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Noise amplification precedes extreme epileptic events on human EEG
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Extreme events are rare and sudden abnormal deviations of the system’s behavior from a typical state.
Statistical analysis reveals that if the time series contains extreme events, its distribution has a heavy tail. In
dynamical systems, extreme events often occur due to developing instability preceded by noise amplification.
Here, we apply this theory to analyze generalized epileptic seizures in the human brain. First, we demonstrate
that the time series of electroencephalogram (EEG) spectral power in a frequency band of 1–5 Hz obeys a
heavy-tailed distribution, confirming the presence of extreme events. Second, we report that noise on EEG
signals gradually increases before the seizure onset. Thus, we hypothesize that generalized epileptic seizures
in humans are the extreme events emerging from instability accompanied by preictal noise amplification similar
to other dynamical systems.
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I. INTRODUCTION

Extreme events are sudden abnormal deviations of the
system’s behavior from a typical state, which are observed
very rarely in time [1–3]. Numerous studies discovered this
phenomenon in a wide range of models and real-life systems.

Researchers theoretically and numerically examined dif-
ferent scenarios describing the occurrence of extreme events
in model systems, including coupled oscillators and complex
networks [1,4,5], fluids [6], nanophotonics [7], and optical
complex systems [8,9].

Along with the models, extreme events occur in real-world
systems and, sometimes, harm human life. Such extreme
events include traffic jams in transportation networks, floods
in rivers, power blackouts in power grids, severe rains, eco-
nomic crises, tsunamis, killer waves in the ocean, etc.

Recently, scientists started considering spontaneous burst-
ing activity in neuronal populations as extreme events [10,11].
In this context, they especially highlight epileptic seizures as
the brightest manifestation of extreme behavior in the neural
network of the brain [3,11–15].

An epileptic seizure is a sudden malfunction of the brain
caused by excessive and hypersynchronous neuron activity in
the brain neuronal network. Sometimes, seizures may occur
due to brain injury, stroke, tumor, or congenital disabili-
ties [16,17]. However, in most cases, the exact reason remains
unknown.

The epileptic seizures may be focal and generalized [18].
Focal seizures originate from a circumscribed part of the
brain. In contrast, generalized seizures involve bilaterally
and synchronously two hemispheres, if not the entire cor-
tex. Generalized seizures have an evident electroencephalo-

graphic hallmark—a synchronization of noninvasive [elec-
troencephalogram (EEG)] or invasive [electrocorticogram
(ECoG)] signals recorded in different, even very distant, brain
areas. At the same time, surprisingly little is known about the
fundamental mechanisms of their onset.

Extreme event theory may provide insight into the possi-
ble onset mechanisms [3,19]. Like in other fields, ongoing
extreme events in the brain probably change the properties
of time series, e.g., EEG or ECoG signals, beforehand. It
enables revealing earlier manifestations of ongoing seizures
from preictal EEG, as had been done to predict other ex-
treme events, e.g., rainfalls. However, the application of
extreme event theory to epilepsy remains in its startup
phase [12,15].

In our recent paper [20] we applied extreme event theory
to analyze ECoG recordings of rats with a genetic predispo-
sition to absence epilepsy. We reported that absence seizures
induced a drastic increase of wavelet power (WP) in a fre-
quency range of 6–8 Hz. In this frequency range, WP time
series demonstrated extreme-events-related properties, while
for other frequencies, there were no manifestations of the
extreme behavior. We further observed that in this frequency
range WP exhibits long-range correlations. The uncovered
long-range correlation is inherent in systems near a critical
point [21], where small fluctuations grow due to increasing
instability. This effect, known as prebifurcation signal (noise)
amplification, has been observed earlier in physical, ecologi-
cal, and biomedical systems (see Refs. [22–25]).

We hypothesize that the epileptic seizures, like other ex-
treme events, may onset through the instability. Therefore, the
noise intensity should increase during the preictal period. To
validate this hypothesis, we considered human EEG signals
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during secondary generalized epilepsy. Similarly to the pre-
vious work, we defined a frequency band of epileptic activity
and reported extreme behavior manifestation. We considered a
preictal state and found a gradually increasing noise intensity
prior to approaching seizure onset. These results complement
our knowledge about epileptic seizures as extreme events and
advance understanding of possible mechanisms leading to
extreme behavior in the brain.

