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Abstract We study the specific features of the organization of the functional brain networks of children with
autism spectrum disorder (ASD) by analyzing at the source level the data obtained in the EEG experiment
in the resting-state paradigm. We pay special attention to age-related changes in the characteristics of
functional networks during the particularly important age period from early childhood to adolescence.
The analyzed experimental groups consisted of 148 ASD children and 173 neurotypical children that were
considered as a control group. In the theta band, we revealed an age-independent functional connectivity
pattern, consisting of the brain areas responsible for emotions and consciousness, where the strength of
connections is higher in neurotypical children compared to ASD children. Moreover, we discovered lower
network global clustering in the delta + theta band in ASD children. Thus, more segregated, but more
highly connected subnets are formed in the delta + theta band in neurotypical individuals compared to
ASD ones. We can suggest increased control over emotions and stronger interaction between the emotional
and conscious domains in neurotypical children. In the extended alpha band, we revealed an age-dependent
functional connectivity pattern, demonstrating hyper-activation in the ASD group for ages below 6–7 years
old and hypo-activation—for older ages. Also, we discuss the development of effective approaches to autism
therapy, which should be based on the normalization of aberrant functional connections.

1 Introduction

Autism spectrum disorder (ASD) is a largely herita-
ble neurological condition that significantly reduces the
social interaction abilities of the affected individual. Its
rather unclear origins attracted the increased attention
of clinical scientists and caused the development of var-
ious diagnostic and therapeutic approaches. Due to the
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high social significance of this topic, a significant effort
has been made to determine the associations between
brain functioning and ASD development. Some studies
indicate that ASD develops at prenatal and early post-
natal stages [1, 2] and has a broad range of diagnostic
ages [3], which stimulated active research of early diag-
nostics methods based on behavioral [4–6] as well as
neurological indicators [7–9].

A considerable amount of studies are dedicated to
the development of various techniques for the identifi-
cation of biomarkers of ASD based on neurophysiolog-
ical data analysis. Among them, fMRI draws a lot of
interest. In particular, both task-related and resting-
state fMRI were used in several classification systems
for ASD children [10, 11]. Besides, quantitative analysis
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of fMRI provides valuable knowledge about physiolog-
ical processes that take place in the central neural sys-
tem of individuals with ASD [12–14]. The use of fMRI,
however, is rather limited by the high cost and the fact
that it is a medical technology that is intended for use
in clinical conditions. Another promising technique is
an analysis of EEG time series, which was also involved
in the development of systems for the detection and
classification of ASD-related abnormalities [15, 16] and
the analysis of its spectral features [17, 18].

A promising approach to the study and diagnosis of
ASD is analysis at the level of functional brain networks
[19]. In this case, the brain is considered as a single
system consisting of many connected interacting areas
[20]. The characteristic functional connectivity patterns
represent brain activity during cognitive task solving,
as well as its state both in norm and in deviations.
Such an approach proves to be particularly effective for
detecting normal and pathological brain states, since it
reveals not just disruptions in the activity of individual
brain regions, but studies the features of the integra-
tive dynamics of the brain. ASD has been linked with
atypical connectivity across multiple brain systems, yet
the nature of these differences in young children with
the disorder is not well understood [19, 21].

Resting-state functional connectivity analysis
(mainly resting-state fMRI) has proven to be a pow-
erful tool for examining intrinsic functional brain
connectivity in clinical pediatric populations [21].
Resting-state experimental paradigm offers two advan-
tages over task-based paradigms. Firstly, it allows
easier data collection from children with ASD who
have difficulties with long task-based experiments [22].
Secondly, it identifies underlying intrinsic functional
networks that are not confounded by differences in
task performance or strategy differences. By estimating
temporal correlations of the resting-state signals (e.g.,
BOLD or EEG signals) between functionally coupled
brain regions, it is possible to identify intrinsically
connected functional networks that are not confounded
by cognitive tasks [23]. Many disruptions in the func-
tioning of the functional network in ASD individuals
are already apparent in the resting state of the brain.
This is usually a consequence of the malfunctioning
of the default mode network and the salience network
in ASD people, as well as their interaction with
each other and the central executive network [24].
The relationship between these networks relates to
behavioral performance in the neurotypical population
[25], but is not well understood in ASD.

In this paper, we study the features of functional
brain networks in ASD children based on the analysis
of EEG data obtained in the resting-state experimen-
tal paradigm. We focus on age-related changes in the
characteristics of functional networks during the par-
ticularly important age period from early childhood to
adolescence. This study is important both for advanc-
ing our understanding of the causes and mechanisms of
ASD and for developing methods for diagnosing ASD
in the early stages of life (especially for mild manifes-
tations of ASD).

2 Methods

We considered two groups of subjects: the ASD group
(148 children) and the neurotypical group “Typical”
(173 children). All subjects were divided into four age
groups: gr1 (2–4 y.o.), gr2 (4–6 y.o.), gr3 (7–9 y.o.),
and gr4 (10–16 y.o.). During the EEG experiment, the
individuals were instructed to sit with their eyes open
and try not to make visible movements. EEG data con-
sisted of 19-channel recordings with an average dura-
tion of about several minutes sampled at 250 Hz, while
the duration of the EEG recording for each subject was
determined by his ability to complete the task for as
long as possible. The EEG electrodes were placed in
accordance with the 10–20 international system. EEG
was preliminarily cleaned of the artifacts using fre-
quency filters and the ICA.

We conducted the source-level assessment of the func-
tional connectivity network to identify the features of
functional relationships between different physiological
brain areas [26] associated with age-related changes
and the development of ASD. The sources were recon-
structed using a frequency-domain partial canonical
coherence (PCC) method [27]. PCC is one of the most
convenient for evaluating relationships between sources
because it provides more flexibility for data processing.
In particular, the PCC implementation directly outputs
the Fourier coefficients for each dipole position sepa-
rately for each epoch. An MRI image of the head and
brain was used to create a head model based on the
boundary element method (BEM) with three types of
tissues (brain, skull, and skin) [28]. Because our dataset
has no individual MRI images, and the human head
and brain undergo significant changes in the age of 2–16

Fig. 1 The MRI images for groups gr1 (a), gr2 (b), gr3 (c),
and gr4 (d) used for modeling
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years, we used the public database of MRI images “Neu-
rodevelopmental MRI Database” [29], which presents
averaged MRI images for various age groups. Figure 1
shows MRI images that were selected for the considered
age groups. We applied the OpenMEEG method [30]
to solve the forward problem (a necessary component
for source reconstruction), which has the best accuracy
among all similar approaches. As a result of the PCC-
based source reconstruction procedure, we obtained the
power distributions of source activity in the brain on a
3D grid with 1̃0, 000 voxels (the exact number depends
on the age group).

