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a b s t r a c t

We consider the rotational dynamics in an ensemble of globally coupled identical pendulums. This
model is essentially a generalization of the standard Kuramoto model, which takes into account the
inertia and the intrinsic nonlinearity of the community elements. There exists the wide variety of in-
phase and out-of-phase regimes. Many of these states appear due to broken symmetry. In the case of
small dissipation our theoretical analysis allows one to find the boundaries of the instability domain of
in-phase rotational mode for ensembles with arbitrary number of pendulums, describe all arising out-
of-phase rotation modes and study in detail their stability. For the system of three elements parameter
sets corresponding to the unstable in-phase rotations we find a number of out-of-phase regimes and
investigate their stability and bifurcations both analytically and numerically. As a result, we obtain a
sufficiently detailed picture of the symmetry breaking and existence of various regular and chaotic
states.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

The study of collective dynamics in networks of coupled os-
cillatory elements is one of the most attracting topics in modern
nonlinear dynamics. It is important both for theoretical and prac-
tical points of view. A general phenomenon of collective behavior
is synchronization [1–6]. Synchronization is usually understood
as a process of achieving the collective rhythm of functioning
by coupled objects of different nature. Synchronization of two or
three elements is possible, as well as of ensembles consisting of
hundreds and thousands of elements [1–6]. Even a weak attract-
ing coupling can adjust phases and frequencies of oscillators, and
they can synchronize. Now three types of synchronization in its
networks are known: full (or global) synchronization, partial (or
cluster) synchronization and chimera states.

The system of coupled pendulums is one of the widely used
models in multiple fields of science and technology. Despite the
simplicity of this model, it adequately describes not only me-
chanical objects [7], but also various processes that occur in
semiconductor structures [8]. This model is often considered as
the basis for the theoretical studies of coupled Josephson junc-
tions [1,8]. Hence, it is very important to investigate the behavior
of this system.
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Cluster and solitary states in ensembles of coupled elements
are of special interest for an investigation of the synchroniza-
tion and symmetry breaking phenomena [9,10]. The first type
states consist of two or more groups in which individual oscil-
lators behave identically. These states have been well known for
many years, but have still attracted great attention of investi-
gators across different fields of science and engineering [9,10].
Cluster states arise both in ensembles with a finite number of
elements [11–14], and in distributed oscillatory media [15–17].
In the article [18] two-cluster regimes in small ensembles of
Stuart–Landau oscillators are considered. Solitary state can be
attributed to a special type of cluster state. Solitary state is formed
when a single oscillator is separated from a synchronous cluster
in an ensemble [19]. Examples of solitary states were found in
various types of networks [20,21], systems of non-locally coupled
elements [22], systems of Stuart–Landau oscillators [14].

In this paper we consider features found in rotational dynam-
ics of ensemble of globally coupled pendulums. Note that one
can interpret our basic model as a generalization of the standard
Kuramoto model, which takes into account the inertia and the
intrinsic nonlinearity of the elements of the discussed population.
The influence of the first type effects has been intensively studied
in recent years (e.g., see [23–25]). Actually, the modifications of
the second type have been also considered in the literature [26–
28]. In this work, we assume, that both effects are present and
play an important role. Hence, the Kuramoto model describing
the evolution of a group of phase oscillators with global coupling
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transforms to the system, consisting of a number of pendulums
with meanfield interaction. We are interested in in-phase rota-
tions and nontrivial out-of-phase ones. In the present article, we
restrict ourselves to considering ensembles with a small number
N of elements and focus on all the possible limit motions of the
system.

This paper is organized as follows. In Section 2.1, we de-
scribe the model, state the problem. In Section 2.2 we report
on the numerically observed effect: in-phase periodic motion
instability. Using the assumption of small dissipation we develop
an asymptotic theory, which explains instability of the in-phase
periodic motion (essentially presented limit cycle on the cylinder)
of the pendulums. Here we also find analytical expression for the
boundaries of the in-phase limit rotation mode instability interval
regarding the coupling strength. During the nonlinear stage of
this instability a periodic out-of-phase rotation emerges, in par-
ticular, a solitary state for which the phases of some pendulums
coincide, while the phases of the other pendulums differ from
the rest. Section 2.3 contains a detailed description of the general
analytical approach for stability analysis of out-of-phase periodic
limit cycles existing in the ensemble of globally coupled pendu-
lums. In Section 3 theoretical and numerical results are presented.
In particular, in Section 3.1 the main results for stability analysis
of out-of-phase rotation modes within the framework of the
considered model are presented. In Section 3.2 bifurcations that
lead to the appearance and disappearance of the out-of-phase
limit rotation modes are analyzed. Bistability of the in-phase
and out-of-phase limit periodic modes is established for the sys-
tem under study. In Section 3.3, scenario of chaotic rotational
dynamics emergence is described. In Section 4, examples of out-
of-phase regimes, existing in larger ensembles, are considered.
A summary of the main results can be found in Conclusion.
Appendix A contains the details about the linear stability analysis
for out-of-phase rotation modes. In Appendix B, we present a
brief description of the numerical methods used for calculating
any possible periodic modes and their linear stability within the
framework of the considered model.

2. Nature of symmetry breaking in a system of coupled pen-
dulums

2.1. Model under study

We study the rotational dynamics of an ensemble of N glob-
ally coupled identical pendulum-like oscillators (index n). The
setup we employ can be considered as a generalization of the
standard Kuramoto model, which takes into account the inertia
and the intrinsic nonlinearity of the structural elements. The sine
nonlinearity was chosen because it is rather typical for many
real systems indicated above. In this case, the evolution of the
generalized coordinate ϕn(t) of the nth unit belonging to such a
community is given by

ϕ̈n + λϕ̇n + sinϕn = γ +
K
N

N∑
ñ=1

sin (ϕñ − ϕn) , (1)

where λ is the damping coefficient responsible for all the dissi-
pative processes in the system, γ is a constant torque identical
for all pendulums, K characterizes the strength of global coupling
between the oscillators in the discussed group.