II. MATERIALS AND METHODS

A. Experimental data

In the present work we studied EEG data of ten patients
with generalized epilepsy (age, 21–53 years; gender, six male
and four female). Continuous 24-h EEG and video monitor-
ing during sleep and wakefulness was performed for these
patients. The goal of this medical procedure was registra-
tion of epileptic activity and verification of epileptogenic
zones for further clinical treatment. All medical procedures
were held in the Laboratory for Diagnosis and Treatment
of Epilepsy, National Medical and Surgical Center named
after N. I. Pirogov (Moscow, Russia), in accordance with the
Helsinki Declaration and were approved by the local ethics
committee. During monitoring, patients kept a regular daily
routine with occasional physiological trials (such as photic
stimulation and hyperventilation) that are standard for such a
medical procedure. Each patient had from one to four epileptic
seizures during the time of the monitoring, namely, two out of
ten patients had four seizures, two patients had three seizures,
two patients had two seizures, and four patients had only
one seizure. While all the patients were subjected to physi-
ological trials, none of the seizures was triggered by photic
stimulation or hyperventilation; i.e., all epileptic seizures were
spontaneous. To be able to compare the patients with different
numbers of seizures we averaged obtained results over all
occurred seizures for each patient.

B. Experimental equipment

A “Micromed” encephalograph (Micromed S.p.A., Italy)
was used for EEG recording. EEG signals were recorded for
25 channels according to the international “10-20” system
with a ground electrode placed on the forehead and reference
electrodes placed at the ears. For EEG signal recording, “Na-
tus neurologi” gold EEG cup electrodes with 10 mm diameter
were used. To increase the skin conductivity EEG electrodes
were placed using Ten20 conductive gel. After the electrodes
were placed, the impedances were monitored to get the best
possible quality of EEG recordings. Common impedance val-
ues were 10–50 k�, which is sufficient for long-term EEG
monitoring. EEG signals were recorded with sampling rate of
128 Hz.

A video monitoring system was used to monitor patients’
states for easier analysis and segmentation of experimental
data.

C. Data acquisition and preprocessing

Acquired experimental EEG data and video records
were examined and marked by experienced neurophysiol-

ogists. Marking includes information on epileptic seizures
(onset/offset, conditions, corresponding video record) and
physiological tests (photic stimulation, hyperventilation). We
used this marking to form EEG trials corresponding to the
different experimental conditions.

It is well known that EEG data (especially during long-
term recording) are exposed to the influence of various
external and internal noises. External noises may be caused
by poor contact of EEG electrodes, loose wires, the power
network, etc. Internal noises (or physiological artifacts) origi-
nate from physiological processes such as heartbeat, blinking,
or muscle activity [26,27]. One of the basic (and the most
simple) ways to deal with noises and artifacts is EEG data
filtration. A proper filter can help to eliminate (or at least
diminish) the influence of some low-frequency noises (for
example, noises from stray effects or cardiac rhythms) and
some high-frequency noises (a 50-Hz component of the power
network, part of muscle activity artifacts, etc.). In our study,
we used a bandpass filter with cutoff frequencies of 1 and
60 Hz and a 50-Hz notch filter.

However, the frequency range of some artifacts (such
as blinking) overlaps an effective frequency range of EEG
signals. To remove these artifacts, we used independent com-
ponent analysis (ICA). ICA allows us to decompose the
studied set of EEG data into several independent compo-
nents [28,29]. In ICA application to blinking artifact removal,
one should search for the component that contains these ar-
tifacts. It can be safely assumed that eye movements are
independent of electrical brain activity, so components with
eye-movement artifacts will be independent of the other com-
ponents with EEG signals. Thus, by deleting the component
with artifacts and reconstructing EEG signals with the rest of
the components, one can obtain an EEG data set with removed
blinking artifacts.

D. Time-frequency analysis

For time-frequency analysis of EEG data we used con-
tinuous wavelet transform (CWT) [30,31]. This approach is
widely used for analysis of complex nonstationary signals
with multiple rhythmic components in systems of different na-
ture, including biological ones [32–34]. The CWT is defined
as convolution of studied signal x(t ) with set of wavelet basis
functions ϕs,τ :

Wn(s, τ ) = 1√
s

∫ ∞

−∞
xn(t )ϕ∗

s,τ (t ) dt, (1)

where n = 1, 2, . . . , N is the number of the EEG channel
(N = 25) and * stands for complex conjugation. Each basis
function ϕs,τ can be obtained from the same original function
ϕ0, known as a mother wavelet:

ϕs,τ (t ) = 1√
s
ϕ0

( t − t0
s

)
, (2)

where s is a time scale defining expansion and compression
of the mother wavelet and t0 is the time shift of the mother
wavelet. In the present study, we used a complex Morlet
wavelet as the mother wavelet:

ϕ0(η) = π− 1
4 e jω0ηe− η2

2 , (3)
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where the parameter ω0 = 2π is the central frequency of the
Morlet wavelet, η = (t − t0)/s. In order to interpret results of
the CWT, wavelet scales s can be converted into the Fourier
frequencies f as follows:

f =
ω0 +

√
ω2

0 + 2

4πs
. (4)

The value of the central frequency ω0 = 2π is commonly
used, as it leads to a simple relation between the wavelet scales
s and the Fourier frequencies f , namely, f ≈ 1/s. This rela-
tion allows a clearer representation of the results along with
the possibility to compare estimations performed by means of
CWT and other numerical techniques.