We used coherence [31] to evaluate the coupling
strength between the sources, which allows us to
exclude false connections due to the field spread. In
the first stage, the connectivity matrix for all dipoles
(voxels) in the brain volume was determined. Then, we
carried out the parcellation procedure using the Brain-
netome brain atlas [32] designed to study activation
and functional connectivity in the brain, dividing each
hemisphere into 123 zones based on the structural and
functional characteristics of these zones. As a result,
we obtained a 246x246 matrix containing measures of
functional connections between 246 anatomical regions
of the brain.

To highlight significant functional connections and
network patterns that significantly change between
groups, we used a network modification of nonpara-
metric cluster testing—NBS [33]—and the false discov-
ery rate (FDR) approach [34], which allows addressing
the multiple comparisons problem at the network level.
FDR is more sensitive to focal effects at the level of
isolated connections, while NBS is more powerful in
the detection of distributed networks covering many
connections between brain regions. We considered the
influence of two factors: the Diagnosis factor (ASD or
Typical) and the Age group factor (gr1-4), as well as
their interaction (Diagnosis * Age group).

To analyze the direction of the effect between groups,
the connection strength was averaged over all the links
included in the corresponding identified cluster.

In our study, we considered the following frequencies
of interest (FOIs):

• δ + lower θ-ranges (2–6 Hz),
• extended α-range(6–13 Hz),
• β-range (13–30 Hz).

To describe the global properties of the entire functional
brain network, we evaluated the global clustering coeffi-
cient (when the clustering coefficient is high, the graph
is densely grouped around several nodes; when it is low,
the connections in the graph are relatively evenly dis-
tributed among all nodes) and network efficiency (an
indicator of how efficiently information is distributed
in the network, calculated as the average inverse length
of the shortest path in the network) [35, 36]. We also
used a two-way ANOVA to analyze the influence of the
selected factors on these network characteristics.

3 Results

Using the NBS and FDR, we revealed the influence of
the Diagnosis factor on the functional connections in
the θ-band. In particular, a network pattern was deter-
mined (see Fig. 2), where the connections vary signifi-
cantly between the ASD and Typical groups. Analysis
of the effect direction demonstrated (Fig. 2b) that the
connectivity strength in this pattern is higher in the
Typical group compared to ASD. The revealed network
structure includes the following areas of the brain:

• right superior frontal gyrus, dorsolateral region 8
(A8dl), responsible for social consciousness;

• left orbital gyrus, medial area 14 (A14m), responsible
for emotions (mainly fear) and consciousness;

• right superior frontal gyrus, medial area 9 (A9m),
responsible for consciousness (mainly associated with
attention), inhibition of motor activity and emotions;

• left cingulate gyrus, rostroventral region 24 (A24rv),
responsible for emotions.

The results indicate that neurotypical children have
a higher level of integration in the identified subnet-
work than children with ASD, which suggests a stronger
interaction between the brain areas responsible for emo-
tions and consciousness in the Typical group. More-
over, the θ-rhythm is usually the integrative rhythm
in the human brain. We suggest increased control over
emotions and stronger interaction between the emo-
tional and conscious domains in neurotypical children.
We assume that the strengths of functional connec-
tions in the identified network pattern can be used as
a biomarker of a person’s predisposition to ASD.

We revealed that the interaction of the factors Diag-
nosis and Age group does not affect the coupling
strength in this subnet (see Fig. 3). One can be see that
for all age groups (gr1–gr4), the strength of connections
is higher in the Typical group compared to ASD.

Statistical analysis using the FDR revealed another
network pattern in the extended α-band (see Fig. 4), in
which the coupling strength is influenced by the interac-
tion of the factors Diagnosis and Age group. In the first
and second age groups, these connections are stronger
for the ASD group, and in the third and fourth—for the
Typical group. The revealed network structure includes
the following areas of the brain:

• right orbital gyrus, area 13 (A13), responsible for a
whole range of emotions (from fear to sadness and
happiness);

• left lower parietal lobe, rostrodorsal region 40
(A40rd), responsible for working memory, attention,
observation, imagination and movement, and spatial
perception;

• left cingulate gyrus, rostroventral region 24 (A24rv),
responsible for emotions;
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Fig. 2 a The functional
connectivity in the coronal,
axial, and sagittal
projections of the brain in
the θ range (2–6 Hz)
assessed via NBS and FDR.
The presented connections
differ significantly between
ASD and Typical groups:
(connection 1, f -value =
17) right superior frontal
gyrus, dorsolateral area 8
(A8dl)—left orbital gyrus,
medial area 14 (A14m);
(connection 2, f -value =
18.3) A14m—right superior
frontal gyrus, medial area 9
(A9m); (connection 3,
f -value = 19.2) A9m—left
cingulate gyrus,
rostroventral area 24
(A24rv); b The difference
in coherence of the
connections between ASD
and Typical groups: mean
± SD
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Fig. 3 The difference in
coherence measure of the
connections between the
age groups gr1–gr4 for ASD
and Typical groups: mean
± SD

• right superior parietal lobe, lateral region 5 (A5l),
responsible for shape perception, movement execu-
tion, imagination and observation, attention, working
memory, and spatial perception;

• left superior frontal gyrus, medial area 10 (A10m),
responsible for explicit memory, consciousness, and
emotions.

Note that these areas have a quite particular function-
ality, while the areas of the subnet, which are affected
only by the Diagnosis factor, belong to more general,
high-level behavioral domains.

