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a b s t r a c t 

We address the problem of improving the quality of characterizing chaotic dynamics based 

on point processes produced by different types of neuron models. Despite the presence 

of embedding theorems for non-uniformly sampled dynamical systems, the case of short 

data analysis requires additional attention because the selection of algorithmic parameters 

may have an essential influence on estimated measures. We consider how the preliminary 

processing of interspike intervals (ISIs) can increase the precision of computing the largest 

Lyapunov exponent (LE). We report general features of characterizing chaotic dynamics 

from point processes and show that independently of the selected mechanism for spike 

generation, the performed preprocessing reduces computation errors when dealing with a 

limited amount of data. 
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1. Introduction 

Quantifying dynamical features of complex oscillations with Lyapunov exponents is a commonly used approach that has

various scientific and engineering applications. It can be applied to estimate the Lyapunov spectrum with a required accuracy

if the mathematical model of the analyzed system is known and there are no restrictions of its study [1,2] . When this

information is unavailable, and only a single phase space variable is measured, this task can be solved via the reconstruction

technique [3–5] which is based on the assumption that the temporal dependence of the analyzed variable is related to an

attractor, and the considered length of the phase trajectory is sufficient to get required information about properties of this

attractor. The latter is especially important for inhomogeneous attractors in which the rate of divergence or convergence of

nearby phase space trajectories significantly varies depending on the selected region. 

In general, the less information about the system is known, the less precision of its quantification can be reached. How-

ever, even under the condition of very limited information such as in the case of point processes, the analyzed complex

dynamics can be appropriately characterized. This type of deterministic or stochastic processes carries information about

the system’s behavior by times of stereotype events [6] . Point processes are widely studied in neuroscience in the context

of information encoding provided by neuronal systems [7,8] . In neurophysiological studies, an action potential sequence, or

spike train, is the only source of information about the sensory input, and the debate between rate and time coding is still

on-going [9] . 
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In order to understand how sensory input can be characterized from the output spike train, a series of theoretical studies

with different neuron models was performed. Among these studies, several key theoretical results should be mentioned

including Sauer’s embedding theorem [10,11] being an extension of the Takens theorem [4] for point processes. It was proved

for interspike intervals generated by an integrate-and-fire (IF) neuron model at high firing rate. According to this theorem,

the output ISI series allows reconstruction of the attractor related to the input of IF-model. Although the ISI series represent

a non-uniform sampling case, delay vectors of ISIs keep information about low-dimensional dynamical systems producing

input signals. Numerical investigation performed in [12] confirmed the ability to recover dynamical information from ISI-

series for different neuron models driven by chaotic oscillations. This confirmation was based on the predictability of ISI-

series that has a close relation to reconstruction. The paper [13] extended the existing knowledge about reconstruction of

non-uniformly sampled dynamical systems including not only the integrate-and-fire mechanism, but also many other cases.

Thus, there is an essential theoretical background to recover dynamics of the input of neuron models from the output spike

trains. This background allows us to expect that dynamical features of chaotic oscillations driving the neuron models can be

characterized from the output point processes using the standard numerical techniques [14–20] . 

Despite the achieved progress in the analysis of non-uniformly sampled dynamical systems, the case of short dataset

needs to be discussed in more detail. Actually, at the restrictions of available data the quality of reconstruction and, there-

fore, the precision of computing the Lyapunov exponents or other numerical characteristics may essentially depend on the

used method and on the selection of its parameters. Embedding theorems do not guarantee a “good” reconstruction if the

available ISI series contains a limited amount of samples. In order to improve the quality of recovering the input dynamics

from short sequences of interspike intervals, their preliminary processing may be useful. Here we discuss, how such pre-

processing allows increasing the accuracy of computing the largest LE ( λ1 ). The paper is organized as follows. Section 2 de-

scribes several neuron models and the approaches used for analysis of ISI series produced by these models. A comparative

analysis of results obtained in both cases, with and without data preprocessing, is performed in Section 3 . Main concluding

remarks are given in Section 4 . 

2. Models and methods 

2.1. Generic IF model 

Let us start from the generic IF-model that has been widely studied in many relevant publications (see, e.g., [10–15] ).

This model provides a transformation of an input signal S ( t ) into an output spike train according to the following procedure.