In the present work we analyzed the WP E ( f , τ ) =
|W ( f , τ )|. The values of E ( f , τ ) were averaged over all EEG
channels and over the frequency bands of interest: 1–5 Hz and
5–10 Hz. The normalized wavelet power (NWP) was the WP
normalized over the average WP for each subject.

The wavelet analysis of EEG recordings was performed
with developed C/CUDA software for increasing computation
performance [35].

E. Probability density function and its approximation

To construct a probability density function (PDF), we ex-
tracted all local maxima on WP time series and normalized
them by a global maximum. According to the extreme value
theory, namely, the Fisher-Tippett-Gnedenko theorem [36],
obtained PDFs should be close to the Gumbel, Frechet, or
Weibull distribution. Our previous studies on absence epilepsy
in WAG/Rij rats suggest that the Weibull distribution is more
suitable for this task. For example, in Ref. [20] we showed
that experimental PDFs for both normal and epileptic activity
can be fitted by Weibull distributions with drastically different
parameters. Thus, in the present work PDFs for background
and pathological EEG were fitted by exponentiated Weibull
distribution [37]. The PDF for the exponentiated Weibull
distribution is

f (x, a, c) = ac[1 − exp(−xc)]a−1 exp(−xc)xc−1, (5)

where a is the exponentiation parameter, with the special case
a = 1 corresponding to the (nonexponentiated) Weibull distri-
bution and c is the shape parameter of the nonexponentiated
Weibull law (x > 0, a > 0, c > 0). The probability density in
Eq. (5) is defined in the “standardized” form. To shift and/or
scale the distribution, additional parameters can be used: loc
and scale, correspondingly. The loc parameter reflects the
shift of the distribution with fixed parameters a and c across
the axis of NWP: higher values of loc shift distribution to
the higher values of NWP. The scale parameter marks the
expansion and compression of the initial distribution: posi-
tive values of scale correspond to expansion, while negative
values correspond to compression of the Weibull distribution.
Thus, there are overall four parameters for exponentiated
Weibull distribution.

We tested goodness of fit to be sure that the exponentiated
Weibull distribution is appropriate to fit the studied experi-
mental data. We used the χ2 test and G test. A χ2 test is a
statistical hypothesis test that is valid to perform when the test

statistic is χ2 distributed under the null hypothesis, specifi-
cally Pearson’s χ2 test and variants thereof. Pearson’s χ2 test
is used to determine whether there is a statistically significant
difference between the expected frequencies and the observed
frequencies in one or more categories of a contingency table.
In the standard applications of this test, the observations are
classified into mutually exclusive classes. If the null hypoth-
esis is true, the test statistic computed from the observations
follows a χ2 frequency distribution. The purpose of the test
is to evaluate how likely the observed frequencies would be,
assuming the null hypothesis is true. G tests are likelihood-
ratio or maximum-likelihood statistical significance tests that
are increasingly being used in situations where χ2 tests were
previously recommended.

To fit experimental PDFs with exponentiated Weibull
distribution and to perform goodness of fit tests we
used the SCIPY library from PYTHON, namely, the special
module Statistical functions (scipy.stats). The function
stats.exponweib.fit was applied to PDF data; it returns
maximum-likelihood estimations for a, c, loc, and scale pa-
rameters of the Weibull distribution from data (PDF). The
function stats.chisquare was used to calculate a one-way
χ2 test. The function stats.power_divergence was used
to perform the Cressie-Read power divergence statistic and
goodness of fit test. The parameter lambda = 0 corresponded
to “log-likelihood” ratio, also known as the G test.

F. Noise intensity estimation

In various systems, including the brain, the noise com-
ponent is often represented by 1/ f noise (or flicker
noise) [38–40]. The spectral density law of this type of noise
corresponds to the power law or, more specifically,

S( f ) = C/ f α, (6)

where C is a constant factor, f reflects frequency, and α de-
fines a flicker noise parameter. We can use the power spectrum
S( f ) plotted in logarithmic coordinates to estimate the flicker
noise. In this case, the logarithmic transform renders the C/ f α

power spectrum in a straight line whose slope, −α, can be
easily estimated.