Statistical analysis of global network characteristics
revealed the influence of the Diagnosis factor on the
global clustering coefficient in the δ + θ-range. It is
higher in neurotypical children compared to the ASD
group in all age groups (see Fig. 5). This means that
the level of segregation in neurotypical participants
is higher than in children with ASD. From the point
of view of network topology, this means that in the
Typical group, separate subnets are formed with high
connectivity strengths and the number of connections

between elements within them (as, for example, the
subnet found in the δ + θ-range for the Diagnosis factor
effect). In other words, the more segregated character-
istic network “Typical” has a higher ratio of local links
to global links than a less segregated “ASD”. We found
no significant effects on network efficiency.

4 Discussion

The focus of the current study was to investigate if there
exists a difference in functional connectivity structure
between autistic (ASD) and typically developing (TD)
children and if this change has any correlation with age.
Our study provides evidence of weaker connectivity in
the theta band in the frontal and limbic lobes of indi-
viduals with autism, in addition to lower network clus-
tering in the delta+theta band. Thus, we revealed in
the delta+theta band the more segregated, but more
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Fig. 4 a The functional
connectivity in coronal,
axial, and sagittal
projections of the brain in
α-range (2–6 Hz) assessed
via FDR. The presented
connections differ
significantly both between
ASD and Typical groups
and gr1–gr4 groups:
(connection 1, f -value =
14.3) right orbital gyrus,
area 13 (A13)—left lower
parietal lobe, rostrodorsal
area 40 (A40rd);
(connection 2, f -value =
14.9) A40rd—left cingulate
gyrus, rostroventral area 24
(A24rv); (connection 3,
f -value = 15.2) right
superior parietal lobe,
lateral area 5 (A5l)—left
superior frontal gyrus,
medial area 10 (A10m).
b The difference in
coherence measure of the
connections between the
age groups gr1–gr4 for ASD
and Typical groups: mean
± SD
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Fig. 5 The difference in clustering coefficient between the
age groups gr1–gr4 for ASD and Typical groups in δ+θ-
range: mean ± SD

highly connected subnets in TD individuals as com-
pared to ASD children. The current study also demon-
strates that there is no apparent relationship between
“Diagnosis” and “Age” that can affect the functional
connectivity in the theta band.

Instead of functional connectivity MRI (fcMRI), we
used EEG for analysis. This approach makes it possi-
ble to identify the features of the functional interaction
between different physiological areas of the brain due
to age-related changes and the development of cogni-
tive impairment. Though resting-state fcMRI is a pre-
ferred method among researchers, problems associated
with the temporal resolution, which further lead to dif-
ficulty in separating neuronal activity from hemody-
namics, and construction of stable images from a large
number of independent samples at the expense of reso-
lution loss [37–41], make it less favorable in this study.

There is a general consensus among previous studies
that used EEG that a difference is present among func-
tional connectivity of ASD and TD subjects, however,
the high heterogeneity of experiments makes it nearly
impossible to state that its either hypo-connectivity or
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hyper-connectivity [42–49]. Nevertheless, our result of
weaker connectivity in the theta band is in line with pre-
vious resting-state fcMRI studies of the brain [50–53].
Brain regions that showed weaker connectivity: right
superior frontal gyrus; dorsolateral area 8 (A8dl), right
upper frontal gyrus; medial area 9 (A9m), left orbital
gyrus; medial area (a14m) and left cingulate gyrus; ros-
troventral region 24 (a24rn) are solely responsible for
social cognition, emotions control, and motor activity
inhibition. Not only the emotional and social behavior
expressed by individuals suffering from autism validate
these findings, but also these findings provide an expla-
nation of the neural features underlying development
features in ASD subjects. Interestingly, several machine
learning approaches find almost the same regions that
contribute the most to an autism diagnosis [54–56]. It
must be noted that medication and camouflaging tech-
niques [57] employed by some autistic individuals were
not considered in this study.

It came to our account that the interaction of the fac-
tors “Diagnosis” and “Age” does not affect the strength
of the connectivity in the theta band and the TD group
has higher connection strength as compared to ASD in
all age groups. A high diversity of parameters in previ-
ous studies makes it difficult to interpret how age alters
the connectivity structure [58–63]. To the best of our
knowledge, this is the first EEG study evaluating the
effect of age on connectivity strength in the theta band.

We, however, observed a unique connectivity pattern
in the extended alpha band where the strength of con-
nections is influenced by the interaction of “Diagno-
sis” and “Age”. This connectivity pattern is stronger
in the first two groups of ASD as compared to TD and
is dominated by TD in the third and fourth groups.
It may reflect age-related changes in the mechanisms
of ASD development. This peculiar pattern was found
in the frontal, parietal, and limbic lobes, which are
generally responsible for emotions, memory, attention,
imagination, spatial perception and consciousness. The
presence of abnormal alpha waves in autistic subjects
has long been a matter of discussion among researchers
[64–69], and further work needs to be done to investi-
gate the factors that led to this pattern.

At present, the developmental influence on functional
brain connectivity in ASD is one of the hot topics in
ASD research [19, 21, 70–74]. Usually, functional con-
nectivity studies have focused on a single age group
(e.g., childhood, adolescence, or adulthood) or com-
bined age groups. There are some studies [21] consider-
ing age-related alternations of functional networks in
ASD subjects. The principal conclusion here is that
functional connectivity atypicalities in the disorder are
not uniform across the life span. Hyper-connectivity is
more characteristic of young children (early childhood)
with ASD compared to TD, while hypo-connectivity
may begin to emerge in adolescence and persist into
adulthood [21, 75]. Nevertheless, the division into large
age cohorts in most studies does not allow a more or less

precise definition of the range of ages when such a tran-
sition from the functional connectivity pattern of hyper-
activation to the pattern of hypo-activation occurs. Par-
ticularly important here is a detailed consideration of
the childhood age cohort, when major changes in the
brain occur. From this perspective, our work comple-
ments the existing knowledge about age-related changes
in functional networks in ASD subjects. The patterns
revealed in the alpha band, firstly, confirm the age tran-
sition of functional connectivities in ASD from hyper-
activation to hypo-activation and, secondly, show that
the transition seems to occur in the 6–7 years old range.
The obtained results can lead to a more nuanced under-
standing of atypicalities of functional brain connectivity
in ASD.