The signal S ( t ) is integrated from a time moment T 0 

V (t) = 

∫ t 

T 0 

S(t ′ ) dt ′ . (1) 

When the integral reaches a threshold �, a short-lasting impulse (spike) is generated, and the value of V ( t ) is reset to zero

( Fig. 1 a). The resulting spike train is obtained according to the following mathematical definition 

∫ T i +1 

T i 

S(t) dt = �, (2) 

where T i are the times of consequent spikes used to get ISI series I i = T i +1 − T i ( Fig. 1 b). 

Here we consider the chaotic oscillations S(t) = x (t) + 35 as a driving signal for the generic IF model, where x ( t ) is the

phase variable of the Rössler system [21] 

dx 

dt 
= −(y + z) , 

dy 

dt 
= x + ay, (3) 

dz 

d t 
= b + z(x − c) 

with the parameters a = 0 . 15 , b = 0 . 2 , c = 10 . 0 , and the offset is used to avoid negative values of x ( t ). Aiming to increase

the precision of estimating the times T i , the integration step in Eq. (1) is reduced when V ( t ) crosses the threshold, and the

integration near the value � is repeated. We used a fourth-order Runge–Kutta method with the time step h = 10 −3 when

performing the initial integration, and h = 10 −5 for a more precise detection of firing times. 

At high firing rate leading to small ISIs, the integral (2) is easily computed using the rectangular rule 

∫ T i +1 

T i 

S(t) dt � S(T i ) I i (4) 

that provides the following way for restoration of the chaotic input S ( t ) from the output ISI series 

S(T i ) � 

�

I 
(5) 
i 
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Fig. 1. The generic IF model: (a) an input signal and the output spike train (times of spike generation are shown by circles); (b) the ISI sequence; (c, d) 

attractors restored using 30 0 0 ISIs without and with the resampling approach, respectively, where S 1 = S(t) , S 2 = S(t + d) , and d is the time delay. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and, correspondingly, the dynamical properties of S ( t ) are estimated based on information contained in the IF ISI series (the

scaling coefficient � is selected arbitrarily because it does not influence LEs). 

Attractor reconstruction using I i can be provided with the embedding delay equal to one ISI [10] , and such reconstruction

keeps metrical and dynamical invariants of the original attractor. When characterizing dynamical properties of the chaotic

signal S ( t ) from the ISI series with the standard approach for computing LEs [22] , the divergence of nearby trajectories in

the reconstructed phase space is analyzed. The accuracy of such an estimation may be reduced if time intervals between

the successive spikes I i are characterized by a broad distribution and the considered amount of data is limited. 

Alternatively, we may realize a resampling of the analyzed dataset with a constant time step. As we show in Section 3 ,

such data preprocessing improves the estimations of Lyapunov exponents when dealing with short recordings. For the ISI

sequence produced by the generic IF model, the resampling is easily provided via the interpolation of the samples (5) with a

smooth function, e.g., a cubic spline. Thus, a transition from the values S ( T i ) to a time series S ( i �t ), i = 1 , . . . , N is performed.

Besides introducing a uniform sampling, such approach increases the number of points in the reconstructed phase space.

Fig. 1 c and d shows the restored attractors for both the considered cases. 

2.2. Glass–Mackey IF model 

By analogy with the study [12] , we discuss another variant of the integrate-and-fire dynamics. Unlike the generic IF

model, the Glass–Mackey model [23,24] demonstrates periodic firings in the absence of a driving signal, and the added

chaotic process S ( t ) provides a modulation of the threshold resulting in variations of ISIs. The neural activity is described by

a linear dependence 

V (t) = αt + β (6)

between the spiking events. When V ( t ) reaches the threshold, i.e., V (t) = S(t) , a spike is generated, and the value of V ( t )

is reset to zero ( Fig. 2 a). By analogy with the generic IF model, detection of spiking events with higher precision can be

provided. For this purpose, interpolation of the input signal S ( t ) is realized. High firing rate is related to large values of α.

For smaller α, time intervals between spiking events increase which may lead to a loss of nonlinear forecastability. 

