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It is known that intermittent behavior is inherent in
a wide range of nonlinear dynamical systems [1]. In
particular, this type of behavior has been observed on
the transition from periodic oscillations to chaotic
regimes and near the boundaries of appearance of var�
ious types of chaotic synchronization of nonautono�
mous and coupled oscillators.

There exists a commonly accepted classification of
the intermittent behavior, including types I–III [1],
on–off intermittency [2], eyelet intermittency [3],
and ring intermittency [4]. Although all these types
have some common features (the presence of two
alternating regimes in time series), each type of inter�
mittency has specific characteristics (dependence of
the average duration of laminar phases on a control
parameter, distribution of laminar phase durations at a
fixed value of this parameter). The mechanisms
responsible for the appearance of various types of
intermittency are also different.

Our recent investigations [5, 6] showed that non�
linear dynamical systems can occur in a regime in
which two types of intermittency exist simultaneously.
This behavior, called “intermittency of intermitten�
cies,” develops when the system admits the coexist�
ence of two mechanisms leading to the appearance of
turbulent periods, each resulting in the intermittency
of its own type. It should be noted that previous inves�
tigations of these regimes were performed for nonlin�
ear systems with a small number of degrees of freedom.
Naturally, the question arises of whether the intermit�
tency of intermittencies can exist in spatially distrib�
uted systems and whether this behavior can be cor�
rectly described by a theoretical model developed for
systems with a small number of degrees of freedom.
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In the present work, we consider, by the example of
two unidirectionally coupled Pierce diodes, the coex�
istence of two types of intermittency in spatially dis�
tributed systems: (i) eyelet intermittency that can be
observed near the boundary of phase chaotic synchro�
nization and (ii) ring intermittency that is observed in
a certain interval of time scales.

The main relations describing dynamics of a system
of two unidirectionally coupled Pierce diodes in the
framework of a hydrodynamic approximation com�
prise a self�consistent system of the equations of
motion, equations of continuity, and Poisson’s equa�
tion [7, 8]:
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with the boundary conditions

(4)

where ϕ is the dimensionless potential of the space�
charge field; ρ is the dimensionless charge density; ν is
the dimensionless flux density; x is the dimensionless
coordinate; t is the dimensionless time; and indices 1
and 2 refer to the driving (master) and driven (slave)
beam–plasma subsystems, respectively. The sole con�
trol parameter characterizing the system dynamics is
Pierce parameter α representing the undisturbed angle
of electron motion at the plasma frequency. This angle
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is selected to be α1 = 2.858π for the driving subsystem
and α2 = 2.860π for the driven subsystem, so as to set
the detuning between the coupled Pierce diodes.

Unidirectional coupling between subsystems is
achieved by varying the value of the dimensionless
potential on the right�hand boundary of the driven
system, while the potential on the right�hand bound�
ary of the driving system remains unchanged:

(5)

where ε is the coefficient of coupling between sub�
systems and ρ1,2(x = 1, t) are oscillations of the dimen�
sionless space�charge density at the output of the cor�
responding subsystem. Thus, the driving subsystem
occurs in a regime of self�sustained oscillations and
acts upon the driven subsystem.

It should be noted that the behavior of a system of
two coupled Pierce diodes has been studied on various
time scales [9, 10]. According to this approach, a con�
tinuous set of signal phases is introduced via the con�
tinuous wavelet transform

(6)

where x(t) is the time series of the chaotic signal,
(t) is the mother wavelet function, s is the time

scale factor that determines the wavelet width, and the
asterisk * denotes complex conjugation. The x(t) sig�
nals for the Pierce diodes under consideration will
represent the space�charge densities ρ1,2 in the cou�
pled subsystems measured at point x = 2 of the diode
interaction space.

The mother wavelet is expediently defined via the
Morlet function as

(7)

with parameter Ω0 = 2π, which ensures single�valued
relationship between wavelet transform time scale s
and Fourier transform frequency f: f = 1/s. Using a
complex wavelet basis set, it is possible to associate
each time scale with the phase ϕ(s, t) = argW(s, t),
where W(s, t) is the complex wavelet surface deter�
mined by Eq. (6).