Since we are interested in the rotational dynamics of sys-
tem (1), we begin with considering the simplest in-phase
rotational mode and its stability. When at any given time t
coordinates ϕn(t) and velocities ϕ̇n(t) (n = 1, . . . ,N) coincide,
the system demonstrates in-phase dynamics, i.e. at any time t:
ϕ1 (t) = · · · = ϕN (t) = φ (t). We denote such a regime as

(N : 0). In this regime all pendulums move synchronously and
their dynamics is described by the following single equation:

φ̈ + λφ̇ + sinφ = γ , (2)

which essentially represents a nonlinear damped pendulum
equation with a constant torque. The dynamical behavior, all
possible equilibrium states and limit motions of a particle that
is governed by Eq. (2) have been well studied and thoroughly an-
alyzed in many publications (e.g., see [29–32] for details). Based
on the previous results, here we briefly outline the main specific
features of the model (2), that make the formulation of the
problem investigated in the presented paper clear and accessible
to the broad readership. The parameter plane λ, γ is divided into
three domains [30–33], which correspond to different structurally
stable cylindrical phase spaces of the system (2). For λ, γ from
the first domain, only two steady states, namely, a saddle and
a focus (node), exist in the phase space of the corresponding
pendulum. When λ, γ are from the second domain in addition
to these steady states, there is also a stable 2π-periodic in φ

limit cycle. Noteworthy, in this case, the attraction region of a
focus (node) is small enough and is delimited by separatrices of
the saddle. For λ, γ from the third domain, equilibrium states
disappear from the system, and there remains only an attractive
rotation mode. The third domain is separated from the others by
the straight line γ = 1 in the parameter plane λ, γ . In turn, the
first and second domains are separated by the so-called Tricomi
bifurcations curve [30–33].

In the case of small dissipation (i.e. when λ ≪ γ ), it is
possible to analytically describe a rotational limit motion of
one pendulum, using an asymptotic approach based on, e.g. the
Lindstedt–Poincaré method [34]. It has been shown in [35] that an
approximation for limit rotation solution of the system (2) has the
following form:

φ(τ )=τ +
λ2

γ 2 sin τ +o
(
λ4) , τ =

(
γ

λ
−

λ3

2γ 3 +o
(
λ7)) t. (3)

We note, the system (2) has a continuum of oscillatory (not
rotatory) type solutions at λ = 0 and γ ∈ [0, 1). If λ is not equal
to 0, the stable steady state (center) is transformed to the stable
focus and all these solutions do not exist and only one periodic
rotatory solution can appear.

2.2. Stability of in-phase rotation mode

The in-phase rotation mode is stable in the wide range of the
parameters λ, γ and K , according to our numerical simulations
directly in the framework of the basic model (1). However, for
certain values of λ, γ and K the system (1) demonstrates non-
trivial behavior: the instability of in-phase rotation limit motion
is developed and, as a result, one of a variety of out-of-phase
states appears, that leads to partially broken symmetry in the
considered ensemble of globally coupled pendulums. It is worth
mentioning that similar in nature effect takes place for the system
of only two elements [36]. This effect is also observed in the
case of a small chain of nearest-neighbor interacting identical
pendulums [35].

Before proceeding to a detailed description of the variety of
out-of-phase rotation modes observed in direct numerical simu-
lations within the model (1), we propose an analytical approach,
which permits one to explain an instability of periodic limit
cycles existing in the system of globally coupled pendulums. As
a starting point, we consider a possibility of developing of such
an instability process for the in-phase state discussed above. This
allows us to demonstrate the basic idea of our theoretical analysis
while avoiding cumbersome calculations.
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Let us find the stability conditions for the in-phase rotational
mode. First we linearize the system (1) around φ(t), then ϕn(t) =

φ(t) + δϕn(t) and ϕ̇n(t) = φ̇(t) + δϕ̇n(t), where perturbations
δϕn(t), δϕ̇n(t) are small in magnitude. Next we get the corre-
sponding equations for variations δϕn(t):

δϕ̈n + λδϕ̇n + cosφ(t)δϕn =
K
N

N∑
ñ=1

(δϕñ − δϕn). (4)

To continue with Eq. (4), we introduce new variables

η =
1
N

N∑
ñ=1

δϕñ,

ξn = δϕn+1 − δϕn, n = 1, . . . ,N − 1,

(5)

for which Eq. (4), corresponding to the in-phase T -periodic rota-
tional cycle of the system (1), takes the following form

η̈ + λη̇ + cosφ(t)η = 0, (6)

ξ̈n + λξ̇n + (K + cosφ(t))ξn = 0,
n = 1, . . . ,N − 1.

(7)

The Floquet multipliers of Eq. (6) are equal to 1 and e−λT . Indeed,
differentiation of Eq. (2) with respect to t shows that periodic
function φ̇ (t) is the solution to Eq. (6), so the corresponding
multiplier is equal to 1. The second multiplier can be found
using Liouville’s formula. Therefore η mode is always stable, so
instability in the system can arise only due to the excitation of
modes ξn(n = 1, . . . ,N − 1). Eq. (7) belongs to the Mathieu-
type equation. Hence, the parametric instability effects can be
observed for some values of the parameter K depending on λ and
γ [37]. To find the boundaries of the instability domain of the
in-phase rotation mode, we determine the coupling parameter
K values for which Eq. (7) admits a solution with period 2T or,
equivalently, with frequency ω/2. Passing to a dimensionless time
t = ωτ , we reduce the system (7) to the following form

ξ̈n + λωξ̇n + ω2 [K + cos(φ(τ ))] ξn = 0,
n = 1, . . . ,N − 1.

(8)

Using the perturbation theory, taking result (3) and searching for
a solution to Eq. (8) with ω/2 frequency, we get boundaries K1,2
for the instability domain

K1,2 =
1
4

[
γ 2

λ2 ∓ 2
√
1 − γ 2 +

1
2

λ2

γ 2

]
+ O(λ4). (9)

When the critical values of K1,2 are reached, the instability of the
ξn, n = 1, . . . ,N − 1 modes simultaneously develops, which is a
common property at destabilization of the synchronous states in
globally coupled systems of N identical units. Thus, in the system
of globally coupled pendulums (1) only one instability region
(K1 < K < K2) of the in-phase rotational motion φ(t) exists,
whose boundaries K1 and K2 are determined by the expression
(9).