Taking β = 0 , the following relation between the ISIs and the samples of the signal S ( t ) is obtained 

S(T i ) = α(T i − T i −1 ) = αI i −1 . (7)
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Fig. 2. The Glass–Mackey IF model: (a) an input signal and the times of spike generation ( α = 3 ); (b) the sequence of interspike intervals; (c, d) attractors 

restored using 30 0 0 ISIs without and with the resampling approach, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Again, we may reconstruct the attractor using the ISI sequence I i ( Fig. 2 b) with the embedding delay equal to one ISI

or perform a preliminary transition to the values S ( T i ) and their further resampling with the constant time step �t that

provides a time series S ( i �t ), i = 1 , . . . , N used for reconstruction. The corresponding phase portraits are shown in Fig. 2 c

and d. 

2.3. Threshold-crossing model 

Threshold-crossing (TC) model describes the generation of neuron firings when the input signal S ( t ) crosses the threshold

level � in one direction, e.g., upwards. Considering the same example of driving signal as for the IF-models, namely, the

chaotic oscillations produced by the Rössler system, we take S(t) = x (t) and set the threshold value � in such a way that

its intersection occurs during each oscillation of the signal S ( t ) ( Fig. 3 a). 

Time moments when the selected threshold value is reached are related to times of intersection of the Poincaré section

x (t) = �. From this point of view, the sequence of TC ISIs represents the sequence of times when the phase trajectory

returns to the secant plane ( Fig. 3 b). The considered type of point processes enables reconstruction by analogy with the ISI

sequences produced by the IF-models [25,26] . Let us note, however, that the process of spike generation described by the

TC-model is accompanied by the generation of a single spike per oscillation. This is a more complicated case as compared

with the IF-models where several spikes are related to one oscillation of the input signal (at high firing rate), and the more

spikes per oscillation are produced, the higher the quality of the attractor reconstruction is provided. Despite the reduced

amount of information about the driving signal contained in TC ISI sequences, the embedding with the delay equal to one

ISI enables computing metrical and dynamical characteristics of the original attractor associated with the input signal S ( t ). 

An alternative approach to reconstruction was proposed in [16,19] and consists in the transition from TC ISIs to the values

of the instantaneous frequency averaged during a return time I i = T i +1 − T i 

ω(T i ) = 

2 π

I i 
(8) 

For chaotic oscillations associated with a phase-coherent dynamics, the dependence of the averaged instantaneous frequency

is rather close to the dependence of the instantaneous frequency estimated from the input signal S ( t ) via the Hilbert trans-

form [16] . 
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Fig. 3. The threshold-crossing model: (a) an input signal and the times of spike generation; (b) the sequence of interspike intervals; (c, d) attractors 

restored using 30 0 0 ISIs without and with the resampling approach, respectively, where ω 1 = ω(t) , ω 2 = ω(t + d) , and d is the time delay. 

 

 

 

 

 

 

 

 

 

 

 

The samples ω( T i ) can be used for the attractor reconstruction similar to the IF ISIs ( Fig. 3 c), and the latter will provide,

e.g., the same value of the largest LE since λ1 is invariant to nonlinear transformation of the signal. Another possibility

consists in the resampling of the values ω( T i ) through interpolation with a constant time step �t . This means that we

transform a non-uniformly sampled point process into a uniformly sampled temporal dependence of the instantaneous

frequency that enables restoration of the chaotic attractor using the standard embedding technique [19,27] ( Fig. 3 d). 

2.4. Chaotic bursting 

Up to now, we discussed neuron models driven by oscillations generated by the Rössler system in a phase-coherent

chaotic regime. Let us consider a more complicated problem of highly-nonlinear oscillations, when the phase trajectory

includes intermittent segments with fast and slow dynamics. As the corresponding example, the β-cell model is chosen

[28] that generate chaotic bursts of impulses with varying time intervals between them ( Fig. 4 a and b): 

dV 

dt 
= (−I Ca − I K − g P P (V − V K )) /τ, 

dn 

dt 
= μ(n ∞ 

− n ) /τ, 

dP 

dt 
= (P ∞ 

− P ) /τP , (9)

I Ca (V ) = g Ca m ∞ 

(V − V Ca ) , 

I K (V, n ) = g K n (V − V K ) , 

x ∞ 

= 

1 

1 + exp ((V x − V ) /ϕ x ) 
, x = m, n, P. (10)