From the analysis of clusters in the delta and theta
range, we found out the network is less segregated in the
ASD group. [76, 77] are in line with our results, express-
ing higher segregation in the default mode network of
TD individuals. Further analysis showed that the more
segregated networks in TD groups have a higher ratio of
local links to global connections. [60, 77] found out that
ASD subjects have higher inter-network connectivity
as compared to intra-network connectivity. Yerys et al.
urged that this poor segregation is consistent with an
excitation or inhibition imbalance model of ASD [76].
From these results, it can be concluded that poorer seg-
regation in ASD subjects is a possible cause for them
showing impaired cognitive and behavioral functions.
The inability to perform high-level functions and pro-
cessing high-level information are some examples of fur-
ther impairment caused by this poor segregation.

Nowadays, the development of classifiers for iden-
tifying ASD subjects by biomarkers at the level of a
functional network using machine learning methods is
an urgent problem with promising prospects [78–82].
Such classifiers appear to be particularly useful in cases
of mild symptoms of ASD and early childhood when
objective indicators of autism may be lacking [83]. It
is especially important here to take into account the
age of an individual since it has been shown that spe-
cific functional connectivity patterns are transformed
with age [75]. From this perspective, the revealed in
our study patterns of functional connectivity is a step
toward developing biomarkers for objectively identify-
ing children with ASD. We suggest that specific net-
works can distinguish children with ASD from TD chil-
dren and predict symptom severity in children with
ASD [75, 81].

We believe that identifying abnormalities in the func-
tional networks of ASD subjects is the key to developing
effective approaches to autism therapy, which should
be based on the normalization of aberrant connections.
This concept is supported by modern research [83].
Yamada et al. concluded that successful normalization
of the individual’s functional connectivity pattern using
functional connectivity-based neurofeedback would lead
to a reduction in psychiatric symptoms [84]. Pineda
et al. hypothesized that neurofeedback produces pos-
itive behavioral changes in ASD children by normaliz-
ing the aberrant connections within and between neural
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circuits [85]. Neurofeedback exploits the brain’s plastic-
ity to normalize aberrant connectivity patterns appar-
ent in the autistic brain. Later, Pineda et al. revealed
that EEG-based neurofeedback training produces nor-
malization in behavioral and electrophysiological mea-
sures of high-functioning autism [86].

Basically, the functional connectivity normaliza-
tion can be achieved by different types of neuro-
feedback (functional-connectivity-based neurofeedback,
fMRI-based neurofeedback, EEG-based, etc.) [84–87],
music therapy [83, 88, 89], hormonal therapies with
oxytocin or vasopressin receptor antagonists [83, 90,
91], transcranial magnetic stimulation (TMS) or tran-
scranial direct current stimulation (tDCS) of the brain
[92–95]. Notably, oxytocin modulates the functional
connectivities known for social threat processing and
emotion regulation, suggesting a neural mechanism by
which oxytocin may have a role in the therapy of
ASD [90]. Functional neuroimaging studies reported
increased activation in brain regions involved in the
processing of social information and reward process-
ing in ASD patients after oxytocin administration [96,
97]. In turn, TMS and tDCS are effective non-invasive
techniques for the modulation of brain regions’ activ-
ity and connections between them. Consequently, TMS
and tDCS are perspective approaches for the purposes
of the normalization of the individual’s functional con-
nectivity pattern during ASD therapy. Recently, some
progress has been made here [92–95]. However, further
studies are necessary for defining target areas in the
brain for TMS/tDCS to improve therapy performance.
The results of the present research suggest potential
target areas.

The present study suffers from the following limita-
tion. We used the template MRI scan instead of indi-
vidual scans and low-density EEG electrode placement,
which can lead to errors of up to several centimeters in
the source localization procedure [98]. However, the use
of statistical tests at the group level allows us to iden-
tify the areas (as well as connections between them) in
which differences between groups (ASD vs. Typical) are
most pronounced, with the size of these areas appear-
ing to be significantly smaller than the possible error of
source localization procedure. Nevertheless, it should
be kept in mind that the results of source localization
for an individual subject may be unrepresentative due
to high localization errors, so it is not recommended to
draw any conclusions from them.

5 Conclusions

In this study, we focused on the investigation of the
differences in functional connectivity structure between
ASD and TD children and on the possible correlations
with age. Our study provides evidence of weaker con-
nectivity in the theta band in the frontal and limbic
lobes and lower network clustering in the delta+theta
band of ASD individuals for all age cohorts (2–16 y.o.).
Thus, we revealed in the delta+theta band the more

segregated but more highly connected subnets in TD
individuals compared to ASD children. We observed a
unique connectivity pattern in the extended alpha band
where the strength of connections is stronger in the first
two age cohorts of ASD subjects (2–6 y.o.) and is dom-
inated by TD subjects in the third and fourth cohorts
(7–16 y.o.). The revealed connectivity patterns con-
sist mainly of the brain areas responsible for emotions,
consciousness, and attention. Aberrations in functional
connections between them in ASD children are a pos-
sible cause for them showing impaired cognitive and
behavioral functions. We assume that the strengths of
functional connections in the identified network pat-
terns can be used as a biomarker of a person’s pre-
disposition to ASD. We believe that identifying abnor-
malities in the functional networks of ASD children is
the key to developing effective approaches to autism
therapy, which should be based on the normalization of
aberrant connections.
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8. M. Romero-González et al., Eeg abnormalities and clin-
ical phenotypes in pre-school children with autism spec-
trum disorder. Epilepsy & Behavior 129, 108619 (2022)

9. F. Almuqhim, F. Saeed, Asd-saenet: a sparse autoen-
coder, and deep-neural network model for detecting
autism spectrum disorder (asd) using fmri data. Front.
Comput. Neurosci. 15, 654315 (2021)

10. T. Eslami, V. Mirjalili, A. Fong, A.R. Laird, F. Saeed,
Asd-diagnet: a hybrid learning approach for detection of
autism spectrum disorder using fmri data. Front. Neu-
roinform. 13, 70 (2019)

11. H. Haghighat, M. Mirzarezaee, B.N. Araabi, A. Kha-
dem, An age-dependent connectivity-based computer
aided diagnosis system for autism spectrum disorder
using resting-state fmri. Biomed. Signal Process. Con-
trol 71, 103108 (2022)