Two coupled chaotic systems x1,2(t) are considered
to be in the regime of time scale synchronization if
there is an interval of s ∈ [s1; s2] in which the phase
locking condition

(8)

is obeyed and the wavelet spectrum energy fraction for
this interval is positive:
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Similarly to systems with a small number of the
degrees of freedom, the spatially distributed systems
also exhibit the regime of time scale synchronization
for certain values of control parameters. In this case,
the system has both synchronous time scales and asyn�
chronous ones, for which conditions (8) and (9) are
not satisfied. For diagnostics of the regime of time
scale synchronization, the system must occur in the
regime of phase chaotic synchronization, as was the
case in [5, 6]. In the regime of phase synchronization
at boundary time scales of observation, the system
exhibits intermittent behavior. Let us consider the
characteristics of this intermittency in spatially dis�
tributed systems.

Figure 1 shows distributions of the laminar phase
duration at fixed values of control parameters, which
were numerically calculated for two unidirectionally
coupled Pierce diodes in a regime of simultaneous
existence of the eyelet intermittency and ring inter�
mittency for three sets of coupling coefficient ε and
observation time scale s. Since the mechanisms lead�
ing to intermittencies of the eyelet and ring type are
different, it is possible to separate the phase skips that
refer to different types of intermittency and then esti�
mate the values of Te and Te (average durations of
laminar behavior for intermittency of the eyelet and
ring types, respectively) that enter into the theoreti�
cal relation for the distribution of laminar phase
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Fig. 1. (1)–(3) Distributions p(τ) of the laminar phase
duration at fixed control parameters for the regime of
coexistence of the eyelet and ring intermittency in two uni�
directionally coupled Pierce diodes (points) and corre�
sponding analytical dependences (10) numerically calcu�
lated for these distributions (solid curves): (1) ε = 0.006,
s = 2.7255, Te = 2976, Tr = 250; (2) ε = 0.006, s = 2.73,
Te = 2976, Tr = 3125; and (3) ε = 0.007, s = 2.7325, Te =
20 920, Tr = 8474. Ordinates are plotted on a logarithmic
scale.
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durations in the regime of “intermittency of intermit�
tencies” [5]:

(10)

As can be clearly seen from Fig. 1, the results of
numerical calculations of the distributions of laminar
phase durations well agree with theoretical depen�
dence (10), which allows one to speak of the regime of
“intermittency of intermittencies” in the system under
consideration.

Another conclusive piece of evidence of the exist�
ence of the regime of “intermittency of intermitten�
cies” in the system of two unidirectionally coupled
Pierce diodes is provided by analysis of the system
dynamics on a rotating plane by analogy with that in
[5, 6]. According to this approach, the variation of
x1,2 = ReW1,2(s, t) and y1,2 = ImW1,2(s, t) is considered
on the plane rotating about origin [4]:

(11)
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Figure 2 shows the behavior of two unidirectionally
coupled Pierce diodes on rotating plane (11). As can
be seen, it is possible to distinguish regions of coupling
coefficient ε and observation time scale s in which
either the eyelet intermittency (Fig. 2b) or ring inter�
mittency (Fig. 2c) is observed. In addition, there are
regions of the coupling coefficient and observation
time in which both these phenomena are simulta�
neously observed (Fig. 2d). This implies that the eyelet
intermittency is interrupted by the ring intermittency
and vice versa. Thus, the behavior of the phase trajec�
tory is also indicative of the coexistence of two types of
intermittency. In this regime, the phase trajectory on
the (x', y') plane rotates about the origin of coordinates
(which is a manifestation of eyelet intermittency) and
envelopes the origin (which is evidence of ring inter�
mittency).
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Fig. 2. Phase trajectories of the driven system on the (x', y') plane rotating about the origin in various regimes: (a) ε = 0.02, s =
4.71875 (synchronous regime); (b) ε = 0.007, s = 4.71875 (eyelet intermittency); (c) ε = 0.02, s = 2.71875 (ring intermittency);
and (d) ε = 0.007, s = 2.71875 (coexistence of eyelet and ring intermittency).
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