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ABSTRACT

Alzheimer’s disease (AD) is an irreversible neurodegenerative disease. But if AD is detected early, it can
greatly reduce the severity of the disease. Functional connection networks (FCNs) can be used for the
early diagnosis of AD, but they are undirected graphs and lack the description of causal information.
Moreover, most of FCNs take brain regions as nodes, and few studies have been carried out focusing
on the connections of the brain network. Although effective connection networks (ECNs) are digraphs,
they do not reflect the causal relationships between brain connections. Therefore, we innovatively pro-
pose an edge-centric ECN (EECN) to explore the causality of the co-fluctuating connection in brain net-
works. Firstly, the traditional conditional Granger causality (GC) method is improved for constructing
ECNs based on the suppression relationship between structural connection network (SCN) and FCN.
Then based on the improved GC method, edge time series and EECNs are constructed. Finally, we perform
dichotomous tasks on four stages of AD to verify the accuracy of our proposed method. The results show
that this method achieves good results in six classification tasks. Finally, we present some brain connec-
tions that may be essential for early AD classification tasks. This study may have a positive impact on the
application of brain networks.

Muti-modal MRI

© 2023 Published by Elsevier B.V.

1. Introduction

As a progressive neurodegenerative disease, AD is the main type
of senile dementia [1]. There are about 46 million AD patients in
the world, and the increase is doubling in 20 years. It is estimated
that the global number of AD patients will reach 130 million by
2050 [2]. With the deepening of research, we gradually realized
that AD is a continuous development process, and the pathological
changes of AD are much earlier than the appearance of clinical
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symptoms [3]. Mild cognitive impairment (MCI) is considered to
be an intermediate stage between normal aging and AD. According
to the course of the disease, the MCI stage can be divided into early
MCI (EMCI) and late MCI (LMCI) [4]. In terms of the degree of dis-
ease, EMCI is more similar to NC, and LMCI is more similar to AD.
Some neuroscientists believe that NC, EMCI, LMCI, and AD are the
four major stages of AD, and accurate prediction and recognition of
these four stages may be crucial.

With the progress of neuroimaging technology in recent years,
Magnetic Resonance Imaging (MRI), Diffusion tensor imaging
(DTI), Functional Magnetic Resonance Imaging (fMRI) and Positron
Emission Computed Tomography (PET) and other imaging exami-
nations can reveal the structural features and functional activity
characteristics of the human brain in the early stage of disease
[5]. Zeng et al. [6] proposed a new switching delayed particle
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swarm optimization SVM method for the diagnosis of AD using
MRI scans, and they gained satisfactory results. It is of great signif-
icance to study the early diagnosis of AD based on multimodal
brain imaging data. Tatsuya et al. [7] used multi-modal MRI data
to find the optimal machine learning model to classify EMCI and
LMCI and achieved an accuracy of 70%. Based on MRI, Zeng et al.
[8] proposed a novel deep belief network based multi-task learning
algorithm developed for the classification AD/MCI and got good
performance.

Blood oxygen-dependent level (BOLD) signal comes from
resting-state functional magnetic resonance imaging (rs-fMRI) as
a neurophysiological marker, which can capture changes in neu-
ronal activity in the brain [9]. The two most important elements
of the brain network are nodes and connections. Different defini-
tions of these two elements often lead to great changes in the func-
tion and structure of the corresponding brain network. Thus, brain
functional and structural patterns and their potential correlations
can be demonstrated from different perspectives, providing differ-
ent ideas for the analysis of brain diseases [10,11]. Therefore, it has
become a hot issue in recent years to study the differences in brain
networks between AD and MCI subjects and normal subjects by
constructing brain networks based on neuroimaging data [12]. At
present, the mainstream brain networks include FCN, SCN, ECN,
and so on. SCN and FCN are essentially undirected graphs, which
have been regarded as important biomarkers and received much
research attention. Ibrahim et al. [13] determined the diagnostic
capability of rs-fMRI in identifying FCN abnormalities in the
DMN of AD or MCI patients by machine learning methods. Zhao
et al. [14] proposed a regional radiomics similarity network based
on SCN for subtype analysis of MCI, which provides a good basis for
the accurate identification of early AD. Zhang et al. [15] combined
fMRI, MRI and DTI to construct deep brain connectome to simulate
SCN and FCN, and achieved an accuracy of 92.7% on the ADNI data-
set. Some scholars believe that SCN and FCN can only indicate
whether there is a connection relationship between brain regions
and the strength of the connection relationship, without direction-
ality. Furthermore, the current common brain connection network
is often node-centered, that is, nodes represent brain regions while
edges mean the connection strength relationship between brain
regions. Recently, Faskowitz et al. [16] proposed edge-centric
FCN (EFCN) based on fMRI. The nodes of EFCNs represent the func-
tional connection of brain regions, and the edges represent the
degree of correlation between the connections of some two brain
regions and the connections of the other two brain regions. EFCN
can be seen as a supplement and extension of the traditional
node-centric representation of FCNs. EFCN reveals how communi-
cation between different brain regions evolves over time and
seems to reflect co-fluctuations in ROIs. However, EFCN is also an
undirected graph, which cannot obtain the causal relationship
between brain region fluctuations.