To estimate the noise intensity, we calculated wavelet spec-
tra for the corresponding time intervals in the frequency range
F ∈ [1, 30] Hz, common for EEG studies. These spectra were
plotted in a logarithmic scale and fitted with a power law.
For all analyzed EEG intervals, the fitted power law leaned
towards the S( f ) = C/ f α form, thus marking the presence of
1/ f -type noise. Then, we estimated noise intensity I as an
integral:

I =
∫

f ∈F
C/ f αdf . (7)

We suggested that characteristic I can be used to reflect overall
noise intensity on analyzed EEG signals.

The function curve_fit in PYTHON was applied to
wavelet spectra. It uses nonlinear least squares to fit a function
(power law) to data (wavelet spectra) and returns values of α

and C parameters of the fitted power law.
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G. Signal variance estimation

Increasing signal variance is known to be one of the early
warnings for critical transitions [41]. For signal variance es-
timation in studies on preictal EEG activity, unbiased sample
variance s2 can be used [42].

We calculated unbiased sample variance as follows:

s2
n,T = 1

m − 1

m∑
i=1

(xi − x̄), (8)

where n = 1, 2, . . . , N is the number of the EEG channel (N
= 25) and T is the analyzed time window from EEG data, m =
3840 is the number of values in the sample (time window), x is
the studied signal in the time window, and x̄ is the mean value
of x in this window. The factor 1/(m − 1) appears instead of
1/m because of Bessel’s correction.

We evaluated unbiased sample variance s2 on EEG sig-
nals filtered with a Butterworth filter in the frequency range
1–30 Hz. For this we used the SCIPY library from PYTHON,
namely, the module signal processing (scipy.signal) and
its function signal.butter.

We calculated unbiased sample variance s2 for each EEG
channel in each analyzed time window. Values of unbiased
sample variance s2 were averaged across all EEG channels to
obtain a single value for each analyzed time window.

H. Experimental conditions

In this work, we tested two hypotheses in the framework
of the within-subject design. First, we tested a difference in
the PDF between the baseline EEG (normal activity) and
epileptic seizures (extreme events). For this purpose, we in-
troduced two experimental conditions: seizure and baseline.
The first condition included all epileptic seizures (from one to
four, depending on the patient’s data). The second condition
comprised ∼4 h of baseline recording and included ten short
1500-s segments randomly chosen across the data. In both
conditions, we fitted the data with the Weibull distribution.
The χ2 test and/or G test provided p > 0.99 for all patients.

Second, we tested changes in noise intensity during the
preictal period. For this purpose, we introduced four exper-
imental conditions, T1, . . . , T4, before each epileptic seizure.
First, we placed a 30-s length window right before the seizure
onset T0, forming the condition T4 ∈ [T0 − 30, T0] s. Then, we
shifted the window by 15 s to the left, forming the condi-
tion T3 ∈ [T0 − 45, T0 − 15] s. These actions were repeated
for the next two steps, providing the condition T2 ∈ [T0 −
60, T0 − 30] s and the condition T1 ∈ [T0 − 75, T0 − 45] s. In
all four experimental conditions, we calculated noise inten-
sity. For each subject, we averaged these values across the
seizures.

III. RESULTS

A. Results of time-frequency analysis

First, we analyzed the time-frequency structure of EEG
signals and specified the frequency band of interest. Having
considered EEG segments containing epileptiform activity
[Fig. 1(a)], we observed that the central frequency of the
epileptic discharges lies in the frequency range 1–5 Hz for the
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FIG. 1. Wavelet power. (a) The fragment of the EEG signal reg-
istered from the frontal electrode, Fp2, representing epileptic seizure.
(b) The time-frequency evolution of the WP during the seizure. The
vertical dashed line shows the seizure onset, and a solid curve follows
the frequency with the highest WP (a wavelet skeleton). (c) NWP
corresponding to the epileptic seizure and the baseline. Data are
shown as the group mean ± SE (Standard Error). (d) The pairwise
difference distribution between NWP in the frequency bands of 1–
5 Hz and 5–10 Hz. The dashed line corresponds to the equality of
the NWP in these frequency bands. The circles and squares reflect
the individual subjects’ NWP for the seizure and the baseline. (e)
The time series illustrate the WP evolution in the 5–10 Hz frequency
band in the course of the experiment. The sharp peaks reflect the
seizures and are considered extreme events.

most patients. Figure 1(b) demonstrates the WP for a typical
epileptic seizure averaged over all 25 EEG channels. The solid
curve in Fig. 1(b) follows the oscillatory component, which
starts from 4–5 Hz at the seizure onset and decreases to ∼1 Hz
in the course of the seizure duration. We contrasted the NWP
during the epileptic seizure to the baseline [Fig. 1(c)]. As a
result, the mean NWP in the frequency band 1–5 Hz was
higher during the seizure.

