
OFFPRINT

Intermittent behavior near the synchronization
threshold in system with fluctuating control

parameter

Alexander E. Hramov, Alexey A. Koronovskii

and Maria K. Kurovskaya

EPL, 105 (2014) 50003

Please visit the new website
www.epljournal.org



A LETTERS  JOURNAL  EXPLORING  
THE  FRONTIERS  OF  PHYSICS

AN INVITATION TO 
SUBMIT YOUR WORK

www.epljournal.org

The Editorial Board invites you to submit your letters to EPL
EPL is a leading international journal publishing original, high-quality Letters in all 

areas of physics, ranging from condensed matter topics and interdisciplinary research 

to astrophysics, geophysics, plasma and fusion sciences, including those with 

application potential. 

The high profile of the journal combined with the excellent scientific quality of the 

articles continue to ensure EPL is an essential resource for its worldwide audience.  

EPL offers authors global visibility and a great opportunity to share their work with 

others across the whole of the physics community.

Run by active scientists, for scientists 
EPL is reviewed by scientists for scientists, to serve and support the international 

scientific community.  The Editorial Board is a team of active research scientists with 

an expert understanding of the needs of both authors and researchers.

IM
PA

CT 
FA

CTO
R

 2
.7

53
*

*A
s r

an
ke

d b
y I

SI
 2
01

0

www.epljournal.org



 www.epljournal.orgA LETTERS  JOURNAL  EXPLORING  

THE  FRONTIERS  OF  PHYSICS

Quality – The 40+ Co-Editors, who are experts in their fields, oversee the 

entire peer-review process, from selection of the referees to making all final 

acceptance decisions

Impact Factor – The 2010 Impact Factor is 2.753; your work will be in the 

right place to be cited by your peers

Speed of processing – We aim to provide you with a quick and efficient 

service; the median time from acceptance to online publication is 30 days

High visibility – All articles are free to read for 30 days from online 

publication date

International reach – Over 2,000 institutions have access to EPL, 

enabling your work to be read by your peers in 100 countries

Open Access – Articles are offered open access for a one-off author 

payment

Details on preparing, submitting and tracking the progress of your manuscript  

from submission to acceptance are available on the EPL submission website 

www.epletters.net.

If you would like further information about our author service or EPL in general, 

please visit www.epljournal.org or e-mail us at info@epljournal.org.

Six good reasons to publish with EPL
We want to work with you to help gain recognition for your high-quality work through 

worldwide visibility and high citations. 2.753*
* As listed in the ISI® 2010 Science  

Citation Index Journal Citation Reports

IMPACT FACTOR

500 000
full text downloads in 2010

OVER

30 DAYS

16 961

average receipt to online 

publication in 2010

citations in 2010
37% increase from 2007

1

2

3

4

5

6

www.epljournal.org

EPL is published in partnership with:

IOP PublishingEDP SciencesEuropean Physical Society Società Italiana di Fisica

“We’ve had a very positive 

experience with EPL, and 

not only on this occasion.  

The fact that one can 

identify an appropriate 

editor, and the editor 

is an active scientist in 

the field, makes a huge 

difference.”

Dr. Ivar Martinv

Los Alamos National Laboratory, 
USA



EPL Compilation Index

Visit the EPL website to read the latest articles published in 
cutting-edge fields of research from across the whole of physics.  

Each compilation is led by its own Co-Editor, who is a leading 
scientist in that field, and who is responsible for overseeing 
the review process, selecting referees and making publication 
decisions for every manuscript.

• Graphene 

• Liquid Crystals 

• High Transition Temperature Superconductors 

• Quantum Information Processing & Communication

• Biological & Soft Matter Physics

• Atomic, Molecular & Optical Physics

• Bose–Einstein Condensates & Ultracold Gases

• Metamaterials, Nanostructures & Magnetic Materials

• Mathematical Methods

• Physics of Gases, Plasmas & Electric Fields

• High Energy Nuclear Physics 

If you are working on research in any of these areas, the Co-Editors would be 

delighted to receive your submission. Articles should be submitted via the 

automated manuscript system at www.epletters.net

If you would like further information about our author service or EPL  

in general, please visit www.epljournal.org or e-mail us at 

info@epljournal.org

Biaxial strain on lens-shaped quantum rings of different inner 

radii, adapted from Zhang et al 2008 EPL 83 67004.