Fig. 1 shows the width of the range of values of coupling
strength K , when in-phase mode instability is observed, depend-
ing on the values of parameters γ and λ as a function [K2 −

K1](λ, γ ). The parameter plane (λ, γ ) can be divided into 3 areas:
L1, L2 and L3. In the area L1, the in-phase mode is stable for
any K . In the area L2, bounded by the Tricomi curve and line
γ = 1, this regime does not exist. The Tricomi curve corresponds
to the values of the parameters (λ, γ ), for which the rotational
motion in the system (2) disappears as a result of the saddle–
node homoclinic bifurcation. In the color region L3 there is a
range of values of K for which the in-phase rotation is unstable
(K1 < K < K2). The boundaries K1 and K2 of this range are

Fig. 1. The range of values of coupling strength K , when in-phase mode
instability is observed, depending on the values of parameters γ and λ as
a function [K2 − K1](λ, γ ). The black curve is the Tricomi bifurcation curve,
i.e. boundary of the in-phase rotational mode existence region. For region L1 in-
phase rotation is stable with any K . In region L2 in-phase rotation does not exist.
In-phase rotation in region L3 is unstable for K1 < K < K2 . (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

determined by expressions (9). Black color means, that the length
of the instability interval of (N : 0) regime is close to one. Orange
color means, that length of the instability interval of (N : 0)
regime is close to zero. By the fixed λ with increase of γ the
interval K2–K1 becomes smaller. The region of instability arises
at values γ close to unity and becomes wider as γ decreases.
When the parameters (γ , λ) reach the Tricomi curve, the in-phase
rotational mode disappears.

2.3. General approach for stability of analysis of symmetry broken
states

Let us proceed to a detailed description of the general an-
alytical approach for stability analysis of out-of-phase periodic
limit cycles existing in the model (1) of N globally coupled pen-
dulums. Just for definiteness assume that pendulums form M
synchronous clusters with Nm pendulums in mth cluster (N1 +

· · · + NM = N). Here and below such regimes will be denoted as
(N1 : N2 : . . . : NM). Note that a cluster also may consist of only
one element. Assuming what every pendulum in the mth cluster
is moving with the same phase φm (t) and velocity φ̇m (t) the
system (1) of N second order equations reduces to the set of M
second order differential equations which defines dynamics of the
unknown phases φm (t):

φ̈m + λφ̇m + sinφm = γ +
K
N

M∑
m̃=1

Nm̃ sin (φm̃ − φm) . (10)

Applying the same approach described in Section 2.1 for the in-
phase solution of (1) to the current problem of finding T -periodic
limit cycles of Eq. (10) the phases φm (t) can be determined.

After phases φm (t) are found it is possible to proceed with
stability analysis of the regime (N1 : N2 : . . . : NM). For that one
imposes a linear perturbation ϕmk (t) = φm (t) + δϕmk (t) and
ϕ̇mk (t) = φ̇m (t) + δϕ̇mk (t), where ϕmk (t), ϕ̇mk (t) are the per-
turbed phase and velocity of kth pendulum from the mth cluster
(k = 1, . . . ,Nm). The equations for variations δϕmk (t) thus read

δϕ̈mk + λδϕ̇mk + cosφmδϕmk

=
K
N

M∑
m̃=1

Nm̃∑
k̃=1

cos (φm̃ − φm)
(
δϕm̃k̃ − δϕmk

)
.

(11)
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The next key step is the linear change of variables which breaks
system (11) into a set of independent differential equations sys-
tems of smaller dimensions:

ηm =
1
Nm

Nm∑
k=1

δϕmk, m = 1, . . . ,M,

ξmk = δϕm,k+1 − δϕmk, k = 1, . . . ,Nm − 1.

(12)

Excitation of mode ηm in the case ξm̃k̃ = 0 can be interpreted
as perturbation of mth cluster like whole unit, because in this
case all pendulums forming cluster m are identically perturbed.
Stability associated with such kind of perturbations is often called
internal stability [38]. On the contrary excitation of modes ξmk
for fixed m in the case ηm̃ = 0 means arbitrary perturbation of
pendulums only inside the mth cluster and associated stability is
called external stability [38].

For new variables Eq. (11), corresponding to the T -periodic
rotational cycle of the system (1), take the following form

η̈m + λη̇m + cosφmηm

= K
M∑

m̃=1

Nm̃

N
cos (φm̃ − φm) (ηm̃ − ηm) ,

(13)

ξ̈mk + λξ̇mk +

(
cosφm + K

M∑
m̃=1

Nm̃

N
cos (φm̃ − φm)

)
ξmk = 0. (14)

So actually it is necessary to analyze the system ofM second order
equations (13) and M̃ independent equations of second order
(14) (because of their similarity for different k, so index k will
be omitted below), where M̃ = |{m : Nm > 1}| is the number of
clusters in which the number of elements is greater than one.

Floquet’s Theorem implies that to each characteristic exponent
Λ of the linear differential equations system with periodic coeffi-
cients, such as Eq. (13) is, there corresponds a solution of the form
ηm(t) = eΛint η̃m(t) (m = 1, . . . ,M), where η̃m(t) is periodic in t:
η̃m (t + T ) = η̃m (t). New variables η̃m(t) satisfy the equations:

¨̃ηm +
(
2Λin

+ λ
)

˙̃ηm +

((
Λin)2

+ λΛin
+ cosφm

)
η̃m

= K
M∑

m̃=1

Nm̃

N
cos (φm̃ − φm) (η̃m̃ − η̃m) .

(15)

To determine the characteristic exponent Λ, we use the
Lindstedt–Poincaré method. First, since our theory is being de-
veloped near the conservative limit, i.e. for small dissipation λ,
the characteristic exponent Λ is represented in the form of the
asymptotic expansion

Λin
=

+∞∑
j=1

λjΛ(j). (16)

Coefficients Λ(j) should be chosen so as to avoid secular terms in
(15), i.e. so that η̃1, . . . , η̃M are periodic.