12. Li, X. et al. 2-channel convolutional 3d deep neural net-
work (2cc3d) for fmri analysis: Asd classification and
feature learning, 1252–1255 (IEEE, 2018)

13. E. Kilroy et al., Unique deficit in embodied simulation in
autism: An fmri study comparing autism and develop-
mental coordination disorder. Hum. Brain Mapp. 42(5),
1532–1546 (2021)

14. A. Jack, Neuroimaging in neurodevelopmental disor-
ders: focus on resting-state fmri analysis of intrin-
sic functional brain connectivity. Curr. Opin. Neurol.
31(2), 140–148 (2018)

15. H. Hadoush, M. Alafeef, E. Abdulhay, Automated iden-
tification for autism severity level: Eeg analysis using
empirical mode decomposition and second order differ-
ence plot. Behav. Brain Res. 362, 240–248 (2019)

16. E. Grossi, M. Buscema, F. Della Torre, R.J. Swatzyna,
The, “ms-rom/ifast” model, a novel parallel nonlin-
ear eeg analysis technique, distinguishes asd subjects
from children affected with other neuropsychiatric disor-
ders with high degree of accuracy. Clin. EEG Neurosci.
50(5), 319–331 (2019)

17. C. DiStefano, A. Dickinson, E. Baker, S.S. Jeste, Eeg
data collection in children with asd: The role of state
in data quality and spectral power. Research in autism
spectrum disorders 57, 132–144 (2019)

18. S. Pierce et al., Associations between sensory processing
and electrophysiological and neurochemical measures in
children with asd: an eeg-mrs study. J. Neurodev. Dis-
ord. 13(1), 1–11 (2021)

19. J.V. Hull et al., Resting-state functional connectivity in
autism spectrum disorders: a review. Front. Psych. 7,
205 (2017)

20. A.E. Hramov et al., Functional networks of the brain:
from connectivity restoration to dynamic integration.
Phys. Usp. 64(6), 584 (2021)

21. Nomi, J. S. & Uddin, L. Q. Developmental changes in
large-scale network connectivity in autism. NeuroImage:
Clinical 7, 732–741 (2015)

22. B.E. Yerys et al., The fmri success rate of children
and adolescents: typical development, epilepsy, atten-
tion deficit/hyperactivity disorder, and autism spec-
trum disorders. Hum. Brain Mapp. 30(10), 3426–3435
(2009)

23. S.L. Bressler, V. Menon, Large-scale brain networks
in cognition: emerging methods and principles. Trends
Cogn. Sci. 14(6), 277–290 (2010)

24. M. Assaf et al., Abnormal functional connectivity of
default mode sub-networks in autism spectrum disorder
patients. Neuroimage 53(1), 247–256 (2010)

25. A.C. Kelly, L.Q. Uddin, B.B. Biswal, F.X. Castellanos,
M.P. Milham, Competition between functional brain
networks mediates behavioral variability. Neuroimage
39(1), 527–537 (2008)

26. J.-M. Schoffelen, J. Gross, Source connectivity analysis
with meg and eeg. Hum. Brain Mapp. 30(6), 1857–1865
(2009)

27. R. Grech et al., Review on solving the inverse problem
in eeg source analysis. J. Neuroeng. Rehabil. 5(1), 1–33
(2008)

28. M. Fuchs, J. Kastner, M. Wagner, S. Hawes, J.S. Eber-
sole, A standardized boundary element method volume
conductor model. Clin. Neurophysiol. 113(5), 702–712
(2002)

29. J.E. Richards, W. Xie, Brains for all the ages: struc-
tural neurodevelopment in infants and children from a
life-span perspective. Adv. Child Dev. Behav. 48, 1–52
(2015)

30. A. Gramfort, T. Papadopoulo, E. Olivi, M. Clerc, Open-
meeg: opensource software for quasistatic bioelectro-
magnetics. Biomed. Eng. Online 9(1), 1–20 (2010)

31. A.M. Bastos, J.-M. Schoffelen, A tutorial review of func-
tional connectivity analysis methods and their interpre-
tational pitfalls. Front. Syst. Neurosci. 9, 175 (2016)

32. L. Fan et al., The human brainnetome atlas: a new brain
atlas based on connectional architecture. Cereb. Cortex
26(8), 3508–3526 (2016)

33. A. Zalesky, A. Fornito, E.T. Bullmore, Network-based
statistic: identifying differences in brain networks. Neu-
roimage 53(4), 1197–1207 (2010)

34. C.R. Genovese, N.A. Lazar, T. Nichols, Thresholding
of statistical maps in functional neuroimaging using the
false discovery rate. Neuroimage 15(4), 870–878 (2002)

35. M. Rubinov, O. Sporns, Complex network measures of
brain connectivity: uses and interpretations. Neuroim-
age 52(3), 1059–1069 (2010)

36. D.S. Bassett, O. Sporns, Network neuroscience. Nat.
Neurosci. 20(3), 353–364 (2017)

37. F. Darvas, D. Pantazis, E. Kucukaltun-Yildirim, R.M.
Leahy, Mapping human brain function with meg and
eeg: methods and validation. Neuroimage 23(Suppl 1),
S289-299 (2004). https://doi.org/10.1016/j.neuroimage.
2004.07.014

123

https://doi.org/10.1016/j.neuroimage.2004.07.014


Eur. Phys. J. Spec. Top. (2023) 232:683–693 691

38. V. Sakkalis, Review of advanced techniques for the esti-
mation of brain connectivity measured with eeg/meg.
Comput. Biol. Med. 41(12), 1110–1117 (2011). https://
doi.org/10.1016/j.compbiomed.2011.06.020

39. X. Zhang, X. Lei, T. Wu, T. Jiang, A review of
eeg and meg for brainnetome research. Cogn. Neu-
rodyn. 8(2), 87–98 (2014). https://doi.org/10.1007/
s11571-013-9274-9

40. E. van Diessen et al., Opportunities and methodologi-
cal challenges in eeg and meg resting state functional
brain network research. Clinical Neurophysiology: Offi-
cial Journal of the International Federation of Clinical
Neurophysiology 126(8), 1468–1481 (2015). https://doi.
org/10.1016/j.clinph.2014.11.018