Artistic impression of electrostatic particle–particle  

interactions in dielectrophoresis, adapted from N Aubry 

and P Singh 2006 EPL 74 623.

Artistic impression of velocity and normal stress profiles 

around a sphere that moves through a polymer solution,

adapted from R Tuinier, J K G Dhont and T-H Fan 2006 EPL 

75 929.

 www.epl journal.org

A LETTERS  JOURNAL 

EXPLORING  THE  FRONTIERS 

OF  PHYSICS

Image: Ornamental multiplication of space-time figures of temperature transformation rules 

(adapted from T. S. Bíró and P. Ván 2010 EPL 89 30001; artistic impression by Frédérique Swist).



March 2014

EPL, 105 (2014) 50003 www.epljournal.org

doi: 10.1209/0295-5075/105/50003

Intermittent behavior near the synchronization threshold

in system with fluctuating control parameter

Alexander E. Hramov1,2, Alexey A. Koronovskii1,2 and Maria K. Kurovskaya1

1 Saratov State University - Astrakhanskaya, 83, Saratov, 410012, Russia
2 Saratov State Technical University - Politechnicheskaja, 77, Saratov, 410054, Russia

received 12 November 2013; accepted in final form 25 February 2014
published online 19 March 2014

PACS 05.45.Xt – Synchronization; coupled oscillators
PACS 05.45.Tp – Time series analysis
PACS 05.40.-a – Fluctuation phenomena, random processes, noise, and Brownian motion

Abstract – In this paper the characteristics of the intermittent behavior observed near the syn-
chronization threshold of a periodic oscillator driven by the external harmonic signal are studied
in the case when the amplitude of the external signal fluctuates, i.e., it changes its value randomly
in some moments of time. The analytical law for the distribution of the laminar phases lengths has
been deduced. The very good agreement between the discovered theoretical law and the results
of numerical simulation has been shown.

Copyright c© EPLA, 2014

Introduction. – Intermittency is well known to be an
ubiquitous phenomenon in nonlinear science. Its arousal
and main statistical properties have been studied and
characterized already since long time ago, and different
types of intermittency have been classified as types I–III
intermittencies [1,2], on-off intermittency [3–6], eyelet in-
termittency [7] and ring intermittency [8]. There are
no doubts that the different types of the intermittent
behavior may take place in a wide spectrum of systems,
including cases of practical interest for applications in ra-
dio engineering [1,9], medical [10], physiological [11,12],
and other applied sciences.
In most of the cases the intermittent behavior taking

place in a system is considered when the control pa-
rameters are constant. Since the random perturbations
existing in Nature can modify the system behavior suffi-
ciently [13–17], the intermittent behavior of different types
has also been studied in the presence of noise [18–23]. It
seems also worthy of note, that intermittency of epochs
of synchronous and asynchronous behaviors is quite
essential to the problem of synchronization by common
noise [24,25]. However, the parameters of the system
demonstrating an intermittent behavior can fluctuate.
Since the characteristics of the intermittent behavior
depend greatly on the control parameters, the fluctuations
of the parameters will also result in the modification of
these characteristics. In particular, such circumstance
can be observed very often in living systems. For example,
intermittency is known to arise near the threshold of

chaotic synchronization regimes [26–28]. In turn, the
chaotic synchronization regimes (such as phase synchro-
nization) take place in living systems, e.g., in the human
cardiovascular system (see, e.g., [29,30] where synchro-
nization between cardio-rhythm and breathing has been
observed). At the same time, the control parameters of
the living systems (such as, e.g., the breathing frequency)
are very changeable over time. As a result, near the
boundary of the synchronous regime an intermittent
behavior occurs, with its characteristics being dependent
sufficiently on the fluctuating system control parameters.
In other words, this situation is generic for the living
systems as well as for other types of complex objects.
In this paper the characteristics of the intermittent be-

havior near the boundary of the synchronous regime are
considered in the case when one of the system control pa-
rameters changes its value randomly and slowly. To reveal
the main features of the phenomenon under study we con-
sider the behavior of an oscillator driven by an external
harmonic signal whose amplitude A is changeable. Let Ac

