
737

ISSN 1063-7850, Technical Physics Letters, 2016, Vol. 42, No. 7, pp. 737–739. © Pleiades Publishing, Ltd., 2016.
Original Russian Text © O.I. Moskalenko, A.A. Koronovskii, A.E. Hramov, 2016, published in Pis’ma v Zhurnal Tekhnicheskoi Fiziki, 2016, Vol. 42, No. 14, pp. 45–51.

Noise-Induced Binary Synchronization in Nonlinear Systems
O. I. Moskalenkoa, b, c*, A. A. Koronovskiia, b, and A. E. Hramova, b, c

a Saratov State University, Saratov, 410012 Russia
b Yury Gagarin State Technical University of Saratov, Saratov, 410054 Russia
c Kotelnikov Institute of Radio Engineering and Electronics (Saratov Branch),

Russian Academy of Sciences, Saratov, 410019 Russia
*e-mail: o.i.moskalenko@gmail.com

Received February 24, 2016

Abstract—The phenomenon of noise-induced binary synchronization has been discovered in two indepen-
dent dynamical systems generating aperiodic binary signals under the action of a common noise source. The
presence of a synchronous regime was confirmed by the calculation of Lyapunov exponents for the two sys-
tems. The mechanism of development of the noise-induced binary synchronization regime has been found.
A relation of the observed regime to binary generalized synchronization is established.
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Chaotic synchronization is among the fundamen-
tal concepts of the modern natural sciences [1]. The
interest in this phenomenon is also related to the pos-
sibility of detecting and/or using various types of asyn-
chronous behavior in a wide circle of various dynamic
systems, including telecommunications and biologi-
cal, physiological, social, and many other systems [2–
5].

At present, several types of chaotic synchronous
behavior are distinguished among which the most
important and extensively studied are the regimes of
total synchronization (TS) [6], lag synchronization
[7], phase synchronization (PS) [8], generalized syn-
chronization (GS) [9], and noise-induced synchroni-
zation (NS) [10]. It is important to note that all these
types of chaotic synchronization have been mostly
found and studied in analog systems. However, it is
also possible theoretically to observe these regimes in
binary (e.g., digital communication) systems where
interacting subsystems generate aperiodic sequences
of “zero” and “unity” bits. In the past two decades,
researchers in this field have revealed and described
TS, PS, and NS regimes in binary systems, which are
called the “binary total” [11], “binary phase” [12], and
“binary generalized synchronization” (BGS) [13].
Taking into account the common nature of GS and
NS regimes in analog systems [14], it can also be
expected that NS exists in binary systems and, accord-
ing to the above classification, must be called the
binary noise-induced synchronization (BNS).

The present work was aimed at studying the possi-
bility that the NS regime exists in binary systems,
revealing the mechanisms of its appearance, and
establishing its relationship to the BGS regime.

First, let us introduce the concept of BNS. For this
purpose, consider two independent systems x and y
with continuous or discrete time and identical control
parameters, which occur under the action of a com-
mon source of noise εf(ξ). Here, factor ε characterizes
the noise signal intensity, f is a linear or nonlinear
function, and ξ is a stochastic process. Assume that
the systems generate aperiodic binary time series of
x = h[x] and y = h[y] such that x ≠ y in the absence of
noise for x0 ≠ y0. Here, x0 and y0 are the vectors of ini-
tial conditions and h is some function that takes only
two possible values: 0 or 1. Accordingly, variables x
and y also take only the values of zero and unity. By
analogy with the traditional NS regime [10, 14], the
BNS will imply a regime in which binary time series x
and y generated by the two systems become fully iden-
tical (x = y) after a transient process, provided that the
noise intensity exceeds a certain critical level εc.

For BNS regime diagnostics, it is possible to use
either direct comparison of x and y signals or calcula-
tion of the synchronization error, similarly to the case
of analog signals [10]. In addition, the BNS diagnos-
tics can be based on calculation of the spectrum of
conditional Lyapunov exponents for one of the two (x
or y) systems occurring under the action of noise [14].
A criterion for the presence of synchronization in this
case is a negative value of the highest conditional Lya-
punov exponent.

The BNS phenomenon was found in a system of
two uncoupled logistic maps
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where X and Y are variables characterizing the states of
interacting systems, g(x, λ) = 1–λx2, λ = 1.6 is the
control parameter, ξn is the stochastic Gaussian pro-
cess with mean value μ0 = 0.5 and variance σ = 0.12,
and ε is the parameter of noise intensity. The external
noise action upon logistic maps (1) was introduced by
analogy with the case of traditional NS [14]. Binary
time series were obtained from initial analog signals Xn
and Yn of logistic maps (1) by application of the
Heaviside function H(ζ) so that

(2)

In the absence of noise (ε = 0), the two aperiodic
time series xn and yn turn out to be different despite
identical values of control parameter λ in the interact-
ing subsystems (Fig. 1a). As the noise intensity
increases, the two signals become close to each other
and, when the synchronization error E approaches
zero (Fig. 2a), a BNS regime appears in the system.
The synchronization error for binary systems with dis-
crete time was calculated using the following formula:

where N is the number of iterations and N0 is that cor-
responding to the transient process. In this case,
binary time series xn and yn after termination of the
transient process exactly coincide (Fig. 1b).

The presence of BNS in the system studied is also
confirmed by the dependence of the highest condi-
tional Lyapunov exponent Λ on intensity ε of the noise
action (Fig. 2b). As can be seen from Fig. 2b, an
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increase in ε leads to the shift of Λ to the region of neg-
ative values, which is indicative of the onset of a BNS
regime. It should be emphasized that the BNS regime
onset identified in this way almost exactly coincides
with the threshold determined by calculations of the
synchronization error (cf. Figs 2a and 2b), which
indicative of the possibility of using both methods for
NBS diagnostics in the case under consideration.

Let us briefly discuss mechanisms responsible for
development of the BNS regime, which turn out to be
analogous to the mechanisms of NS in analog systems
(see [14]). Since Eqs. (1) contain additional terms
‒εg(X, λ) responsible for growing dissipation in the
system with increasing amplitude of external noise, it
is evident that, similarly to the case of BGS, the devel-
opment of a synchronous regime in the present case is
determined primarily by suppression of the intrinsic
chaotic dynamics under the action of external noise.
Increased dissipation in systems occurring under the
action of external noise leads to a shift of the highest
conditional Lyapunov exponent to the negative
region, which is a criterion for the appearance of both
GS and NS regimes.

In concluding, analysis of the behavior of a model
system with discrete time in this work allowed us for
the first time to establish the possibility of BNS
regimes. It is shown that the diagnostics of this regime
can be based both on direct comparison of the states of
subsystems occurring under common noise action and
on calculations of the highest conditional Lyapunov
exponent for one of the interacting systems. It is estab-
lished that, similarly to the case of BGS, the develop-
ment of a synchronous regime in the system studied is
determined primarily by suppression of the intrinsic
chaotic dynamics under the external noise action.

Fig. 1.  Aperiodic binary time series obtained by numerically solving Eqs. (1) and (2) for two values of the external noise ampli-
tude: (a) ε = 0 (asynchronous regime); (b) ε = 0.2 (BNS regime).
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It should be noted that a phenomenon analogous
to the BNS can be observed if the noise is replaced by
a harmonic signal at a frequency varying within broad
limits. This substitution leads to quantitative changes
in behavior of the system, but does not qualitatively
modify the phenomenon under consideration.
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Fig. 2. Plots of (a) synchronization error E and (b) highest conditional Lyapunov exponent Λ vs. amplitude ε of the external noise
action. The onset of BNS is indicated by the arrow in both plots.
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