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Abstract—The problem of reconstruction of dynamic systems in the presence of noise using series of inter-
burst intervals is solved. It is shown that the reconstruction procedure can be applied to strongly nonlinear
noisy oscillatory processes. The results make it possible to generalize the method for analysis of dynamic sys-
tems with respect to recovery time to a wide variety of neuron oscillators.
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The problem of diagnostics of complex oscillatory
regimes under limitations on available data occurs in
several scientific and technical applications. The cal-
culation of quantitative characteristics of chaotic
dynamics (e.g., Lyapunov exponents or generalized
fractal dimensions) can be implemented with the aid
of the known equations of the mathematical model [1,
2]. In the presence of the time dynamics of one of
dynamic variables, the problem can be solved using
methods for reconstruction of dynamic systems based
on experimental data [3]. In this case, the reconstruc-
tion quality and, hence, accuracy of estimations
depend on the sample size, presence of noise in the
detected signal, etc. [4, 5]. The reconstruction prob-
lem is difficult to solve if the data on the dynamics of
the system represent series of characteristic repeated
events (e.g., series of pulse generation times of neurons
[6] or moments at which the phase trajectory crosses
the Poincare section). Such problems emerge, in par-
ticular, when the nonlinear system that transforms sig-
nals contains a threshold unit. Theoretical study has
been performed for threshold devices that can be
described using the integrate-and-fire models [7]. The
corresponding results make it possible to substantiate
the possibility of reconstruction of dynamic systems
and calculation of characteristics of chaotic oscillation
regimes using input signals [8–12]. For alternative
classes of threshold devices, the reconstruction quality
for attractor has been tested with the aid of computer
simulation [13, 14].

However, the applicability limits of the reconstruc-
tion methods have not been determined. Dynamic
regimes with relatively uniform structure of attractor
(e.g., Rössler model in the regime of spiral chaos) are
predominantly employed as input signals in [8–13].

Such regimes do not allow full-scale tests of the
applied methods. Note insufficient data on strongly
nonlinear systems for which the phase trajectory con-
tains fragments with alternation of fast and slow
dynamics and the effect of noise on the accuracy of
characterization of chaotic oscillations using the input
signals of the threshold devices.

In this work, we solve the reconstruction problem
for dynamic systems that generate chaotic bursts
(trains of pulses with varying time intervals between
the generation moments). A method that has been
proposed in [14, 15] and improved in [16] is used for
reconstruction of the chaotic attractor using series of
interburst intervals. The method is based on the
approximation of the instantaneous oscillation fre-
quency. The calculation of the largest Lyapunov expo-
nent λ1 based on the reconstructed attractor is per-
formed using the method of [17] with allowance for
the modification proposed in [18] for the analysis of
noisy series of time intervals. In accordance with the
conventional approach of [17], we analyze the mean
rate of the exponential divergence of trajectories. In
this case, we choose the basic trajectory and deter-
mine the perturbation vector. A variation in the mag-
nitude of the vector with time makes it possible to esti-
mate the chaoticity. Outside the limits of the linear
approximation, we perform renormalization and
determine perturbation vector with smaller length that
is oriented along the direction of the maximum diver-
gence of trajectories. The analysis of the dynamics of
chaotic systems based on time series must be per-
formed with allowance for compromise of the minimi-
zation of the vector length and minimization of orien-
tation error α, since such minimizations cannot be
simultaneous. A practical method employs an interval
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of possible vector lengths [lmin, lmax] at constant orien-
tation. The results of [18] show that the analysis of
dependence λ1(α) makes it possible to increase the
calculation accuracy and determine conditions under
which the presence of additive noise does not prevent
correct estimation of the chaoticity of the dynamic
process. Additional data on the specific features of
instability of trajectories can be used with the aid of
the scale-dependent Lyapunov exponents [19, 20].

A model of the pancreatic beta-cell serves as the
system with several time scales that exhibits the burst
regime [21]:

(1)

We use the following control parameters: gCa = 3.6,
gK = 10.0, gS = 4.0, τ = 20 ms, τS = 35 s, VCa = 25 mV,
VK = –75 mV, Vm = –20 mV, Vn = –16 mV, VS = –40 mV,
θm = 12 mV, θn = 5.6 mV, θS = 10.0 mV, and μ = 0.85.
Such parameters provide the generation of chaotic
oscillations with a Lyapunov exponent of λ1 = 0.011
[21]. In model (1), variable V is the voltage across the
cell membrane, parameter n characterizes variations
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in the number of open calcium channels, and param-
eter S is the intracellular concentration of calcium. We
analyze the time dependence of variable V (Fig. 1).

To study the possibility of diagnostics based on the
series of interburst intervals, we consider deterministic
dynamics and use a series consisting of 3000 time
intervals between the neighboring peaks of variable
V(t) as the signal under study. With allowance for sig-
nificant variations in time intervals between neighbor-
ing pulses in a single burst and even more significant
burst-to-burst variations in such intervals, we obtain a
series that is characterized by a substantial spread of
time intervals and leads to nonuniformities of attractor
that is reconstructed with the aid of the method of [16].

The dependence of the largest Lyapunov exponent
on maximum orientation error α of the perturbation
vector [17] that is calculated using a series of interburst
intervals leads to a developed maximum (circles in Fig. 2)
that corresponds to theoretically expected λ1. The rea-
son for a decrease on the left-hand side of the maxi-
mum is an increase in the length of the perturbation
vector and escape from the limits of the linear approx-
imation. On the right-hand side, parameter λ1 is
underestimated due to an increase in the components
of the perturbation vector along the directions that are
orthogonal to the direction of the maximum spread of
trajectories.

In the presence of the additive noise in the series of
the interburst intervals, we observe changes of depen-
dence λ1(α) at relatively large angles (triangles in Fig. 2)
owing to the effect of additional (noise-induced)
spread of trajectories. When the intensity of the addi-
tive noise increases, the maximum that is observed for
deterministic dynamics vanishes (asterisks in Fig. 2)

Fig. 1. Time dependence of the voltage across the mem-
brane of the beta-cell. The intervals between the neighbor-
ing peaks of the signal are used for reconstruction of the
phase portrait [16] and the subsequent calculation of the
largest Lyapunov exponent.
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Fig. 2. Plots of the largest Lyapunov exponent vs. maxi-
mum orientation error of the perturbation vector that are
calculated using the series of interburst intervals in the
absence of noise and in the presence of additive noise sig-
nals with different intensities.
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and the method that we use does not allow quantita-
tive characterization of the dynamic chaos in system
(1) using signals that are detected in the presence of
noise. As for simpler dynamic regimes of [18], depen-
dence λ1(α) exhibits two important markers: maxi-
mum at relatively small angles, which makes it possible
to calculate the largest exponent that is close to the
expected value, and decreasing fragment of depen-
dence λ1(α) on the right-hand side of the maximum
the size of which characterizes the effect of noise on
calculated results. If the size of such a fragment
decreases and the fragment vanishes at a certain inten-
sity of the additive noise, the largest Lyapunov expo-
nent of the noise-free dynamic regime cannot be cor-
rectly estimated.

Thus, the above analysis proves the existence of
common regularities for the dependences of the larg-
est Lyapunov exponent (calculated using a series of
moments of return to the Poincare section) on the
maximum orientation error of the perturbation vector
in the reconstructed phase space for the regimes of
deterministic chaos and noisy chaotic oscillations.
This circumstance makes it possible to generalize the
method for analysis of dynamic systems based on
return times to a wide variety of neuron oscillators and
employ the procedure in diagnostics of dynamic
regime of oscillatoty systems using various experimen-
tal results.
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