In contrast, the mean NWP in the frequency band 5–10 Hz
peaked during the baseline. Figure 1(d) demonstrates the
comparison between the mean NWP in the frequency bands
1–5 Hz and 5–10 Hz. The dashed line in Fig. 1(d) corresponds
to the equality of the NWP in these frequency bands. The
circles and squares reflect the individual subjects’ NWP for
the seizure and the baseline. One can see that the squares
appear above the dashed line for seven subjects, manifesting
that the 5–10 Hz NWP exceeds the 1–5 Hz NWP. In contrast,
the circles appear below the dashed line for seven subjects,
manifesting that the 1–5 Hz NWP exceeds the 5–10 Hz NWP.
Thus, the seven subjects exhibit higher 1–5 Hz NWP during
the seizure and higher 5–10 Hz NWP during the baseline.
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FIG. 2. (a) The PDF of the local maxima of NWP in the 1–5 Hz frequency band and its Weibull approximation. Data are shown for a
single subject. The Weibull parameters of the seizure and baseline: (b) localization parameter loc [mean ± standard deviation (SD), p = 0.74,
Wilcoxon test], (c) exponentiation parameter a (mean ± SD, p = 0.005, Wilcoxon test) and (d) its pairwise differences distribution, (e) shape
parameter c (mean ± SD, p = 0.005, Wilcoxon test) and (f) its pairwise differences distribution, and (g) scaling parameter scale (mean ± SD,
p = 0.005, Wilcoxon test) and (h) its pairwise differences distribution. The dashed line in (d), (f), and (h) reflects the Weibull parameter’s
equality for the seizure and baseline. Points to the right of this line indicate that the Weibull parameter is higher during the seizure, and vice
versa.

To analyze epileptic activity, we defined the frequency band
of interest as 1–5 Hz and considered WP averaged over this
band. Figure 1(e) shows a long-term time series of WP with
vast segments of background activity and short episodes of
epileptic seizures (shown by frames). The epileptic activity
demonstrates generally higher maxima of WP. We noted that
WP in the 5–10 Hz range might be relatively high outside
epileptic seizures, e.g., during sleep. At the same time, WP
during sleep was represented by scarce maxima with notice-
able drops in WP between them. In epileptic seizures, high
WP was more consistent and formed a distinctive pattern on
time series.

B. PDFs of baseline and seizure

We collected all local maxima on the WP time series in
the 1–5 Hz frequency band and fitted their PDF with Weibull
distribution (see Materials and Methods). Figure 2(a) shows
the illustrative PDFs of a single patient for baseline activity
and epileptic seizures. The histograms show experimental data
(blue for the baseline and orange for epileptic seizures), and
the lines reflect fitted data.

The presented data show evidence that the baseline PDF
differs from the PDF obtained for epileptic activity. In the
former case, the PDF peaks at low values of NWP. In the latter
case, the PDF spreads across the broader range of NWP and
forms a heavy-tailed distribution.

We contrasted the parameters of the Weibull distribution
during baseline and seizure. According to the Shapiro-Wilk
test, the distribution of Weibull parameters across participants
was not normal (p > 0.05). Therefore, we applied a nonpara-
metric Wilcoxon signed-rank test to compare them between
baseline and seizure.

As a result, the localization parameter loc did not
change between seizure (Mdn = 0.08, IQR = 0.09) and base-
line (Median = 0.02, IQR = 0.04): Z = −1.78, p = 0.74
[Fig. 2(b)].

The exponentiation parameter a for seizure (Mdn =
0.46, IQR = 0.81) was significantly lower than for base-
line (Mdn = 31.33, IQR = 36.61): Z = −2.8, p = 0.005
[Fig. 2(c)]. Analysis of the pairwise differences revealed that
all subjects demonstrated an effect in the same direction as the
group [Fig. 2(d)]. The dashed line in Fig. 2(d) illustrates the
case when abaseline = aseizure. All points that reflect individual
subjects’ values appear above this line, manifesting abaseline >

aseizure.
The shape parameter c for seizure (Mdn = 3.32, IQR =

2.43) exceeded the one for baseline (Mdn = 0.53, IQR =
0.09): Z = −2.8, p = 0.005 [Fig. 2(e)]. Analysis of the pair-
wise differences also revealed that all subjects demonstrated
an effect in the same direction as the group [Fig. 2(g)].
Namely, all points in Fig. 2(g) appear below the dashed line
indicating that cbaseline < cseizure.

Finally, scaling parameter scale for seizure (Mdn = 0.57,
IQR = 0.39) exceeded the one for baseline (Mdn = 0.006,
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30 s. (b) The noise intensity (mean ± 95% confidence interval and individual values) estimated for these time windows, F (3, 27) = 3.48,
p = 0.0029 via one-way analysis of variance (ANOVA). (c) The regression plot: colored dots correspond to each participant’s data, lines have
a similar slope, r = 0.52 estimated for these participants via correlation analysis with repeated measures (p = 0.002). (d) The signal variance
(mean ± 95% confidence interval and individual values) calculated for these time windows, F (3, 27) = 1.64, p = 0.207 via one-way ANOVA.
(e) The regression plot: colored dots correspond to each participant’s data, lines have a similar slope, r = 0.38 estimated for these participants
via correlation analysis with repeated measures (p = 0.031).

