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Classifier for Detecting Outliers in Epileptic Seizures
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Abstract—The authors consider a classifier for detecting seizures on electroencephalogram records. The clas-
sifier is based on a one-class support vector machine, due to features of brain activity during epileptic seizures.
A transparent feature selection procedure is used to improve the interpretability of the classifier.
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INTRODUCTION
Epilepsy is a group of neurophysiological diseases

characterized by the onset of seizures that can range
from short episodes with no clinical manifestations to
prolonged convulsive attacks [1, 2]. According to
global statistics, epilepsy is one of the most common
neurophysiological diseases [3]. Attacks are accompa-
nied by involuntary movements and a state of tempo-
rary incapacity, posing a danger to both the patient
himself and those around him. Patients with epilepsy
are also more prone to cognitive and behavioral disor-
ders [4]. Epilepsy can be treated surgically or with
medication, but both require prior diagnosis [5].

Specialists face many problems when diagnosing
epilepsy. It has a variety of causes (e.g., heredity, brain
injury, stroke, tumor), and the exact cause often
remains unknown [6, 7]. This results in many manifes-
tations of epilepsy, which (along with the random
nature of the onset of seizures) greatly complicates
diagnosis [8].

One of the most common ways of diagnosing epi-
lepsy is to study electroencephalogram (EEG) [9].
Patients are observed in a hospital for long periods of
time during such studies, and their EEG data is deci-
phered by an expert searching for epileptiform activity
that emerges spontaneously or as a result of ongoing
functional tests. This means of diagnosis is very reli-
able, but its main drawback is the need to decipher the
EEG. A generally accepted means is visual analysis
with manual interpretation of the EEG. Manual EEG
decoding requires considerable effort even from an
expert neurophysiologist and can be influenced by the
human factor. This field of medicine therefore needs
reliable automated means of EEG diagnostics. The
fully automatic detection of EEG seizures would seem
to be the most attractive option, but even modern
means in this area have a high probability of misdiag-
nosis. Such mistakes can negatively impact a patient’s
physical and mental health, resulting in the need for
additional treatment and rehabilitation. A possible

solution to this problem is the partial automation of
diagnostics, in which an automated algorithm ana-
lyzes the data and obtains preliminary results, but the
final decision is made by an expert. This principle
underlies the construction of medical decision support
systems (MDSSes) [10].

METHODS
A promising area for developing ways of diagnosing

epilepsy is machine learning [11]. When detecting epi-
leptic seizures, the EEG data are usually divided into
two classes: seizures and non-seizures (normal activ-
ity) [12, 13]. However, the distribution of examples
according to class is often highly biased: only several
minutes of epileptic activity are observed in tens of
hours of recorded EEGs. Figure 1 shows an example
of a long EEG recording for a patient with epilepsy.
The figure clearly shows that the 24-h EEG recording
(Fig. 1a) contains only two epileptic seizures (Figs. 1b
and 1c) with a total duration of 140 s (~0.16% of the
entire recording). There is thus a class imbalance in
the epileptic EEG data, in which classical models
show poor accuracy of classification for the class less
represented (in this case, seizures). This is because
many classical models are based on the assumption of
equal distributions of examples between classes.

It should be noted that the problem of class imbal-
ance arises when training an algorithm, resulting in
discussions of two main types of machine learning
algorithms: supervised and unsupervised. Supervised
algorithm is trained on pre-labeled data in order to
then independently label new unlabeled data [14]. In
diagnosing epilepsy, the EEG recordings with epilep-
tic activity are pre-marked by an expert, and then can
be used to train a machine learning algorithm [15]. A
review of the literature shows that most modern ways
of detecting seizures are based on supervised learning
[16]. Such means usually have higher accuracy of clas-
sification, but they face certain problems: a high prob-
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Fig. 1. Example of a daily EEG recording with two seizures (indicated by vertical grey stripes). One of the EEG channels shows
(a) a full recording lasting 24 h and (b, c) two epileptic seizures lasting 70 s each.
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ability of overfitting the algorithm is added to the
problem of class imbalance. As mentioned above, the
EEG data in epilepsy can vary greatly, and the lack of
representation of epileptic activity results in poor
reproducibility of the pattern of epileptic seizures. To
solve this problem, we must use a large set of variable
EEG data when training the algorithm, and the col-
lection of such data is a complex task in itself. A more
practical solution to this problem could be to use unsu-
pervised learning [17], in which a set of unlabeled data
is analyzed, clustered, and divided into classes (e.g.,
background EEG activity and seizures).

In this work, we propose using an unsupervised
machine learning algorithm to solve the problems of
class imbalance and the possible overfitting of the
classifier. The unbalanced classes in an epileptic EEG
are so pronounced that there is only one class of nor-
mal activity, while examples of seizures are considered
anomalies or outliers. In machine learning, one of the
most popular ways of finding outliers is one-class Sup-
port Vector Machines [18]. This option has proven to
be reliable in analyzing a variety of biological data
[19, 20].