Equivalently, using Floquet’s Theorem we are searching for the
solution of (14) in the form ξm(t) = eΛext ξ̃m(t), where ξ̃m(t) is
periodic, i.e. ξ̃m (t + T ) = ξ̃m (t):

¨̃
ξm +

(
2Λex

+ λ
) ˙̃
ξm +

((
Λex)2

+ λΛex
+ cosφm

)
ξ̃m

= −K
M∑

m̃=1

Nm̃

N
cos (φm̃ − φm) ξ̃m.

(17)

Using asymptotic expansion (16) and cancelling the secular terms
in expression for ξ̃m unknown coefficients Λ(j) can be found.

The signs Λin and Λex determine the stability of the modes ηm
and ξm respectively. Thus obtaining the expression for φm(t) as

an asymptotic expansion, similar to (3) in the case of in-phase
rotations, we can get the decomposition in the form of a series
for the Lyapunov exponents Λin and Λex for the systems (15) and
(17). In the end we have 2M exponents Λin determining internal
stability and 2(N − M) exponents Λex determining external sta-
bility. An example of symmetry broken states stability analysis is
presented in Section 3.1.

3. Theoretical and numerical results for the system of three
elements

3.1. Regimes (2:1) and (1:1:1) stability analysis

In this section, we consider the application of the approach
developed in Section 2.3 for analyzing the stability of cluster
rotational motions resulting from the development of in-phase
mode φ(t) instability for N = 3. In this case, there are two types
of cluster modes: (2:1) solitary state and (1:1:1) regime. Detailed
stability analysis of these regimes is presented in Appendix A.

It is shown in Appendix A.1 that for the solitary state (2:1)
solution φ−

m arising on the right side K2 of the instability interval
of parameter K defined by Eq. (9) is always internally unstable
for all values of K (see Eq. (A.7)). Conversely, solution φ+

m arising
on the left side K1 of the instability interval is always internally
stable, but changes its external stability with K = K (2:1)

c , and it is
stable for K > K (2:1)

c , where

K (2:1)
c =

γ 2

4λ2 +

√
1 − γ 2

3
+ O(λ). (18)

Similarly for (1:1:1) regime from (A.15) the instability of the
solution φ−

m for any value of K follows. Solution φ+
m changes its

stability with K = K (1:1:1)
c , and it is stable for K < K (1:1:1)

c , where

K (1:1:1)
c =

γ 2

4λ2 +

√
1 − γ 2

3
+ O(λ). (19)

Thus, for certain values of the coupling strength K the syn-
chronous in-phase rotational mode in the ensemble of three
coupled pendulums becomes parametrically unstable and, de-
pending on the initial conditions, regimes (2:1) or (1:1:1) can
be realized. The values of coupled strength parameters K (2:1)

c
and K (1:1:1)

c at which the change of stability of cluster modes
occurs were obtained. From numerical simulations it is known
that K (2:1)

c ≤ K (1:1:1)
c (see Section 3.2).

3.2. Regular dynamics of in-phase and out-of-phase rotational
modes

In this and following section, we present the results of the
numerical simulations (for details see Appendix B) which are per-
formed directly within the framework of the discussed model (1)
for a wide range of the parameters λ, γ and K in the case
N = 3. First of all, we consider in detail the development of the
self-induced parametric instability of the in-phase synchronous
regime and focus our attention on the nonlinear stage of this pro-
cess and the resulting movements that can be set over long time.
Our numerical calculations employed a commonly used fifth-
order Runge–Kutta scheme (with fixed time step dt = 0.001) to
integrate the system (1).

Let us consider the case γ = 0.97. The bifurcation diagrams
of evolution of periodical motions of the system (1) are shown
in Fig. 2. The diagram shows the dependence of synchronism
characteristics Ξ frommagnitude of the coupling strength K . First
let us describe the diagram for γ = 0.97, λ = 0.2 (Fig. 2a). The
horizontal segments A1, A3 correspond to the stable synchronous
in-phase regime (Ξ = 0). There is a region A2 of the parameter K
values, when this regime becomes unstable. As shown above, in
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the course of the asymptotic consideration (the expression (9)), it
is for the values of the coupling parameter K that the parametric
instability of the in-phase periodic motion develops from these
intervals.

Let us consider processes occurring in an ensemble when K
takes values from the A2, and values outside it. As the parameter
K increases (at K ≈ 5.764), the periodic orbit corresponding
to the in-phase motion (2π-periodic in ϕ = (ϕ1, ϕ2, ϕ3)T ro-
tation) undergoes a specific period-doubling bifurcations (a pair
of multipliers becomes equal to −1 simultaniously) after which
this regime becomes unstable and a pair of 4π-periodic regimes
(one is stable, branch B1, while the second is unstable, branch
B4) appear in its neighborhood. In addition to the two above
described 4π-periodic motions, there are also two unstable out-
of-phase 4π-periodic (1:1:1) and (2:1) rotations in ϕ (branches
B3 and B6, respectively), which are generated from an unstable
2π-periodic motion as a result of a subcritical period-doubling
bifurcation (K ≈ 6.008) with increasing K . Corresponding values
of the parameter K for which doubling bifurcation occurs calcu-
lated analytically using Eq. (9) are K ≈ 5.764 and K ≈ 6.007.
The (1:1:1) regime (Fig. 3a) corresponds to the branches B1, B2,
B3, and the (2:1) solitary regime (Fig. 3b) corresponds to the
branches B4, B5, B6. As the parameter K increases the stability
change of the (1:1:1) and (2:1) regimes is to see. The first one
loses stability at K (1:1:1)

c ≈ 5.9699, and the second one becomes
stable at K (2:1)

c ≈ 5.9687 (according to theoretical predictions,
see Eqs. (18) and (19), K (1:1:1)

c ≈ K (2:1)
c ≈ 5.962). So there is

a bistability region of (1:1:1) and (2:1) regimes. The stability
change occurs through the pitchfork bifurcation, and herewith
the unstable (1:1:1) regime appears (branch B7). Further with
the increasing K the periodic motions, corresponding to (1:1:1)
regime (branches B2 and B3) and (2:1) regime (branches B5 and
B6), merge and disappear in the saddle–node bifurcation at K ≈

7.023 and K ≈ 7.042 respectively. For given values of the
parameters, the obtained numerical results are in good agreement
with the analytical theory described in Section 3.1.