IQR = 0.007): Z = −2.8, p = 0.005 [Fig. 2(g)]. Analysis
of the pairwise differences also proved that all subjects
demonstrated the effect in the same direction as the group [all
points in Fig. 2(h) appear below the dashed line].

C. Noise on EEG signals increases preictally

In the previous section, we demonstrate that the time series
of EEG spectral power in the 1–5 Hz frequency band forms
a heavy-tailed distribution. We suppose that a heavy tail re-
flects the presence of epileptic seizures producing a dramatic
increase of 1–5 Hz spectral power. The fact that seizures
satisfy an extreme-event definition suggests a possible onset
mechanism based on dynamical systems theory. As we know
from the dynamical systems analysis, extreme events arise due
to the instability. In the vicinity of this unstable point, the sys-
tem state exhibits the amplification of the small perturbations.

On the EEG signals, these small perturbations may represent
the noise originating from the neuronal activity. Thus, if the
extreme epileptic event onsets are due to instability, its de-
velopment should accompany the noise amplification during
a preictal state.

We compare the noise intensity values on the four win-
dows (T1, . . . , T4) during the preictal state [see Fig. 3(a)]. The
distribution of noise intensity across the subjects was normal
for each window (p > 0.05 via the Shapiro-Wilk test). An
ANOVA with a window serving as a within-subject factor re-
vealed a significant main effect: F (3, 27) = 3.48, p = 0.029.
Figure 3(b) shows that the mean noise intensity increases
when the window shifts toward the seizure onset.

Visual inspection of the individual values showed evidence
that seven subjects followed the group tendency exhibiting the
growth of the noise intensity (green lines). The noise intensity
decreased towards the seizure onset for three subjects, but
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with the lower slope (red lines). To quantify the relationship
between the window number and noise intensity at the group
level, we applied correlation analysis with the repeated mea-
sures [43]. It is a statistical technique for determining the
common within-individual association for paired measures
(the noise intensity and the window number) assessed on
two or more occasions (T1, . . . , T4) for multiple individuals.
As a result, we observed a moderate positive relationship:
rrm(29) = 0.52, 95% CI [0.20, 0.74], p = 0.002. Figure 3(c)
presents the results for the correlation analysis. The dots of
different color show the noise intensity estimated for the sin-
gle subject for all windows. The colored lines have a similar
slope estimated for these participants at the group level. After
a visual inspection of these data, one can see that the points
(e.g., brown ones) do not agree with the line fit for some
subjects. Similarly to Fig. 3(c), it refers to the subjects that
do not follow the group mean tendency. Simultaneously, the
significance level of p = 0.002 allows us to conclude that the
obtained correlation model describes the group data.

We also compare the signal variance on the four windows
(T1, . . . , T4). Figure 3(d) shows that the mean signal variance
increases when the window shifts toward the seizure onset.
Similarly to the noise intensity, there are subjects for which
the variance decreases. An ANOVA with a window serv-
ing as a within-subject factor revealed an insignificant main
effect: F (3, 27) = 1.64, p = 0.207. That means that between-
subject variability exceeds the change of the signal variance
between the windows (T1, . . . , T4). In contrast, correlation
analysis with repeated measures revealed a moderate positive
relationship: rrm(29) = 0.38, 95% CI [0.20, 0.74], p = 0.031
[Fig. 3(e)].

Thus, the majority of subjects exhibited growth of the noise
intensity and variance before the seizure. At the same time,
several participants demonstrated an effect in the opposite
direction. To test whether the change in noise intensity and the
signal variance correlate, we used correlation analysis with the
repeated measures. It demonstrated a strong positive relation-
ship: rrm(29) = 0.809, 95% CI [0.62, 0.9], p = 3.5 × 10−8

(Fig. 4).

IV. DISCUSSION AND CONCLUSION

We consider noninvasive EEG signals of human partic-
ipants with generalized epileptic seizures. We show that
the PDF of the baseline EEG wavelet power peaks at low
values. In contrast, the same PDF for epileptic seizure ex-
pands across the broader range and forms a heavy-tailed
distribution. According to the extreme value theory (the
Pickands-Balkema–de Haan theorem [44,45]), the long tail
reflects extreme behavior. We successfully fit this tail with the
heavy-tailed Weibull distribution, as we did earlier for epilep-
tic rats [20], confirming that generalized epileptic seizures in
humans are a sort of extreme event.

