuracy of the traditional leapfrog
algorithm and which is approximately twice as high as
the accuracy of the Verlet method. At the same time,
the leapfrog method is less time-consuming, but it is
much less accurate. Yet another positive facet of the
method that we proposed is worthy of special note. For
periodic and chaotic-oscillation regimes, this method
leads to approximately identical degrees of precision
of fulfillment of the energy-conservation law; more-
over, solutions are virtually independent of the regime
of oscillations in the system. This distinguishes our
method from the other methods under comparison
within which the accuracy of fulfillment of the energy-
conservation law becomes lower upon going over to
the chaotic regime of space—time oscillations. The
reason is that, within the proposed method, the coor-
dinate and velocity and, hence, the energy of particles
executing several oscillations in the interaction space
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Table 5. Relative precision of fulfillment of the energy-con-
servation law and code-implementation time 7 at the dimen-
sionless time step of A = 1.04 x 10~ (the calculation time
corresponds to 200 characteristic oscillation periods)

Pierce parameter, o
Method 1.3m (neayly periodic 1.27 (chaotic regime)
regime)
5, % T, s 3, % T,s
Leapfrog 1.16 3.62 2.61 3.59
Verlet 0.21 4.25 0.39 4.19
Our 0.12 5.32 0.13 5.28

(metastable particles appearing in the chaotic regime
in the virtual-cathode region) are determined with a
rather small error over extended intervals of calcula-
tions.

CONCLUSIONS

The results presented in this article indicate that it
is reasonable to employ the proposed algorithm as a
substitute to Beeman’s algorithm and the Verlet algo-
rithm and, in the case where one has to perform a large
volume of calculations within a limited time, as an
alternative to other popular methods. It is also advis-
able to use the new algorithm in solving problems
involving an analysis of an intricate chaotic behavior
of particle systems, since, in that case, the accuracy of
the solution is virtually independent of the regime of
oscillations in the system, in contrast to what we have
within other methods.
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