be its value corresponding to the onset of the synchronous
regime when the amplitude of the external signal is con-
stant. For A > Ac synchronous dynamics is observed in
the system under study, whereas for A < Ac the oscillator
demonstrates asynchronous behavior with intermittency
manifestations.
We suggest that the control parameter value is close

to the critical point Ac and changes its value at certain
moments of time tn randomly, whereas between tn and
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tn+1 = tn + τξ (τξ is supposed to be constant) the ampli-
tude of the external signal remains unchanged. In other
words, the random amplitudes are chosen in the form of
periodic switchings. In the different moments of time the
value A of the amplitude can be both above and below the
critical value Ac that results in the distortion of the typ-
ical statistical characteristics of the intermittent behavior
taking place near the onset of synchronization.

Sample model. – As a sample model the Van der Pol
oscillator under the external harmonic signal with the am-
plitude A = A0 +Dξ is considered

ẍ− (λ− x2)ẋ + x = (A0 +Dξ) sin(ωet). (1)

Here A0 and ωe are the amplitude and the frequency
of the external harmonic force, correspondingly, λ is the
nonlinearity parameter, D is the value characterizing the
intensity of fluctuations 1, ξ is supposed to be a random
quantity which changes its value over the fixed (and equal)
intervals of time with duration τξ (see fig. 1). We have also
supposed that ξ is described by the normal distribution
N(0, 1)

p(ξ) =
1√
2π

exp

(

−ξ2

2

)

. (2)

The control parameter values have been selected as
λ = 0.1, ωe = 0.98. A0 = 0.024 exceeds the boundary
value Ac = 0.0238 corresponding to the threshold of syn-
chronization in the absence of the fluctuations of the am-
plitude (i.e., in the case D = 0). To integrate eq. (1) we
have used Ito integral [31] and the one-step Euler method
with time step h = 5× 10−4.
The amplitude A of the external force changes its value

randomly over the equal intervals of time (see fig. 1). The
parameter being responsible for the intensity of fluctua-
tions is set as D = 5 × 10−4. The value of the amplitude
of the external signal, A = A0 +Dξ, takes the new values
over the time intervals τξ = 900. We consider the slow

fluctuations of the amplitude, i.e. τξ ≫ 2π/ωe. The dis-
tribution of the probability density p(A) may be written
in the following form:

p(A) =
1√
2πD

exp

(

− (A−A0)
2

2D2

)

. (3)

Figure 1 illustrates the typical fragment of the behavior
of the system under study. The dynamics of the external
signal amplitude A(t) is shown in fig. 1(a). To detect the
synchronous and asynchronous intervals of motion the in-
stantaneous phase ϕ(t) of the signal x(t) can be introduced
in the traditional way, as the rotation angle

tanϕ(t) =
ẋ(t)

x(t)
(4)

1Note, for certain purposes D may be considered as a percentage
instead of an absolute amplitude (in this case the symbol D should
be replaced by δ).
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Fig. 1: (Colour on-line) (a) The dependence of the external
signal amplitude A(t) (and, correspondingly, random fluctua-
tions ξ(t)) on time t (the left axis corresponds to the amplitude
A, whereas the right axis represents the fluctuations Dξ). The
values of A∗ and Ac are shown by the solid horizontal lines.
The probability density p(Dξ) is also shown in the right graph.
(b) The dependence of the phase difference ∆ϕ on time t. Both
the laminar and turbulent phases can be seen easily. The starts
and the ends of the laminar phases are marked by the dotted
and dashed lines, respectively. (c) The small fragment of time
series x(t) illustrating the system behavior during the phase
slip is marked by the arrow in panel (b).

on the projection plane (x, ẋ) of system (1). The syn-
chronous interval of motion can be detected by means
of monitoring the time evolution of the instantaneous
phase difference, that has to obey the phase locking
condition [32]

|∆ϕ(t)| = |ϕ(t)− ωet| < const. (5)

Due to the external signal amplitude variation the dynam-
ics of the phase difference ∆ϕ(t) features time intervals of
phase-synchronized motion (laminar phases) persistently
and intermittently interrupted by sudden phase slips (tur-
bulent phases) during which the value of |∆ϕ(t)| jumps
up by 2π (see fig. 1(b)). To separate the laminar and tur-
bulent phases the approved method proposed in [33] has
been used. The starts and the ends of the laminar phases
detected by means of this method are shown in fig. 1(b)
with the help of the dotted and dashed lines, respectively.
The small fragment of time series x(t) illustrating the be-
havior during the phase slip is shown in fig. 1(c).