Fig. 2 shows that with the increasing values of λ the stability
region length of (1:1:1) regime becomes longer and the length of
stability region for (2:1) regime becomes shorter.

3.3. Chaotic dynamics

Next let us consider the case with a lower value of the torque
γ = 0.8. Then at lower values of λ the bifurcations of 2π- and 4π-
periodic regimes qualitatively coincide with the above described
γ = 0.97. With the further increasing damping parameter from
branch B5 of the solitary regimes motions with bigger periods
appear resulting from doubling period bifurcations, and it leads
to the appearance of chaotic dynamics. Let us describe the same
scenario for the case λ = 0.3 (Fig. 4). Here at the increasing K
the (2:1) solitary regime (branch B5) loses stability (branch B8) at
K ≈ 2.507 resulting from period doubling bifurcation. Further
after cascade of period doubling bifurcations the (2:1) solitary
regime becomes chaotic. Branch B9 corresponds to the stable (2:1)
regime. Similarly at a lower K parameter at K ≈ 4.063 the
regime loses stability due to period-doubling bifurcation, which
leads to the appearance of chaotic attractor. The latter exists at
2.7 ≲ K < 2.754. At K > 2.754 the in-phase rotation becomes
stable again.

Next at the increasing λ the length of the stable branch of the
(2:1) solitary state B5 decreases, and it disappears. Fig. 5 shows
the bifurcation diagrams of synchronous regimes for λ = 0.35.
In this case chaotic solitary regime (Fig. 6) is realized resulting
from the cascade of period doubling bifurcations at 1.7 < K <
1.77 and 3.0 < K < 3.01. However, at 1.77 < K < 3.01
the chaotic motion dissapears due to the crysis of corresponding

Fig. 2. Bifurcation diagram of synchronous rotational regimes of the system (1)
at N = 3. Here and below: blue shared markers — stable regimes, red unshared
markers — unstable regimes. Lines without markers — 2π-periodic regimes.
Round markers — 4π-periodic regimes. Parameters: γ = 0.97. (a) λ = 0.2.
(b) λ = 0.4. (c) λ = 0.6. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 3. (Color online) Time dynamics of instantaneous frequencies ϕ̇n (n =

1, 2, 3) of the pendulums in the system (1) for N = 3. (a) Regular (1:1:1) regime
at K = 1.6. (b) Regular (2:1) solitary regime at K = 1.7. Parameters: γ = 0.97,
λ = 0.4.
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Fig. 4. (a) Bifurcation diagram of synchronous rotational regimes of the sys-
tem (1) at N = 3. (b) Local maxima of ϕ̇1 . Blue dots — the continuation of
dynamical regime from the left to the right. Green dots — the continuation of
dynamical regime from the right to the left. Parameters: γ = 0.8, λ = 0.3.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 5. (Color online) Same as Fig. 4, but for γ = 0.8, λ = 0.35.

chaotic attractor. As a result all orbits from it neiboughood go the
the in-phase limit cycle.

The next case is for λ = 0.5. At the increasing K (1:1:1)
motion (branch B1) loses stability (K ≈ 0.618) resulting from
the Neimark–Sacker bifurcation, herewith quasiperiodic (1:1:1)
motion appears. At K ≈ 0.656 this quasiperiodic regime becomes
chaotic after torus destruction bifurcation (Fig. 8a). At 0.89 < K <
1.272 there is branch B10 of 4π-periodic motions, which merges
with branch B2 at K ≈ 0.956 and K ≈ 1.272 resulting from pitch-
fork bifurcations. At 0.89 < K < 0.907 this branch has a stable

Fig. 6. (Color online) Time dynamics of instantaneous frequencies ϕ̇n (n =

1, 2, 3) of the pendulums in the system (1) for N = 3. Chaotic solitary (2:1)
regime. Parameters: γ = 0.8, λ = 0.35, K = 1.76.

Fig. 7. (Color online) Same as Fig. 4, but for γ = 0.8, λ = 0.5.

region which corresponds to ‘‘stability window’’ when chaos in
system (1) is not observed (Fig. 7b). Further at the increasing K
the regime is realized, when time intervals, at which pendulums’
phases ϕ1 ≈ ϕ2 ≈ ϕ3 alternate with intervals, where ϕ1, ϕ2
and ϕ3 do not coincide (Fig. 8b), i.e. there is an intermittency of
chaotic oscillations (3:0) and (1:1:1). If K ≈ 1.007, the in-phase
regime becomes stable and chaotic oscillations are not realized,
and herewith the system shows the in-phase rotations.

4. Rotational states in larger ensembles

In this chapter we present a variant of the development of the
in-phase rotational motion’s instability for the system (1) at N >

3. Let us consider the case N = 4. The boundaries of the stability
region of the in-phase rotation are defined by expressions (9)
according to asymptotic theory developed in Section 2 for λ ≪ γ .
Next applying our analytical approach it can be shown there are
three out-of-phase rotation motions: (2:2) and (3:1) two-clusters
regimes and also (2:1:1) cluster state. What is more according to
developed theory this cluster state is stable for K (2:1:1)

c1 < K <

K (2:1:1)
c2 , where

K (2:1:1)
c1 =

γ 2

4λ2 +

√
1 − γ 2

4
+ O(λ),

K (2:1:1)
c2 =

γ 2

4λ2 +

√
1 − γ 2

2
+ O(λ).

(20)
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Fig. 8. (Color online) Time dynamics of instantaneous frequencies ϕ̇n (n =

1, 2, 3) of the pendulums in the system (1) for N = 3. (a) Chaotic (1:1:1) regime
at K = 0.95. (b) Chaotic (1:1:1) regime with (1:1:1) and (3:0) intermittency at
K = 1.0. Parameters: γ = 0.8, λ = 0.5.