41. C.M. Michel, B. He, Eeg source localization. Handb.
Clin. Neurol. 160, 85–101 (2019). https://doi.org/10.
1016/B978-0-444-64032-1.00006-0

42. Gurau, O., Bosl, W. J. & Newton, C. R. How
useful is electroencephalography in the diagnosis of
autism spectrum disorders and the delineation of sub-
types: A systematic review. Frontiers in Psychiatry
8 (2017). https://www.frontiersin.org/articles/10.3389/
fpsyt.2017.00121

43. Schwartz, S., Kessler, R., Gaughan, T. & Buckley,
A. W. Electroencephalogram coherence patterns in
autism: An updated review. Pediatric Neurology 67,
7–22 (2017). https://www.sciencedirect.com/science/
article/pii/S0887899416301102. https://doi.org/10.
1016/j.pediatrneurol.2016.10.018

44. Zeng, K. et al. Disrupted brain network in children
with autism spectrum disorder. Scientific Reports 7
(11), 16253 (2017). https://www.nature.com/articles/
s41598-017-16440-z. https://doi.org/10.1038/s41598-
017-16440-z

45. Shephard, E. et al. Resting-state neurophysiological
activity patterns in young people with asd, adhd,
and asd+adhd. Journal of Autism and Develop-
mental Disorders 48 (1), 110–122 (2018). https://
doi.org/10.1007/s10803-017-3300-4. https://doi.org/10.
1007/s10803-017-3300-4

46. Mehdizadefar, V., Ghassemi, F. & Fallah, A. Brain con-
nectivity reflected in electroencephalogram coherence
in individuals with autism: A meta-analysis. Basic and
Clinical Neuroscience 10 (5), 409–417 (2019). https://
www.ncbi.nlm.nih.gov/pmc/articles/PMC7149956/.
https://doi.org/10.32598/bcn.9.10.375

47. Hornung, T., Chan, W.-H., Müller, R.-A., Townsend,
J. & Keehn, B. Dopaminergic hypo-activity and
reduced theta-band power in autism spectrum
disorder: A resting-state eeg study. International
Journal of Psychophysiology 146, 101–106 (2019).
https://www.sciencedirect.com/science/article/
pii/S0167876019304787. https://doi.org/10.1016/j.
ijpsycho.2019.08.012

48. Malaia, E. A., Ahn, S. & Rubchinsky, L. L. Dysreg-
ulation of temporal dynamics of synchronous neural
activity in adolescents on autism spectrum. Autism
Research 13 (1), 24–31 (2020). https://onlinelibrary.
wiley.com/doi/abs/10.1002/aur.2219. https://doi.org/
10.1002/aur.2219

49. Hill, A. T., Van Der Elst, J., Bigelow, F. J., Lum, J.
A. G. & Enticott, P. G. Right Anterior Theta Con-
nectivity Predicts Autistic Social Traits in Neurotypi-
cal Children (2022). http://biorxiv.org/lookup/doi/10.
1101/2022.03.26.485953

50. S. Yao et al., Decreased homotopic interhemispheric
functional connectivity in children with autism spec-
trum disorder. Autism Research: Official Journal of
the International Society for Autism Research 14(8),
1609–1620 (2021). https://doi.org/10.1002/aur.2523

51. Q. Wang et al., Resting-state abnormalities in func-
tional connectivity of the default mode network in
autism spectrum disorder: a meta-analysis. Brain Imag-
ing Behav. 15(5), 2583–2592 (2021). https://doi.org/10.
1007/s11682-021-00460-5

52. Zhao, H.-C. et al. Alterations of prefrontal-posterior
information processing patterns in autism spectrum dis-
orders. Frontiers in Neuroscience 15 (2022). https://
www.frontiersin.org/articles/10.3389/fnins.2021.768219

53. Christian, I. R. et al. Context-dependent amygdala-
prefrontal connectivity in youths with autism spectrum
disorder. Research in Autism Spectrum Disorders
91, 101913 (2022). https://www.sciencedirect.com/
science/article/pii/S1750946721001884. https://doi.
org/10.1016/j.rasd.2021.101913

54. Gao, J. et al. Multisite autism spectrum disorder classifi-
cation using convolutional neural network classifier and
individual morphological brain networks. Frontiers in
Neuroscience 14 (2021). https://www.frontiersin.org/
articles/10.3389/fnins.2020.629630

55. Liu, M., Li, B. & Hu, D. Autism spectrum disor-
der studies using fmri data and machine learning: A
review. Frontiers in Neuroscience 15 (2021). https://
www.frontiersin.org/articles/10.3389/fnins.2021.697870

56. N. Wang, D. Yao, L. Ma, M. Liu, Multi-site clus-
tering and nested feature extraction for identifying
autism spectrum disorder with resting-state fmri. Med.
Image Anal. 75, 102279 (2022). https://doi.org/10.
1016/j.media.2021.102279

57. Cook, J., Hull, L., Crane, L. & Mandy, W. Camouflag-
ing in autism: A systematic review. Clinical Psychology
Review 89, 102080 (2021). https://www.sciencedirect.
com/science/article/pii/S0272735821001239. https://
doi.org/10.1016/j.cpr.2021.102080

58. Walsh, E. C. et al. Age-dependent changes in the
propofol-induced electroencephalogram in children with
autism spectrum disorder. Frontiers in Systems Neuro-
science 12 (2018). https://www.frontiersin.org/articles/
10.3389/fnsys.2018.00023

59. Henry, T. R., Dichter, G. S. & Gates, K. Age and
gender effects on intrinsic connectivity in autism
using functional integration and segregation. Biological
Psychiatry: Cognitive Neuroscience and Neuroimaging
3 (5), 414–422 (2018). https://www.sciencedirect.com/
science/article/pii/S2451902217301982. https://doi.
org/10.1016/j.bpsc.2017.10.006

60. B.R. Morgan et al., Characterization of autism spec-
trum disorder across the age span by intrinsic network
patterns. Brain Topogr. 32(3), 461–471 (2019). https://
doi.org/10.1007/s10548-019-00697-w