Theory of intermittent behavior. – First of all, we
consider the behavior of the system under study during the
period between fluctuations of the parameter A. In par-
ticular, we discuss the probability of the phase slips cor-
responding to the appearance of the turbulent dynamics.
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It is known that for the periodically forced weakly non-
linear isochronous oscillator (in the case of a small fre-
quency mismatch) the complex amplitude method may be
used to find the solution describing the oscillator behavior
in the form

u(t) = Re a(t)eiωt. (6)

For the complex amplitude a(t) one obtains the averaged
(truncated) equation

ȧ = −iνa+ a− |a|2a− ik, (7)

where ν is the frequency mismatch, and k is the (renor-
malized) amplitude of the external force [34,35]. For the
small ν and large k the stable solution

a(t) = Aeiφ = const (8)

corresponds to the synchronous regime. So, in the case
when A > Ac the system is in the synchronous state and,
as a consequence, there are no phase slips during this time
interval τξ. Therefore, the whole considered time interval
is treated as the laminar dynamics.

The situation seems to be more complicated if due to
fluctuations the control parameter A takes a value less
than Ac. If the value of the amplitude of the exter-
nal signal is constant and lies below the synchronization
threshold, the driven oscillator demonstrates the behav-
ior with the features of type-I intermittency [36]. Indeed,
for the truncated equation (7) the synchronization de-
struction corresponds to the local saddle-node bifurcation
associated with the global bifurcation of the limit cycle
birth [34,35]. Therefore, below the boundary of the syn-
chronization area the dynamics of the phase difference

∆ϕ(t) = ϕ(t)− ωet (9)

(where ϕ(t) is the phase of the driven oscillator) demon-
strates time intervals of phase-synchronized motion (lami-
nar phases) interrupted by phase slips (turbulent phases).
For the periodic oscillator these laminar phases are regu-
lar and have a fixed duration (in contrast to chaotic os-
cillations), but the dependence of their duration on the
criticality parameter also obeys the law of type-I inter-
mittency. So, for the considered case the dependence of
the length of the laminar phases (pieces of synchronous
dynamics) on the criticality parameter is governed by the
power law

T (A) = C1 · (Ac −A)−1/2, (10)

where C1 is a constant. For the considered system and
chosen values of the control parameters we have found
numerically that C1 ≈ 26.

If the average length T (A) of the laminar phase turns
out to be sufficiently shorter than the duration of time
interval τξ, then with the probability close to one a phase
slip corresponding to the end of the laminar phase will be
observed in the system. We use the notation A∗ for the

value of the A-parameter for which the average length of
the laminar phase is equal to τξ, i.e.,

T (A∗) = τξ. (11)

From eq. (10) and eq. (11) one can obtain that

A∗ = Ac − (C1/τξ)
2
. (12)

For the given control parameter values A∗ ≃ 0.023.
Let us consider the phase slip which is observed during

the fixed time interval τξ between fluctuations of the pa-
rameter A. For all A < A∗ the condition T (A) < τξ is
satisfied and, hence, the phase slip occurs with probabil-
ity close to one. When the value of the externals signal
amplitude falls in the range A∗ < A < Ac the probability
of the phase slip can be estimated as τξ/T (A). Therefore,
the expression for the probability of the phase slip occur-
rence during the time interval τξ between two neighboring
fluctuations of the control parameter A may be written in
the following form:

P (A) =

⎧

⎪

⎨

⎪

⎩

1, A < A∗,

τξ/T (A), A∗ < A < Ac,

0, A > Ac.