For example let us numerically and analytically describe sys-
tem (1) with parameters γ = 0.97, λ = 0.2 (Fig. 9). Direct
numerical simulations show that for this value of coupling pa-
rameter K in-phase periodic motion undergoes period doubling
bifurcation. While out-of-phase (2:2), (2:1:1) and (3:1) regimes
are generated (branches B1, B2 and B3, respectively). Fig. 9(b)
shows (2:1:1) regime, when two pendulums form an in-phase
cluster and the others demonstrate out-of-phase dynamics. We
note that in this case the range of parameter K exists where
out-of-phase (2:2), (2:1:1) and (3:1) regimes coexist and are
stable, i.e. multistability is observed. In particular it is found from
numerical calculations that for values K (2:1:1)

c1 < K < K (2:1:1)
c2 ,

where K (2:1:1)
c1 ≈ 5.9859 and K (2:1:1)

c2 ≈ 6.0443, (2:1:1) regime
is stable. Corresponding theoretical values for the boundaries
K (2:1:1)
c1 , K (2:1:1)

c2 of the stability region following from Eq. (20) are
K (2:1:1)
c1 ≈ 5.9414 and K (2:1:1)

c2 ≈ 6.0022.
We have analyzed the dynamics of ensembles with other num-

ber of elements. It was found that in the process of development
of the in-phase (N:0) mode instability with an increase in the
coupling strength K , a stable two-cluster state (N1:N2) is first
observed. Noteworthy, in such case the number of elements N1
and N2 in each cluster is approximately equal to each other. This
state becomes unstable with further increase of the parameter K ,
and other cluster modes are realized. In all cases the sequence
of cluster mode type is finished by solitary (two-cluster) state
(N − 1:1).

We demonstrate this observation for the case N = 7 pendu-
lums with parameters γ = 0.97 and λ = 0.2. Due to in-phase
rotation mode instability development the stable (4:3) cluster
regime arises (Fig. 10a). Further there is a sequence of stable
cluster modes of other types, for example (3:2:2) (Fig. 10b).
Solitary state (6:1) is observed last in a sequence of stable cluster
modes (Fig. 10c).

5. Conclusion

We have studied the dynamics of an ensemble of globally
coupled identical pendulums. A relatively simple model demon-
strates a big variety of regular and chaotic in-phase and out-of-
phase cluster regimes. We found and theoretically approved self-
induced parametric instability of symmetric in-phase rotation
regime. It is shown, that in the system with the growth of cou-
pling strength the generation of out-of-phase rotation periodic
motions occurs resulting from period-doubling bifurcation.

Fig. 9. (Color online) (a), (b) Bifurcation diagram of synchronous rotational
regimes of the system (1) for N = 4. (b) Time dynamics of instantaneous
frequencies ϕ̇n (n = 1, 2, 3, 4) of the pendulums in the system (1) for N = 4.
(c) Regular cluster (2:1:1) regime at K = 6.0. Parameters: γ = 0.97, λ = 0.2.

Fig. 10. (Color online) Time dynamics of instantaneous frequencies ϕ̇n (n =

1, 2, . . . , 7) of the pendulums in the system (1) for N = 7. (a) Cluster (4:3)
regime at K = 5.85. (b) Cluster (3:2:2) regime at K = 6.0. (c) Solitary state
(6:1) at K = 6.1. Parameters: γ = 0.97, λ = 0.2.
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Note that there is one instability region, where different out-
of-phase regimes can be realized. It describes an approach that
allows to build asymptotic expansion for rotational modes and to
investigate their stability in low dissipation limit. The developed
method was applied in the case of a system consisting of three
elements. The results of direct numerical modeling are well corre-
lated with theoretical estimates of the boundaries of the existence
and stability of rotational regimes, including solitary states, in the
case of small dissipation. Bistability of in-phase and out-of-phase
rotational periodic regimes can also be observed.

It is also demonstrated that at larger values of dissipation
parameter chaotic regimes and intermittency can be realized. The
several examples of cluster modes, as well as analysis of their
stability, were demonstrated in the case of N = 4 and N = 7.
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Appendix A. Regimes (2:1) and (1:1:1) stability analysis

A.1. Regime 2:1

Let us consider solitary state (2:1), when two clusters exist:
ϕ1(t) = ϕ2(t) = φ1(t), ϕ3(t) = φ2(t). We construct an asymptotic
expansion for φ1(t) and φ2(t) in the case of λ ≪ γ . Applying

coupling strength K =
γ 2

4λ2 + ∆K , where the first summand

γ 2

4λ2 , to the first two leading orders, determines the middle of the
coupling strength K values range, for which the in-phase periodic
motion becomes unstable (see Eq. (9)), ∆K — deviation from this
value. Considering that φ

(0)
1 = φ

(0)
2 and assuming for simplicity

initial condition (φ1 − φ2)
′
|t=0= 0, we construct two asymptotic

solutions φ+
m and φ−

m using methods described above for the case
λ ≪ γ :

φ±

1 (τ ) = 2τ − arccos(±γ1) +
2
3

λ

γ
A±

2 cos τ

+
λ2

γ 2

[
γ

24γ1

(
36γ1 ∓

(
A±

2

)2)
− γ cos 2τ ± γ1 sin 2τ

]
+ A±

2
λ3

γ 3

[
±

16
15

γ1 + B±

2 cos τ −
γ

2
sin τ

−
1
72

((
A±

2

)2
∓ 12γ1

)
cos 3τ +

γ

6
sin 3τ

]
+O(λ4),

φ±

2 (τ ) = 2τ − arccos(±γ1) −
4
3

λ

γ
A±

2 cos τ

+
λ2

γ 2

[
γ

24γ1

(
36γ1 ∓

(
A±

2

)2)
− γ cos 2τ ± γ1 sin 2τ

]
+ A±

2
λ3

γ 3

[
±

16
15

γ1 − 2B±

2 cos τ + γ sin τ

+
1
36

((
A±

2

)2
∓ 12γ1

)
cos 3τ −

γ

3
sin 3τ

]
+O(λ4),

(A.1)

where

A±

2 = 6

√
2
5

(
∆K ±

γ1

2

)
, (A.2)