123

https://doi.org/10.1016/j.compbiomed.2011.06.020
https://doi.org/10.1007/s11571-013-9274-9
https://doi.org/10.1016/j.clinph.2014.11.018
https://doi.org/10.1016/B978-0-444-64032-1.00006-0
https://www.frontiersin.org/articles/10.3389/fpsyt.2017.00121
https://www.sciencedirect.com/science/article/pii/S0887899416301102
https://doi.org/10.1016/j.pediatrneurol.2016.10.018
https://www.nature.com/articles/s41598-017-16440-z
https://doi.org/10.1038/s41598-017-16440-z
https://doi.org/10.1007/s10803-017-3300-4
https://doi.org/10.1007/s10803-017-3300-4
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7149956/
https://doi.org/10.32598/bcn.9.10.375
https://www.sciencedirect.com/science/article/pii/S0167876019304787
https://doi.org/10.1016/j.ijpsycho.2019.08.012
https://onlinelibrary.wiley.com/doi/abs/10.1002/aur.2219
https://doi.org/10.1002/aur.2219
http://biorxiv.org/lookup/doi/10.1101/2022.03.26.485953
https://doi.org/10.1002/aur.2523
https://doi.org/10.1007/s11682-021-00460-5
https://www.frontiersin.org/articles/10.3389/fnins.2021.768219
https://www.sciencedirect.com/science/article/pii/S1750946721001884
https://doi.org/10.1016/j.rasd.2021.101913
https://www.frontiersin.org/articles/10.3389/fnins.2020.629630
https://www.frontiersin.org/articles/10.3389/fnins.2021.697870
https://doi.org/10.1016/j.media.2021.102279
https://www.sciencedirect.com/science/article/pii/S0272735821001239
https://doi.org/10.1016/j.cpr.2021.102080
https://www.frontiersin.org/articles/10.3389/fnsys.2018.00023
https://www.sciencedirect.com/science/article/pii/S2451902217301982
https://doi.org/10.1016/j.bpsc.2017.10.006
https://doi.org/10.1007/s10548-019-00697-w


692 Eur. Phys. J. Spec. Top. (2023) 232:683–693

61. J. Bathelt, P.C. Koolschijn, H.M. Geurts, Age-variant
and age-invariant features of functional brain organiza-
tion in middle-aged and older autistic adults. Molec-
ular Autism 11(1), 9 (2020). https://doi.org/10.1186/
s13229-020-0316-y

62. A. Thompson et al., Age-related differences in white
matter diffusion measures in autism spectrum condition.
Molecular Autism 11(1), 36 (2020). https://doi.org/10.
1186/s13229-020-00325-6

63. A.S. Nunes et al., Atypical age-related changes in cor-
tical thickness in autism spectrum disorder. Sci. Rep.
10(11), 11067 (2020). https://doi.org/10.1038/s41598-
020-67507-3

64. Wang, J. et al. Resting state eeg abnormalities in
autism spectrum disorders. Journal of Neurodevel-
opmental Disorders 5 (1), 24 (2013). https://www.
ncbi.nlm.nih.gov/pmc/articles/PMC3847481/. https://
doi.org/10.1186/1866-1955-5-24

65. Lefebvre, A. et al. Alpha waves as a neuromarker
of autism spectrum disorder: The challenge of repro-
ducibility and heterogeneity. Frontiers in Neuro-
science 12 (2018). https://www.frontiersin.org/article/
10.3389/fnins.2018.00662

66. Dickinson, A., DiStefano, C., Senturk, D. & Jeste, S. S.
Peak alpha frequency is a neural marker of cognitive
function across the autism spectrum. The European
journal of neuroscience 47 (6), 643–651 (2018). https://
www.ncbi.nlm.nih.gov/pmc/articles/PMC5766439/.
https://doi.org/10.1111/ejn.13645

67. Dickinson, A. et al. Interhemispheric alpha-band
hypoconnectivity in children with autism spec-
trum disorder. Behavioural brain research 348,
227–234 (2018). https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC5993636/. https://doi.org/10.1016/j.bbr.
2018.04.026

68. Edgar, J. C. Identifying electrophysiological mark-
ers of autism spectrum disorder and schizophre-
nia against a backdrop of normal brain develop-
ment. Psychiatry and Clinical Neurosciences 74 (1),
1–11 (2020). https://onlinelibrary.wiley.com/doi/abs/
10.1111/pcn.12927. https://doi.org/10.1111/pcn.12927

69. S. Basharpoor, F. Heidari, P. Molavi, Eeg coher-
ence in theta, alpha, and beta bands in frontal
regions and executive functions. Appl. Neuropsychol.
Adult 28(3), 310–317 (2021). https://doi.org/10.1080/
23279095.2019.1632860

70. J.L. Wiggins et al., Using a self-organizing map algo-
rithm to detect age-related changes in functional con-
nectivity during rest in autism spectrum disorders.
Brain Res. 1380, 187–197 (2011)

71. Z. Long, X. Duan, D. Mantini, H. Chen, Alteration
of functional connectivity in autism spectrum disorder:
effect of age and anatomical distance. Sci. Rep. 6(1),
1–8 (2016)

72. N. Rommelse, J.K. Buitelaar, C.A. Hartman, Structural
brain imaging correlates of asd and adhd across the lifes-
pan: a hypothesis-generating review on developmental
asd-adhd subtypes. J. Neural Transm. 124(2), 259–271
(2017)

73. Y. Lee, B.-Y. Park, O. James, S.-G. Kim, H. Park,
Autism spectrum disorder related functional connectiv-
ity changes in the language network in children, adoles-
cents and adults. Front. Hum. Neurosci. 11, 418 (2017)

74. M.J. Walsh, L.C. Baxter, C.J. Smith, B.B. Braden,
Age group differences in executive network functional
connectivity and relationships with social behavior in
men with autism spectrum disorder. Research in autism
spectrum disorders 63, 63–77 (2019)

75. L.Q. Uddin et al., Salience network-based classification
and prediction of symptom severity in children with
autism. JAMA Psychiat. 70(8), 869–879 (2013)

76. Yerys, B. E. et al. Default mode network segrega-
tion and social deficits in autism spectrum disorder:
Evidence from non-medicated children. NeuroImage:
Clinical 9, 223–232 (2015). https://www.sciencedirect.
com/science/article/pii/S2213158215001412. https://
doi.org/10.1016/j.nicl.2015.07.018