In dynamic systems, extreme events may appear through
different scenarios, e.g., imperfect phase synchronization
and saddle-type equilibrium [46] or attractor bubbling and
noise-induced transitions [1]. In the latter case, occasional
noise-induced jumps cause the system to irregularly and
briefly leave the vicinity of an invariant manifold containing
a chaotic attractor. During these occasions, the system state
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p = 3.5E-8

FIG. 4. The regression plot: colored dots correspond to each
participant’s data (noise intensity and signal variance); lines have
a similar slope, reflecting a strong positive correlation (r = 0.809)
between the noise intensity and signal variance estimated for these
participants via correlation analysis with repeated measures.

follows an orbit that moves away from the invariant manifold
but eventually returns to the attractor. In this notation, extreme
events reflect the episodes when the system state travels to
phase space regions far from the invariant manifold.

Another view is that the on-off intermittency in the system
can lead to attractor bubbling. Pisarchik and colleagues re-
ported this scenario for rogue waves in an erbium-doped fiber
laser driven by harmonic pump modulation [47]. In their sys-
tem, low-frequency noise in a diode pump current led to rare
jumps to rogue waves, the extreme events with high-amplitude
pulses. Soli and co-authors obtained similar results on rogue
optical waves in Ref. [48].

According to our previous studies [49,50], the distribution
of return times τ for epileptic seizures in an animal model
of epilepsy obeys a power law p ∼ τ γ , γ = −3/2, mani-
festing on-off intermittency. In their work [51], Suffczynski
and colleagues also reported that the occurrence of epileptic
seizures had some periodicity and supposed that noise may
cause transitions between states.

We considered these results in Ref. [20] and proposed that
the brain can demonstrate prebifurcation signal (noise) ampli-
fication near the onset of an epileptic seizure, like many other
dynamical systems in the vicinity of a critical point [21,23–
25]. We considered interictal and preictal states on the EEG
signal to reveal this phenomenon in the long-term epileptic
EEG of WAG/Rij rats. We found that a PDF of 6–8 Hz
wavelet power changed even before the seizure onset, and
suggested applying this phenomenon to predict seizures.

We suppose that similar dynamical mechanisms may de-
scribe the onset of absence seizures in rats and generalized
seizures in humans. However, epileptic seizures are more
sparse for human patients than for animal models of epilepsy
(e.g., the WAG/Rij rats strain): most human EEG recordings
lasted for several days and contained up to four seizures.

In this study, we have insufficient amounts of ictal states to
analyze return times and long-range correlations. Neverthe-
less, we can compare the Weibull approximation of interictal
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and preictal PDFs. We show that the Weibull approximation of
interictal PDFs has a relatively high exponentiation parameter
while shape and scale parameters are low. Therefore, the PDF
peaks at a small wavelet power value with no noticeable tail.
For the ictal PDF, the Weibull approximation has the lowest
exponentiation parameter and the highest shape and scale
parameters, indicating a broader distribution with a heavy tail.

These features of the Weibull approximation are compara-
ble to those obtained for seizures in rats. Since the correlation
analysis and on-off intermittency in rats’ EEGs offer a
noise-related mechanism of extreme event onset, we suppose
increasing noise may precede seizures in humans. Analysis of
the preictal state reveals a gradually growing noise intensity,
confirming our hypothesis. To estimate noise intensity, we
fitted a wavelet power spectrum with a C/ f α distribution and
integrated it in the frequency range 1–30 Hz. In this way,
increasing noise intensity may accompany the growth of the
total signal power. A similar concept of growing signal energy
before seizure was shown by Litt et al. [52]. They analyzed
long (up to 14 days) intracranial EEG recordings from five
patients with temporal lobe epilepsy and obtained that the
accumulated energy increased in the 50 min before seizure
onset, compared to baseline. At the same time, Harrison et al.
did not confirm these results [53]. They considered the accu-
mulated energy and windowed average power in the a single
channel of ECoG data and comparied the behavior of these
characteristics on segments containing seizures to interictal
segments. As a result, the accumulated energy curve showed
no divergence from interictal curves. Distinctive increases in
the accumulated energy slope occurred sometime at or after
seizure onset for some seizures. Similarly, windowed average
power showed no consistent increases in broadband energy
before seizures. However, it demonstrated the detection ability
for some seizures.