Here, V is the voltage at the membrane, n describes the fraction of open potassium channels, and P is a slow variable

associated with the calcium concentration. The model (9) was considered under the following parameter set: g = 3 . 6 , g =
Ca K 



226 O.N. Pavlova, A.N. Pavlov / Commun Nonlinear Sci Numer Simulat 57 (2018) 221–230 

Fig. 4. The β-cell model: (a) the chaotic bursts described by (9); (b) the sequence of time intervals between firing events; (c, d) attractors restored using 

30 0 0 ISIs without and with the resampling approach, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10 . 0 , g P = 4 . 0 , τ = 20 ms, τP = 35 s, V Ca = 25 mV, V K = −75 mV, V m 

= −20 mV, V n = −16 mV, V P = −40 mV, ϕ m 

= 12 mV,

ϕ n = 5 . 6 mV, ϕ P = 10 mV, μ = 0 . 85 . Analysis of its dynamics was performed based on the series of time intervals between

the firing events. Two variants of the attractor restoration were analyzed: the direct reconstruction using the series of time

intervals between consequent events ( I i ), and the transition to the averaged instantaneous frequency ω( i �t ) performed by

analogy with the TC model ( Fig. 4 c and d). 

3. Results and discussion 

3.1. Generic IF model 

A comparative study of different methods for the attractor reconstruction was performed starting from the generic IF

model being the simplest example of the spike generation mechanism. Here and further, estimation of the largest LE from

point processes is based on the standard numerical technique proposed by Wolf et al [22] . Fig. 5 shows dependencies of

the largest LE ( λ1 ) for two cases: the reconstruction using the original IF ISI series by selecting the embedding delay equal

to one ISI (circles), and the reconstruction using resampled data after the transition to the values of the driving signal as

described in Section 2.1 (triangles). According to the performed estimations, the precision is higher for the second approach

that provided an averaged error E 2 = 1 . 4% vs. E 1 = 2 . 9% for the first reconstruction method. Here, we compared the values

λ1 estimated from the output point process and from the corresponding input signal S ( t ) with the same method for LE

computing [22] . These estimations are fairly close to the values computed using the equations of the Rössler system [1,2,29] .

Besides a reduction of the computation error, the resampling approach demonstrates a higher stability to fluctuations. To

show this, we added a normally distributed random process with the intensity D = 10 −3 to the ISI sequence and performed

a comparison of the considered two methods for noisy data. The distinction between the values λ1 estimated using the

interpolated dependence ω( i �t ) was significantly less than for estimations performed using the original ISI sequence I i (1.1%

and 4.3%, respectively). 

The latter may be explained by a reduction of orientation errors when computing the largest LE that have strong in-

fluence on the estimated quantity. Despite the new samples introduced via the interpolation are not exactly known, and

their consideration may be treated as adding small noise to the phase trajectory, an increased number of points in the re-

constructed phase space (we considered 5–10 times larger amount of data after the interpolation of samples (5) provides
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Fig. 5. The largest LE estimated from the ISI sequences produced by the generic IF model using two variants of the attractor reconstruction: the standard 

(without resampling) and the proposed approach (with resampling). Dashed line indicates the value computed using the input signal. 

Fig. 6. (a) The largest LE estimated from the ISI sequences generated by the Glass–Mackey IF model using two variants of the attractor reconstruction at 

high firing rate ( α = 11 ); (b) estimations performed with the resampling approach at low firing rate ( α = 3 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a higher probability of keeping the direction for the perturbation vectors and reduces projections of these vectors in the

directions being orthogonal to the direction of the maximal divergence of nearby trajectories. The latter effect may be more

important as compared with the insignificant lack of precision caused by the interpolation. Besides, when performing the

reconstruction directly from the ISI sequence, the time interval between consequent samples is taken as equal to the mean

ISI value. If ISIs are characterized by a narrow distribution, their individual distinctions can be ignored. For broader dis-

tribution of ISIs, differences in time intervals will have an additional influence on the precision of computing the rate of

trajectories instability in the reconstructed attractor. 

3.2. Glass–Mackey IF model 

Similar results are obtained for the Glass–Mackey IF model considered at high firing rate ( α = 11 , Fig. 6 a). Direct applica-

tion of the method [22] to the attractor restored using the delayed ISI sequence provides an error E 1 = 7 . 8% . The reconstruc-

tion performed from the resampled dataset with the preliminary interpolation of samples reduces this error to E 2 = 3 . 6% .