(13)

As a consequence, if one considers the dynamics of sys-
tem (1) during the time interval τξ between the neigh-
boring fluctuations of the external signal amplitude, the
probability to observe the phase slip is defined as

P1 =

∞
∫

0

p(A)P (A)dA =

A∗
∫

0

p(A)dA+

Ac
∫

A∗

τξp(A)

T (A)
dA. (14)

The probability of the observation of the laminar phase
with the length s corresponding to k fluctuations of the
A-parameter (i.e., (k − 1)τξ < s < kτξ) is defined as

P2(k) = (1− P1)
k−1 · P 2

1 , (15)

where the probability P1 is given by eq. (14). Indeed, a
locking epoch of length s is composed of (k − 1) periods
of τξ with no phase slips. Additionally, two phase slips
(the start and the end of the laminar phase) must be ob-
served (see fig. 1(a)). The statistical independence [37]
leads to the product of (k − 1) probabilities (1 − P1) and
two probabilities P1 (see eq. (15)).
Thus, the probability density of the laminar phase

lengths obeys the law

ρ(s) ∼ (1 − P1)
s/τξ , (16)

and, accordingly, eq. (16) may be also written as

ρ(s) = κ exp(−κs), (17)

where
κ = −(1/τξ) ln(1 − P1). (18)
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Fig. 2: (Colour on-line) The absolute frequency of observation
N(A) for binned values of theA-parameter values (curve 1) and
the values of the amplitude of the external signal for which the
phase slips have been observed (curve 2). Both distributions
have been obtained for the same time series. The dependence
Ntp(A)∆AP (A) is shown by the dashed line.

So, in the case of the slow fluctuations of the control
parameter A the laminar phase length distribution for the
system under study obeys the exponential law (17). If one
normalizes the time (and, as a consequence, the lengths of
the laminar phases) on the time interval τξ, then the ex-
ponent κ in eq. (17) is determined only by the probability
of the phase slip observation within the time interval τξ
between the neighboring fluctuations of the control pa-
rameter A:

κ = − ln(1 − P1). (19)

Results of numerical simulations. – To verify and
confirm the theoretical conclusion obtained above, we con-
sider the results of the direct numerical simulations of
system (1). The distribution of the A-parameter values
obtained as a result of the numerical simulation of sys-
tem (1) is shown in fig. 2 (see curve 1). Simultaneously, in
the same figure the distribution of the A-parameter values
for which the phase slips have been observed is illustrated
by curve 2. Both distributions have been obtained for the
same time series. The values A∗ and Ac are shown by
arrows, since they play an important role to form curve
2 of the probability density. One can see from fig. 2 that
for A ≤ A∗ both distributions coincide with each other
and, hence, for these values of the control parameter the
phase slip occurs in 100% of the cases, i.e., the turbulent
phase begins in the system and the probability to observe
the phase slip is close to one that agrees completely with
eq. (13).
There is also a good agreement between the results of

the numerical simulation and the theoretical curve for
A > Ac. In this case there are almost no phase slips and,
hence, if parameter A takes the value exceeding the syn-
chronization threshold, the probability of the phase slip
appearance is equal to zero.

 0.001

 0.01

 0.1

 N(s)

 0  40  80  s/τξ

1 2

3 4

Fig. 3: (Colour on-line) Distributions of the laminar phase
lengths for system (1) obtained for different values of τξ. Points
correspond to the data obtained numerically, the analytical
law (16) is shown by the solid lines. The values of time interval
τξ and the probability P1 corresponding to the distributions
are the following: 1, τξ = 1200, P1 = 0.247; 2, τξ = 900, P1 =
0.197; 3, τξ = 600, P1 = 0.133; 4, τξ = 300, P1 = 0.066. Symbol
“◦” is used for the points corresponding to the case when the
value of the A-parameter has been changed in arbitrary time
intervals, with the average value being equal to 900, i.e., 〈τξ〉 =
900. The ordinate axis is shown in the logarithmic scale.

Finally, in the range A∗ < A < Ac the amount of
the phase slips decreases with the increase of A that pro-
vides the decrease of the probability P . To compare the
behavior of the phase slip occurrence probability P ob-
tained numerically and the analytical law (13) in the range
A∗ < A < Ac the curve Ntp(A)∆AP (A) is also shown in
fig. 2 by the dashed line, where ∆A = 10−4 is the am-
plitude bin width and Nt = 31500 is the total number of
the laminar phases. It can be seen easily from fig. 2 that
eq. (13) describes very well the processes in the analyzed
system.