Our results also showed increasing signal variance before
the seizure onsets. Increasing signal variance appears to be
one of the early warning signals of critical transitions [41].
According to the literature, the critical transition is a general
definition of the change in the system state passing the bifur-
cation point. The bifurcation point corresponds to a critical
threshold. When the dynamical system gets close to the criti-
cal threshold, it is referred to as a critical slowing down. The
bifurcation theory implies that, as the system approaches a
critical threshold, it becomes slow in recovering from small
perturbations. If the small perturbation evolves as ∼eλt , the
dominant eigenvalue λ tends to zero. As the eigenvalue ap-
proaches zero, the impacts of perturbations do not decay, and
their accumulating effect increases the variance of the state
variable.

Other studies also found signs of critical transition before
the seizure onset. Meisel and Kuehn analyzed preictal states
in the different levels [54]. On the single-neuron level, they
employed a model-based analysis with the FitzHugh-Nagumo
model and showed that the variance could be a precursor of
spiking. On the level of neuronal clusters, they used ECoG
data. They observed that the variance demonstrated oscil-
lations before the seizure. Furthermore, the inverse of the
variance displayed a linear scaling law manifesting Hopf bi-
furcation. Chang and co-authors reported the onset of seizures
due to the progressive loss of neuronal network resilience

governed by the principles of critical slowing [55]. They fur-
ther suggested that interictal epileptiform discharges play the
role of external perturbations and may control this process.
In recent work, Maturana and colleagues found signatures of
critical slowing down on the short and long time scales [56].
First, they provided strong evidence of critical transitions
(increased autocorrelation and variance) close to the seizure
onset. Then, they demonstrated how the measures of critical
slowing down (autocorrelation and variance) fluctuated over
temporally extended scales (hours to days) and used them to
forecast seizures.

In the literature, increased signal variance before seizures
has contrasting evidence. While Scheffer et al. associated the
increased variance as a marker of the critical slowing down,
they also mentioned an opposite effect of the critical slowing
down on the variance [41]. Different studies pointed out that
the early warning signals might describe only a subgroup
of critical transitions. Sometimes, shifts may occur without
warning. For instance, in a bistable domain, the noise might
push the system across the separatrix to the other state. This
noise-induced transition does not involve any gradual change
of variance. According to Milanowski and Suffczynski, the
type of seizure may also define the presence of the early
warning signals. Seizures whose type was unknown tended
to behave according to the theory, exhibiting an increase in
variance before an onset. On the contrary, the decreased vari-
ance preceded the seizures classified as complex partial [57].
In recent work, Wilkat, Rings, and Lehnertz reported no
evidence for critical slowing down before human epileptic
seizures [42]. They supposed that associating a preictal state
with critical slowing down might be too simplistic for the
human epileptic brain. They also mentioned other potential
mechanisms behind this phenomenon, such as noise-induced
and rate-dependent tipping. Neither of these requires any
change of stability, and there may be no easily identifiable
early warning signals for such cases.

The literature provides contradicting evidence about the
onset mechanism. Some studies support the concept of criti-
cal slowing, while other studies suggested other mechanisms,
e.g., noise-induced transition in a bistable domain. In the first
case, the early warning signals may precede the onset, while
there may be no early warning signals in the latter case. At the
same time, noise amplification may subserve the transitions
in both cases. During the critical slowing, the noise perturbs
the system state. These perturbations do not decay near the
critical threshold, and their accumulating effect causes noise
amplification. In a bistable domain, where the noise may push
the system to the other state, growing noise intensity increases
the possibility of such transitions. Here, we demonstrated a
strong positive correlation between the noise intensity and the
variance. It allowed us to suppose that the variance might
increase due to noise amplification, supporting the concept
of critical slowing. We did not report a causal relation, but
it might be a subject of further studies.

Our study has potential limitations. The number of partic-
ipants is small; therefore, there is a risk that their individual
characteristics influence brain activity. The number of seizures
is also small. Thus, there is a risk that the brain state changes
over the long time scales affecting the onset mechanisms
of the individual episodes. Although experts have marked
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the seizure onset, it does not mean that the marked position
is the exact point of bifurcation. Finally, our results show
that noise intensity increased towards the seizure onset for
seven subjects and decreased for three subjects. The variance
increased towards the seizure onset for six subjects and de-
creased for four subjects. Due to a small number of subjects, it
is difficult to confidently conclude whether the probability of
preictal increase is higher than that of decrease (as the critical
transition theory suggests). To test whether the probability of
increase and decrease is different, one can use the binomial
test and reject H0, which assumes equal probability. Consid-
ering the probability of increase under H0 to be P = 0.5, for
n = 10 subjects, the cumulative probability of getting seven
increases or more is 0.171. The p-value of the test is twice

this value, i.e., 0.343. Hence, based on the binomial test, H0

cannot be rejected, meaning that the probability of preictal
increase and decrease is the same. Thus, while the correlation
analysis results are positive, the question of a preictal increase
in noise intensity remains ambiguous. Next studies should
include a larger sample size to provide further support for our
hypothesis.
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