Let us note that high firing rate is a necessary condition that influences the predictability of the ISI series. According to

Racicot and Longtin [12] , a decreased α which provides a reduction of the firing rate is associated with a growth of the

normalized prediction error, i.e., a reduced nonlinear forecasting. Nevertheless, if the considered firing rate does not relate

to missed oscillations of the driving signal, the largest LE can be estimated with the resampling approach, but a “good”

estimation is provided for longer datasets. Fig. 6 b illustrates how λ1 varies with the duration of the ISI series. The largest LE

approaches the expected value with increased amounts of data. Its estimation for short ISI sequence provides a computation

error E � 15% when processing sequences of about 10 0 0 samples. 
2 
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Fig. 7. The largest LE estimated from the ISI sequences produced by the TC model using two variants of the attractor reconstruction. 

Fig. 8. (a) The distribution of time intervals between firing events in the dynamics of the β-cell model; (b) the largest LE estimated using two variants of 

the attractor reconstruction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3. Threshold-crossing model 

Consideration of the TC model confirms the advantages of the approach based on the resampled ISI series. Unlike the

IF-model, the preliminary processing of the TC ISIs is based on the approximation of the instantaneous frequency of the

input signal instead of the restoration of the driving process itself. Although the reconstruction using the initial ISI sequence

is able to quantify dynamical properties of chaotic oscillations ( Fig. 7 , E 1 = 2 . 6% ), the resampling-based approach provides

a better precision ( E 2 = 1 . 7% ). These results are obtained in the course of averaging over standard parameters used within

the method [22] , such as embedding dimension, renormalization time, length of perturbation vector, etc. Additionally, time

delay was varied within the second approach near the recommended value of 1/4 part of the characteristic period for chaotic

oscillations. By analogy with the IF-model, this approach provided a smaller distinction between estimations performed

for deterministic ISI sequences and ISI sequences contaminated by additive noise. By selection of the normally distributed

random process with the intensity D = 10 −3 we observed distinctions of λ1 between noisy and noise-free ISI sequences

taking about 1.9% for the approach with resampling and interpolation, and about 2.8% for the direct method without data

preprocessing. 

3.4. Chaotic bursting 

Finally, let us consider a more complex dynamics produced by the burst oscillator (9). Despite the presence of a broad

and bimodal distribution of time intervals between spiking events ( Fig. 8 a) that includes both, interspike intervals (within a

single burst) and interburst intervals (between consecutive bursts), the resulting point process enables a fairly good estima-

tion of λ1 ( Fig. 8 b) even for relatively short amount of data. Again the method with the resampling of the analyzed dataset

provided a better quantification of the underlying dynamics ( E 2 = 5 . 3% ) unlike the direct application of the reconstruction

technique to the output point process ( E = 12 . 1% ). 
1 
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Table 1 

Computation error of the considered methods (estimation per- 

formed using 50 0 0 ISIs). 

Model system Error, % 

Without resampling With resampling 

Generic IF 2.9 1.4 

Glass–Mackey IF 7.8 3.6 

Threshold-crossing 2.6 1.7 

β-cell 12.1 5.3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.5. A comparative analysis 

Table 1 summarizes the results of the considered two methods (without and with data preprocessing) for all four model

systems. The approach based on the resampling of the ISI-sequences demonstrates a higher quality of the characterizing

chaotic dynamics from point processes. 

A larger error of the λ1 estimation in the case of the β-cell model compared with the chaotic oscillations of the Rössler

system considered within the previous models is explained by the inhomogeneity of the restored attractor since the pres-

ence of distinct time scales results in the appearance of regions with clearly different rate of trajectories divergence, and the

latter increases errors caused by renormalizations of the perturbation vectors. 

Note that the systematic biases observed in Figs. 5–8 are explained by errors associated with changes in the phase space

orientation. A limited amount of available points in the reconstructed phase space reduces an ability to select appropriate

perturbations when computing LEs, and the latter leads to an increase of vector components in the directions do not associ-

ated with the maximal divergence of trajectories. Typically, this effect is more pronounced for initial distances between the

phase space trajectories, and due to the related growth of the renormalization vector, the resulting LE is underestimated. 