B±

2 = −
3

5
(
A±

2

)2 −
71
720

(
A±

2

)2
±

(
7
15

γ1 −
γ 2

10γ1

)
, (A.3)

τ =

{
γ

2λ
−

λ

γ

(
A±

2

)2
18

−
λ3

γ 3

[
1
4

+

(
A±

2

)2
18

(
3B±

2 −

(
A±

2

)2
9

)]
+ O(λ5)

}
t, (A.4)

γ1 =

√
1 − γ 2. (A.5)

Thus there are two (2:1) solitary states. Solution φ+
m corresponds

to the 4π-periodic regime, arising as a result of direct period-
doubling bifurcation from in-phase rotation φ(t) for K = K1.
Similarly, solution φ−

m corresponds to 4π-periodic regime, arising
as a result of inverse period-doubling bifurcation for K = K2.

Further, using the method described in Section 2.3, we study
the stability of the obtained solutions φ±

m . For the internal stability
(see Eq. (15)) of the first solution φ+

m we obtain

Λin
1 = 0,

Λin
2 = −λ,

Λin
3,4 = −

λ

2

(
1 ±

√
1 −

γ1

γ 2

(
A+

2

)2)
+ O(λ2).

(A.6)

Similarly, for the second one φ−
m :

Λin
1 = 0,

Λin
2 = −λ,

Λin
3,4 = −

λ

2

(
1 ±

√
1 +

γ1

γ 2

(
A−

2

)2)
+ O(λ2).

(A.7)

For the two-pendulums cluster external stability (see Eq. (17))
of the motion φ+

m we have the following characteristic exponents:

Λex
1 = λ3

(
A+

2

)4
72γ 4

(
γ1 −

(
A+

2

)2
12

)
+ O(λ4),

Λex
2 = −λ − λ3

(
A+

2

)4
72γ 4

(
γ1 −

(
A+

2

)2
12

)
+ O(λ4).

(A.8)

And for φ−
m :

Λex
1 = −λ3

(
A−

2

)4
72γ 4

(
γ1 +

(
A−

2

)2
12

)
+ O(λ4),

Λex
2 = −λ + λ3

(
A−

2

)4
72γ 4

(
γ1 +

(
A−

2

)2
12

)
+ O(λ4).

(A.9)

A.2. Regime 1:1:1

The methods used to investigate stability of the regime (1:1:1)
are completely analogous. Therefore, this section contains only
brief description of the main results about the stability of the
(1:1:1) motion.

Expressing K in terms of ∆K again, considering that φ
(0)
1 =

φ
(0)
2 = φ

(0)
3 and assuming initial conditions (φ1 − φ3)

′
|t=0= 0,
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we get two solutions φ+
m and φ−

m :

φ±

1 (τ ) = 2τ − arccos(±γ1) + A±

3
λ

γ
cos τ

+
λ2

γ 2

[
γ

32γ1

(
48γ1 ∓

(
A±

3

)2)
− γ cos 2τ ± γ1 sin 2τ

]
+ A±

3
λ3

γ 3

[
B±

3 cos τ −
3
4
γ sin τ

−
1
64

((
A±

3

)2
∓ 16γ1

)
cos 3τ +

γ

4
sin 3τ

]
+O(λ4),

φ±

2 (τ ) = 2τ − arccos(±γ1) +
λ2

γ 2

[
γ

32γ1

(
48γ1 ∓

(
A±

3

)2)
− γ cos 2τ ± γ1 sin 2τ

]
+O(λ4),

φ±

3 (τ ) = 2τ − arccos(±γ1) − A±

3
λ

γ
cos τ

+
λ2

γ 2

[
γ

32γ1

(
48γ1 ∓

(
A±

3

)2)
− γ cos 2τ ± γ1 sin 2τ

]

− A±

3
λ3

γ 3

[
B±

3 cos τ −
3
4
γ sin τ

−
1
64

((
A±

3

)2
∓ 16γ1

)
cos 3τ +

γ

4
sin 3τ

]
+O(λ4),

(A.10)

where

A±

3 = 4

√
6
5

(
∆K ±

γ1

2

)
, (A.11)

B±

3 = −
6

5
(
A±

3

)2 −
11
128

(
A±

3

)2
±

(
7
10

γ1 −
3γ 2

20γ1

)
, (A.12)

τ =

{
γ

2λ
−

λ

γ

(
A±

3

)2
24

−
λ3

γ 3

[
1
4

+

(
A±

3

)2
12

(
B±

3 −

(
A±

3

)2
24

)]
+ O(λ5)

}
t. (A.13)

In the case of (1:1:1) regime there are only one-pendulum
clusters. For this φ+

m solution characteristic exponents are

Λin
1 = 0,

Λin
2 = −λ,

Λin
3 = −λ3

(
A+

3

)4
128γ 4

(
γ1 −

(
A+

3

)2
16

)
+ O(λ4),

Λin
4 = −λ + λ3

(
A+

3

)4
128γ 4

(
γ1 −

(
A+

3

)2
16

)
+ O(λ4),

Λin
5,6 = −

λ

2

(
1 ±

√
1 −

3γ1

4γ 2

(
A+

3

)2)
+ O(λ2).

(A.14)

Respectively for φ−
m :

Λin
1 = 0,

Λin
2 = −λ,

Λin
3 = λ3

(
A−

3

)4
128γ 4

(
γ1 +

(
A−

3

)2
16

)
+ O(λ4),

Λin
4 = −λ − λ3

(
A−

3

)4
128γ 4

(
γ1 +

(
A−

3

)2
16

)
+ O(λ4),

Λin
5,6 = −

λ

2

(
1 ±

√
1 +

3γ1

4γ 2

(
A−

3

)2)
+ O(λ2).