Machine learning in problems of diagnosis usually
results in the development of classifiers, interpretable
or non-interpretable. Non-interpretable classifiers
classify data without explaining how they work. Such
classifiers are typically the ones most promising and
provide high accuracy of 99–100%. However, algo-
rithms of this type of classifiers often cannot be inter-
preted by a human [21, 22]. This means non-interpre-
table classifiers cannot be used to obtain new knowl-
BULLETIN OF THE RUSSIAN ACADEMY OF SCIENCES
edge about gathered data. Interpretable classifiers act
as an alternative: their accuracy of classification is
lower on average, but the algorithms and results of the
work can be interpreted by a human [23, 24].

One way to make a machine learning algorithm
more interpretable is through a transparent feature
selection procedure. For multichannel EEG data, a set
of features can be obtained from the spatial–fre-
quency–time domain that together comprise a multi-
dimensional feature space [25]. A feature selection
procedure is needed because having many features
negatively affect computational costs. This procedure
is most often performed automatically, and features
are selected on the basis of maximum relevance or
minimum redundancy. To provide greater interpret-
ability, however, the feature selection procedure can
be based on knowledge of the frequency–time struc-
ture of an EEG.

In selecting features for the classifier, we used
results from our earlier studies of epileptic EEGs. In
terms of frequency, we had already shown that epilep-
tic seizures manifest as spikes in the energy of a contin-
uous wavelet transform (CWT) averaged over a certain
area of the spatial–frequency–time domain [26, 27].
As a feature, we used the average CWT energy in the
2–5 Hz range of frequencies over 25 EEG channels
and in 60-s time intervals.

RESULTS AND DISCUSSION

We tested a classifier based on a one-class SVM
(support vector machine) using the average CWT
: PHYSICS  Vol. 87  No. 4  2023
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Fig. 2. Dependence of the (a) sensitivity and (b) accuracy of the classifier on the threshold value. A statistically significant differ-
ence is marked with an asterisk (*); a non-significant difference is labeled n.s.
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energy as a feature. This classifier was tested on a set of
data recorded in 83 patients with various forms of focal
epilepsy. To evaluate the performance of the classifier,
we calculated such indicators as sensitivity (true posi-
tive rate, TPR) and accuracy (positive predictive
value, PPV):

(1)

(2)

where TP (true positive) is the number of correctly
recognized seizures, FP (false positive) is the number
of falsely recognized seizures, and FN (false negative)
is the number of missed seizures.

For the classifier, we also considered two hyperpa-
rameters that can affect the efficiency of classification:

( )
=

+
TPTPR %,

TP FN 100

( )
=

+
TPPPV %,

TP FP 100
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(1) Threshold, the expected percentage of outliers
in the training data. We considered the values 10, 5,
2.5, 1, 0.5, 0.25, 0.1, 0.05%.

(2) Type of training, the strategy used in training
and testing the algorithm. We considered cross-valida-
tion (CV) and sliding control (leave-one-out, LOO).
In the former, the data set for one subject is divided
into k fragments: k – 1 fragments are used to train the
classifier, and the classifier is tested on the kth frag-
ment. In the latter, data on 82 adult subjects are used
for training, and the data of the 83rd are used for test-
ing the classifier.

Statistical analysis was performed using the Wil-
coxon test to determine the optimal hyperparameter
values for the classifier.

Figure 2 shows the dependence of the sensitivity
and accuracy of the classifier on the threshold value.
As can be seen from Fig. 2, the sensitivity and accuracy
changed considerably as the threshold fell, but the
MY OF SCIENCES: PHYSICS  Vol. 87  No. 4  2023
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Fig. 3. Dependence of (a) sensitivity and (b) accuracy of the classifier on the type of training: cross-validation or sliding control.
A statistically significant difference is marked with an asterisk (*); a non-significant difference is labeled n.s.
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change ceased to be significant at a certain point. The
sensitivity fell along with the threshold, and the drop
remained significant down to the 1% threshold
(Fig. 2a). The accuracy rose as the threshold fell, but
its significance remains only up to 5% of the threshold
value (Fig. 2b). The threshold value of 5% can thus be
considered optimal, since the accuracy stops growing
and the sensitivity remains high.

Figure 3 shows the dependence of the classifier’s
sensitivity and accuracy on the type of training: cross-
validation and sliding control. Figure 3a shows that the
sensitivity for cross-validation is much higher (p =
3.18 × 10–7) than for sliding control: TPR = 76.97 ±
4.40 versus TPR = 39.96 ± 5.20. At the same time, the
accuracy is not significantly different (p = 0.12) for
cross-validation and sliding control: PPV = 12.70 ±
1.47 and PPV = 9.30 ± 1.72 respectively (see Fig. 3b).
Cross-validation is clearly a more appropriate type of
training for a classifier.

CONCLUSIONS

We selected the optimal values for classifier hyper-
parameters. The final sensitivity of the classifier was
TPR ~ 77%, and the PPV accuracy was ~13%. This
accuracy may seem low, but we must take into account
the considerable length of EEG recordings—in some
cases, around 80 h. A classifier with such characteris-
tics can be used in an MDSS [28]. For example, we
can replace analysis of the entire EEG record with that
of episodes highlighted by the classifier. The work of
BULLETIN OF THE RUSSIAN ACADEMY OF SCIENCES
an expert is still required in this approach, but the
amount of analyzed data is considerably reduced. The
work of the expert is also reduced, shortening the time
of making a diagnosis for a particular patient.
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