4. Conclusion 

In this study we considered the problem of computing the largest Lyapunov exponent from point processes who are the

output of different types of neuron models. The existing theoretical background confirms the ability of reconstruction of

non-uniformly sampled dynamical systems including for dynamics of sensory neurons, as well as many other cases. In prac-

tice, however, dealing with a limited (and often quite small) amount of data results in a reduced precision of estimations.

Depending on the selected parameters, reconstruction can lead to different distortions of the restored attractor. In order to

reach the attractor structure despite these distortions, the selection of algorithmic parameters is an important issue. Besides,

a preliminary data processing may be useful to improve the characterization of attractor properties. Here, we considered two

variants of such preprocessing for IF- and TC-mechanisms. For IF models, a restoration of the input signal was done using

the output point process including an interpolation of the estimated values which provided a uniform sampling. For the TC

model, a restoration of the instantaneous frequency of chaotic oscillations was realized with a resampling procedure. 

The performed analysis give an opportunity to formulate some general features of characterizing chaotic dynamics from

point processes produced by distinct neuron models. Independently of the selected model, the considered preliminary pro-

cessing of the output ISI sequences provided a higher precision of computing λ1 when dealing with a limited amount of

data. For long dataset the latter conclusion is less important because orientation errors occurring during the computing of

λ1 are reduced with the increased amount of data, and depending on the required precision of estimations we may adjust

the length of the processed ISI sequence. However, the considered approach may significantly reduce computation errors for

short datasets. 

Acknowledgment 

This work was supported by the Russian Science Foundation (agreement 14-12-00224 ). 

References 

[1] Benettin G , Galgani L , Giorgilli A , Strelcyn J . Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems: a method

for computing all of them. Meccanica 1980;15:9–30 . 
[2] Shimada I , Nagashima T . A numerical approach to ergodic problem of dissipative dynamical systems. Prog Theor Phys 1979;61(6):1605–16 . 

[3] Packard NH , Crutchfield JP , Farmer JD , Shaw RS . Geometry from a time series. Phys Rev Lett 1980;45:712–16 . 
[4] Takens F , Rand DA , Young L-S . Detecting strange attractors in turbulence. In: Dynamical systems and turbulence. In: Lecture Notes in Mathematics,

898. Berlin: Springer; 1981. p. 366–81 . 

[5] Sauer T , Yorke JA , Casdagli M . Embedology. J Stat Phys 1991;65:579–616 . 
[6] Daley DJ , Vere-Jones D . An introduction to the theory of point processes, 1. New York: Springer Science & Business Media; 2006 . 

[7] Fairhall A , Lewen G , Bialek W , van Ruyter . Efficiency and ambiguity in an adaptive neural code. Nature 2001;412:787–92 . 
[8] Gerstner W , Kistler W . Spiking neuron models: single neurons, populations, plasticity. Cambridge: Cambridge University Press; 2002 . 

[9] Rieke F , Warland D , van Ruyter , Bialek W . Spikes: exploring the neural code. Cambridge: MIT Press; 1997 . 
[10] Sauer T . Reconstruction of dynamical systems from interspike intervals. Phys Rev Lett 1994;72:3811–14 . 

https://doi.org/10.13039/501100006769
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0001
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0001
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0001
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0001
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0001
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0002
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0002
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0002
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0003
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0003
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0003
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0003
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0003
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0004
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0004
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0004
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0004
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0005
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0005
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0005
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0005
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0006
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0006
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0006
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0007
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0007
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0007
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0007
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0007
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0008
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0008
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0008
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0009
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0009
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0009
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0009
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0009
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0010
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0010


230 O.N. Pavlova, A.N. Pavlov / Commun Nonlinear Sci Numer Simulat 57 (2018) 221–230 

 

 

 

 

 

[11] Sauer T . Reconstruction of integrate-and-fire dynamics. In: Cutler C, Kaplan D, editors. Providence, RI:American Mathematical Society; Fields Institute
Communications. Nonlinear dynamics and time series, vol. 11; 1997. p. 63–75 . 