In fig. 3 the distributions of the laminar phase lengths
obtained numerically are shown for different values of the
time interval τξ. To compare the obtained results with the
theoretical prediction the curves corresponding to analyt-
ical law (16) are also shown in fig. 3, with the value of P1

being determined by eq. (14). Points in fig. 3 correspond
to the numerical data, law (16) is shown by the solid lines
for each value of τξ. One can see a very good agreement
between the numerical data and the theoretical law for all
the considered values of the time interval τξ.

Figure 3 allows to track the evolution of the laminar
phase length distribution for large and small time intervals
τξ. When the duration of τξ increases essentially the upper
limit A∗ of integration in eq. (14) grows and tends to Ac in
accordance with (12). Therefore, for large time intervals
τξ the second term in eq. (14) can be neglected

P1 ≈
Ac
∫

0

p(A)dA. (20)
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As a consequence, for large values of τξ the probability
P1 of the phase slip occurrence is almost constant and,
therefore, the laminar phase length distributions are close
to each other. This tendency becomes especially obvious
if the laminar phase length distributions have been shown
with the help of the normalized variables, N(s/τξ). The
very same situation takes place in fig. 3, where the laminar
phase length distributions for τξ = 1200 and τξ = 900 turn
out to be close to each other (see curves 1 and 2). At the
same time, for smaller τξ the corresponding distributions
differ from distributions 1 and 2 obtained for τξ = 1200
and τξ = 900, respectively.
An opposite situation takes place for small values of the

interval τξ during which the parameter A is unchangeable.
In this case with the decrease of the time interval τξ the
value of A∗ also decreases as it follows from eq. (12), and,
hence, for certain A∗-values the first integral in eq. (14)
can be neglected. As a consequence, eq. (14) becomes

P1 ≈ τξ

Ac
∫

0

p(A)

T (A)
dA. (21)

Therefore, for small values of τξ the probability P1 of
the phase slip occurrence depends linearly on the length
of the time interval between two neighboring fluctuations
of the A-parameter and decreases with the decrease of
τξ. This means that an exponent in the exponential dis-
tribution of the laminar phase lengths obtained for the
normalized time s/τξ becomes less negative with the de-
crease of τξ. As a consequence, the distribution shown
in the logarithmic scale becomes flatter, which that cor-
responds to the appearance of the longer laminar phases.
From the physical point of view it means that during the
short time interval between fluctuations of the external
signal amplitude A the system does not have time to re-
act on the change of the control parameter value. Exactly
the same tendency can be seen clearly in fig. 3 where the
distributions shown in the logarithmic scale become flat-
ter and flatter as the duration τξ decreases (see especially
dependences 3 and 4 obtained for τξ = 600 and τξ = 300,
respectively).
The assumptions made above that the value of the time

interval τξ between the neighboring fluctuations of the pa-
rameter A is fixed and the value of the A-parameter re-
mains unchangeable during this interval is strict enough
and, as a consequence, it limits the class of systems for
which the revealed regularities may be observed. At the
same time, as shown by the results of our study, the ob-
tained relations are also applicable for the case when the
length of the time interval between fluctuations of the con-
trol parameter also fluctuates. In this case the use of the
averaged value 〈τξ〉 instead of the parameter τξ allows to
get a good agreement between the theoretical predictions
and the results obtained numerically.
The distribution of the laminar phase lengths in the case

when time τξ also fluctuates is shown in fig. 3 by circles (◦),

with the average value of the time interval during which
A remains constant being 〈τξ〉 = 900. One can see from
fig. 3 that the obtained laminar phase length distribution
coincides with the analogous distribution for the case τξ =
const = 900 considered above (the numerically obtained
data are shown by symbols ∗) and is in good agreement
with the curve corresponding to the analytical law (16).

Conclusion. – In the present work the characteristics
of the intermittent behavior observed near the synchro-
nization threshold of a Van der Pol oscillator driven by
the external harmonic force have been studied in the case
when the amplitude of the external signal is changing in a
piecewise-constant manner with each piece having a fixed
duration. The analytical law for the laminar phase lengths
distribution has been deduced and the very good agree-
ment between the obtained theoretical relation and the
numerical data has been shown for the different values
of the length of the time interval over which the control
parameter changes its value.
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