(A.15)

Appendix B. Methods for calculation of periodic motions and
their stability

The theoretical analysis above allows us to describe the initial
stage of the discussed instability of the synchronous rotation
mode. One also can find all intervals of values of the coupling
coefficient K , for which the development of the set-induced para-
metric instability is possible, and estimate the boundaries of
these ranges with rather good accuracy. The direct numerical
simulations of an initial value problem for the dynamical sys-
tem (1) give us general ideas about the evolution in time of the
ensemble of coupled pendulums and the nonlinear stage of the
developed instability. In order to connect and complete these
two pictures, we also identify periodic rotations and explore their
parametric continuation within the framework of the model (1).
To this end, taking into account that the ϕn (t) is determined
in the range from −π to π and using the property of closure
of the considered trajectories in the phase space {ϕn (t) , ϕ̇n (t)},
we construct the Poincaré map and employ the Newton–Raphson
algorithm to find a fixed point there and a period T of motion
along a corresponding trajectory for each given set of parameters
λ, γ and K [39].

The main idea of this method is as follows. Each of the so-
lutions φn(t) we are interested in is primarily characterized by
its period T (which is strictly speaking unknown and is to be
defined at the end of numerical computations) and the number
m of changes of phases ϕn(t) by 2π during the period T . Hence,
the Poincaré map

{
ϕn (0) , ϕ̇n (0)

}
→
{
ϕn (T ) − 2πm, ϕ̇n (T )

}
has

a fixed point corresponding to a trajectory
{
φn (t) , φ̇n (t)

}
. Using

this fact that φn (T ) = φn (0) + 2πm and φ̇n (T ) = φ̇n (0), we
construct the following system of equations

P
(
T ,
{
ϕ0n, ϕ̇0n

})
=

[{
ϕn
(
T ,
{
ϕ0n, ϕ̇0n

})}{
ϕ̇n
(
T ,
{
ϕ0n, ϕ̇0n

})}]

−

[{
ϕ0n + 2πm

}{
ϕ̇0n
} ]

= 0, (B.1)

where
{
ϕn (t) , ϕ̇n (t)

}
is the solution to Eq. (1) with initial con-

ditions
{
ϕ0n, ϕ̇0n

}
, i.e.

{
ϕn (0) , ϕ̇n (0)

}
=
{
ϕ0n, ϕ̇0n

}
. Therefore, a

periodic solution with period T of Eq. (1) will be a root to (B.1).
Because of the translational invariance symmetry (in time), we
note that one value from the set

{
ϕ0n
}
can always be taken to

be zero without loss of generality. We use the Newton–Raphson
algorithm [40] to approximate the roots of P

(
T ,
{
ϕ0n, ϕ̇0n

})
. It

is also noteworthy that the Jacobian is Ĵ = Î − Q̂ (T ), where
Î is the identical matrix and Q̂ (T ) is matrix obtained from the
monodromy matrix M̂ (T ) (see its definition below) by replacing
one of the columns by the vector of values of the right-hand
sides of Eq. (1) at the time t = T . As a result, we numerically
obtain, with high precision, stable (above dynamically generated)
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and unstable rotational modes as exact time-periodic solutions
of Eq. (1). Continuing these solutions in value of the coupling
strength K within the interval of instability of in-phase rotational
mode allows us to trace the entire family of nontrivial periodic
motions and to analyze their bifurcations (see, e.g., Fig. 2) and
study in detail their bifurcations and a process of transition to
chaos. This is one of the main goals of the paper.

The linear (spectral) stability of the arbitrary (2π-, 4π-, 8π-
and etc.) periodic motions (on the cylinder) of the dynamical
system (1) is investigated by means of a Floquet analysis, chiefly
relying on numerical calculations (see, e.g., [39]). To this end, we
add a small perturbation δϕn(t) to a given periodic solution φn(t)
of Eq. (1). The linearized equations satisfied to the first order in
δϕn(t) read:

δϕ̈n + λδϕ̇n + cosφn(t)δϕn

=
K
N

N∑
ñ=1

cos (φñ − φn)
(
δϕñ − δϕn

)
.

(B.2)

The Floquet analysis of Eq. (B.2) can be performed due to the
property of periodicity of the trajectory

{
φn (t) , φ̇n (t)

}
. There-

fore, the stability of the considered motion is defined by the
spectrum of the Floquet operator (monodromy matrix) M̂ (T )
given by[
{δϕn (T )}

{δϕ̇n (T )}

]
= M̂

[
{δϕn (0)}
{δϕ̇n (0)}

]
. (B.3)

The eigenvalues µn′ = exp (iqn′) (here and below n′
= 1, . . . , 2N)

of the matrix M̂ (T ) are dubbed the Floquet multipliers with being
Floquet exponents qn′ of the periodic solution φn(t). Because of
the damping and the external force, only one property (implied
by the real character of the monodromy) can be extracted for µn′ ,
which is that they are or appear in complex conjugated pairs.
To examine the stability of each of the rotation motions under
discussion, we compute their Floquet multipliers. If |µn′ | ≤ 1
for all n′, then the rotation mode is linearly stable. It is worth
mentioning that one of the eigenvalues µn′ must be strictly equal
to one, because we investigate the stability of a periodic motion.
Hence, using this fact it is possible to check that the trajectory{
φn (t) , φ̇n (t)

}
we find numerically belongs to the family of

periodic rotations (on the cylinder). If at least one of Floquet
multipliers µn′ locates outside the unit circle in the complex
plane, then the rotation mode is linearly unstable. Noteworthy,
our calculations show that the most of the discussed periodic
solutions ϕn (t) exhibit a relatively strong instability due to a real
Floquet multiplier µn′ with an absolute value greater than one,
i.e. |µn′ | > 1.

As a characteristic of the degree of synchronization, we con-
sider the value Ξ , which is the frequency lag of pendulums:

Ξ =
1

N(N − 1)

N∑
n1,n2=1

max
0<t<T

|ϕ̇n1 (t) − ϕ̇n2 (t)|, (B.4)

where T is the period of rotational mode. It follows from the
definition (B.4) that Ξ takes non-negative values, and Ξ = 0 in
the case of in-phase mode. In the case of an out-of-phase regime
such two elements n1 and n2 exist that ϕ̇n1 ̸= ϕ̇n2 at least for
some time intervals, and then Ξ > 0.
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