[12] Racicot DM , Longtin A . Interspike interval attractors from chaotically driven neuron models. Physica D 1997;104:184–204 . 
[13] Huke JP , Broomhead DS . Embedding theorems for non-uniformly sampled dynamical systems. Nonlinearity 2007;20:2205–44 . 

[14] Castro R , Sauer T . Correlation dimension of attractors through interspike intervals. Phys Rev E 1997;55:287–90 . 
[15] Richardson KA , Imhoff TT , Grigg P , Collins JJ . Encoding chaos in neural spike trains. Phys Rev Lett 1998;80:2485–8 . 

[16] Janson NB , Pavlov AN , Neiman AB , Anishchenko VS . Reconstruction of dynamical and geometrical properties of chaotic attractors from threshold-cross-

ing interspike intervals. Phys Rev E 1998;58:R4–7 . 
[17] Castro R , Sauer T . Reconstructing chaotic dynamics through spike filters. Phys Rev E 1999;59:2911–16 . 

[18] Suzuki H , Aihara K , Murakami J , Shimozawa T . Analysis of neural spike trains with interspike interval reconstruction. Biol Cybern 20 0 0;82:305–11 . 
[19] Pavlov AN , Sosnovtseva OV , Mosekilde E , Anishchenko VS . Extracting dynamics from threshold-crossing interspike intervals: possibilities and limita-

tions. Phys Rev E 20 0 0;61(():5033–44 . 
[20] Pavlov AN , Sosnovtseva OV , Mosekilde E , Anishchenko VS . Chaotic dynamics from interspike intervals. Phys Rev E 2001;63 . 036205 

[21] Rössler OE . Chaotic behaviour in simple reaction systems. Z Naturf A 1976;31:259–64 . 
[22] Wolf A , Swift JB , Swinney HL , Vastano JA . Determining Lyapunov exponents from a time series. Physica D 1985;16(3):285–317 . 

[23] Glass L , Mackey MC . A simple model for phase locking of biological oscillators. J Math Biol 1979;7:339–52 . 

[24] Alström P , Levinsen MT . Phase-locking structure of integrate-and-fire models with threshold modulation. Phys Lett A 1988;128:187–92 . 
[25] Hegger R , Kantz H . Embedding of sequences of time intervals. Europhys Lett 1997;38(4):267–72 . 

[26] Kantz H , Schreiber T . Nonlinear time series analysis. Second ed. Cambridge: Cambridge University Press; 2003 . 
[27] Pavlov AN , Pavlova ON , Mohammad YK , Kurths J . Characterization of the chaos-hyperchaos transition based on return times. Phys Rev E 2015;91 .

022921(5) 
[28] Sherman A . Anti-phase2, asymmetric and aperiodic oscillations in excitable cells i: coupled bursters. Bull Math Biol 1994;56:811–35 . 

[29] He D , Xu J , Chen Y , Tan N . A simple method for the computation of the conditional Lyapunov exponent. Commun Nonlin Sci Numer Simulat

1999;4:113–17 . 

http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0011
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0011
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0012
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0012
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0012
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0013
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0013
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0013
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0014
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0014
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0014
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0015
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0015
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0015
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0015
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0015
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0016
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0016
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0016
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0016
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0016
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0017
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0017
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0017
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0018
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0018
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0018
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0018
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0018
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0019
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0019
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0019
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0019
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0019
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0020
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0020
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0020
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0020
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0020
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0020
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0021
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0021
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0022
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0022
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0022
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0022
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0022
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0023
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0023
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0023
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0024
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0024
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0024
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0025
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0025
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0025
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0026
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0026
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0026
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0027
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0027
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0027
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0027
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0027
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0027
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0028
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0028
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0029
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0029
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0029
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0029
http://refhub.elsevier.com/S1007-5704(17)30342-8/sbref0029

	Improving the quality of extracting dynamics from interspike intervals via a resampling approach
	1 Introduction
	2 Models and methods
	2.1 Generic IF model
	2.2 Glass-Mackey IF model
	2.3 Threshold-crossing model
	2.4 Chaotic bursting

	3 Results and discussion
	3.1 Generic IF model
	3.2 Glass-Mackey IF model
	3.3 Threshold-crossing model
	3.4 Chaotic bursting
	3.5 A comparative analysis

	4 Conclusion
	 Acknowledgment
	 References