77. Yang, B. et al. Disrupted network segregation of the
default mode network in autism spectrum disorder
2021.10.18.21265178 (2021). https://www.medrxiv.
org/content/10.1101/2021.10.18.21265178v1. https://
doi.org/10.1101/2021.10.18.21265178

78. J. Liu et al., Improved asd classification using dynamic
functional connectivity and multi-task feature selection.
Pattern Recogn. Lett. 138, 82–87 (2020)

79. Mohanty, A. S., Patra, K. C. & Parida, P. Toddler asd
classification using machine learning techniques. Inter-
national Journal of Online & Biomedical Engineering
17 (7) (2021)

80. Feng, W., Liu, G., Zeng, K., Zeng, M. & Liu, Y. A
review of methods for classification and recognition of
asd using fmri data. Journal of neuroscience methods
109456 (2021)

81. Y. Kong et al., Classification of autism spectrum dis-
order by combining brain connectivity and deep neural
network classifier. Neurocomputing 324, 63–68 (2019)

82. M.S. Ahammed et al., Darkasdnet: Classification of asd
on functional mri using deep neural network. Front.
Neuroinform. 15, 635657 (2021)

83. S.R. Sharma, X. Gonda, F.I. Tarazi, Autism spectrum
disorder: classification, diagnosis and therapy. Pharma-
cology & therapeutics 190, 91–104 (2018)

84. T. Yamada et al., Resting-state functional connectivity-
based biomarkers and functional mri-based neurofeed-
back for psychiatric disorders: a challenge for developing
theranostic biomarkers. Int. J. Neuropsychopharmacol.
20(10), 769–781 (2017)

85. J. Pineda, A. Juavinett, M. Datko, Self-regulation of
brain oscillations as a treatment for aberrant brain
connections in children with autism. Med. Hypotheses
79(6), 790–798 (2012)

86. J.A. Pineda, K. Carrasco, M. Datko, S. Pillen, M.
Schalles, Neurofeedback training produces normaliza-
tion in behavioural and electrophysiological measures
of high-functioning autism. Philosophical Transactions
of the Royal Society B: Biological Sciences 369(1644),
20130183 (2014)

87. A.E. Hramov, V.A. Maksimenko, A.N. Pisarchik, Phys-
ical principles of brain-computer interfaces and their
applications for rehabilitation, robotics and control of
human brain states. Phys. Rep. 918, 1–133 (2021)

88. E. Altenmüller, G. Schlaug, Apollo’s gift: new aspects
of neurologic music therapy. Prog. Brain Res. 217,
237–252 (2015)

89. M. Sharda, R. Midha, S. Malik, S. Mukerji, N.C. Singh,
Fronto-temporal connectivity is preserved during sung

123

https://doi.org/10.1186/s13229-020-0316-y
https://doi.org/10.1186/s13229-020-00325-6
https://doi.org/10.1038/s41598-020-67507-3
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3847481/
https://doi.org/10.1186/1866-1955-5-24
https://www.frontiersin.org/article/10.3389/fnins.2018.00662
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5766439/
https://doi.org/10.1111/ejn.13645
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5993636/
https://doi.org/10.1016/j.bbr.2018.04.026
https://onlinelibrary.wiley.com/doi/abs/10.1111/pcn.12927
https://doi.org/10.1111/pcn.12927
https://doi.org/10.1080/23279095.2019.1632860
https://www.sciencedirect.com/science/article/pii/S2213158215001412
https://doi.org/10.1016/j.nicl.2015.07.018
https://www.medrxiv.org/content/10.1101/2021.10.18.21265178v1
https://doi.org/10.1101/2021.10.18.21265178


Eur. Phys. J. Spec. Top. (2023) 232:683–693 693

but not spoken word listening, across the autism spec-
trum. Autism Res. 8(2), 174–186 (2015)

90. S. Dodhia et al., Modulation of resting-state amygdala-
frontal functional connectivity by oxytocin in general-
ized social anxiety disorder. Neuropsychopharmacology
39(9), 2061–2069 (2014)

91. C. Farmer, A. Thurm, P. Grant, Pharmacotherapy for
the core symptoms in autistic disorder: current status
of the research. Drugs 73(4), 303–314 (2013)

92. Y. Huang et al., Potential locations for noninvasive
brain stimulation in treating autism spectrum disorders:
a functional connectivity study. Front. Psych. 11, 388
(2020)

93. M.F. Casanova et al., Effects of transcranial magnetic
stimulation therapy on evoked and induced gamma
oscillations in children with autism spectrum disorder.
Brain Sci. 10(7), 423 (2020)

94. P.G. Enticott et al., A double-blind, randomized trial
of deep repetitive transcranial magnetic stimulation
(rtms) for autism spectrum disorder. Brain Stimul. 7(2),
206–211 (2014)

95. P. Desarkar, T.K. Rajji, S.H. Ameis, Z.J. Daskalakis,
Assessing and stabilizing aberrant neuroplasticity in
autism spectrum disorder: the potential role of transcra-
nial magnetic stimulation. Front. Psych. 6, 124 (2015)

96. G.A. Alvares, D.S. Quintana, A.J. Whitehouse, Beyond
the hype and hope: critical considerations for intranasal
oxytocin research in autism spectrum disorder. Autism
Res. 10(1), 25–41 (2017)

97. Y. Aoki et al., Oxytocin’s neurochemical effects in
the medial prefrontal cortex underlie recovery of task-
specific brain activity in autism: a randomized con-
trolled trial. Mol. Psychiatry 20(4), 447–453 (2015)

98. C.M. Michel, D. Brunet, Eeg source imaging: a practi-
cal review of the analysis steps. Front. Neurol. 10, 325
(2019)

Springer Nature or its licensor (e.g. a society or other part-
ner) holds exclusive rights to this article under a publish-
ing agreement with the author(s) or other rightsholder(s);
author self-archiving of the accepted manuscript version of
this article is solely governed by the terms of such publishing
agreement and applicable law.

123


	Features of the resting-state functional brain network of children with autism spectrum disorder: EEG source-level analysis
	1 Introduction
	2 Methods
	3 Results
	4 Discussion
	5 Conclusions
	References
	References