ECN, as a directed graph, can represent the causal effect infor-
mation of the connection relationship between neural signals in
the brain, which is more biologically interpretable [17]. Zhao
et al. [18] proposed to detect the number and position of rapid con-
nection changes from a BOLD sequence, and then estimated the
effective connection network using the conditional Granger causal-
ity method. Then they applied it to the classification task of AD/NC
and achieved an accuracy of 86.24%. Dang et al. [19] constructed
ECN using dynamic Bayesian networks for DTI and fMRI, and
proved its effectiveness in synthetic data. Ji et al. [20] proposed a
brain-effect connection ant colony learning method combining
fMRI and DTI. They applied it to simulation data sets and real
fMRI-DTI data sets for verification and achieved good results. Their
results also showed that combined multi-modal brain imaging was
better than single-modal brain imaging. However, when the ECN is
constructed by the traditional GC method, the ECN is often not
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robust and accurate enough. Because the traditional GC method
is not good at distinguishing direct and indirect causal relation-
ships, it is easy to identify false positive associations [21,22].
Therefore, although FCN and SCN are widely used in AD diag-
nostic tasks, they are essentially undirected graphs, lacking the
description of causal information. Although ECNs are digraphs,
they may have low accuracy when constructing ECNs like the tra-
ditional Granger causality method. In addition, there is a lack of
research on the causal transmission of brain regions. To solve the
above problems, we first improve the traditional Granger method
based on the inhibition relationship of SCN to ECN. Then, a new
EECN model is proposed to explore the causal relationship of the
co-fluctuating connectivity of brain networks. The overall structure
of EECN is similar to EFCN, but the edges of EECN represent causal
relationships between connections between two ROIs and connec-
tions between two other ROIs. In other words, the EECN model can
help us understand the causal transmission between two brain
connections in the brain. And High EECN values indicate the strong
causal relationship between the co-fluctuations of the two edges in
time, while low EECN values indicate the basically independent co-
fluctuation causal pattern. Finally, we verify the proposed EECN
method in the classification tasks of AD, LMCI, EMCI, and NC. We
depict the process in Fig. 1. Our main contributions are as follows:

1. Based on the principle of the GC method in constructing ECN,
this paper introduces the constraint relation between SCN and
ECN to improve the traditional conditional Granger method.

2. We construct edge time series based on the BOLD time series
and then use the improved GC method to construct EECN.

3. This EECN method is applied to six binary classification tasks in
four stages of NC, EMCI, LMCI, and AD, and achieves better per-
formance than traditional methods.

2. Materials and Methods

2.1. Preparations for the construction of edge-centric effective
connection network

In brain science, the brain network is often regarded as a simple
mapping of the brain, and neurons and their pairwise interactions
are regarded as nodes and edges of the network respectively. The
model is usually node-centric because it regards neurons (or
regions of the brain) as the basic units of brain structure and func-
tion. The model generally focuses on the analysis of the attributes
of nodes or node groups and is generally interpreted as a measure
of inter-area communication. However, as a low-order brain net-
work, the node-centric brain network construction method cannot
capture the potential connections between edges. Faskowitz et al.
[16] proposed to study brain functional networks from the per-
spective of connecting edge centric. The method is used to estimate
the strength of the functional connection between pairs of brain
regions. Thus we develop interpretable time series for each pair
of connected edges to illustrate the fluctuation of its weight over
time. A high EFCN indicates a strong similarity in the co-
fluctuations of the two edges in time, while a low EFCN indicates
an essentially independent co-fluctuation pattern. EFCN is more
reflective of how communication between different brain regions
has evolved over time.

In order to construct an edge-centric brain network, it is neces-
sary to get the edge time series. Assuming the number of subjects
is M, the BOLD time series of the m — th subject is described as
S™ € Ryxr(m=1,2,...,M) where N and T, respectively, represent
the number of brain regions and the length of time signals series.

Let si=15i(1),8(2),...,s5(T),s; = [5;(1),5;(2),...,5;(T)] € S"
where i and j respectively means the i — th and j — th ROI in the
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Fig. 1. The flowchart of the proposed framework for EECN analysis. (a) shows the using multi-modal data including MRI, fMRI, and DTI. SCN and BOLD time series are
obtained after data processing. (b) shows the framework structure diagram according to the proposed EECN method. (c) shows the process of feature construction and feature

selection of EECN, classification, and brain network connection selection.

brain network. Then, we possess s; and s; using z-score, and calcu-
late their pairwise products:

R; = zscore(s;),
R; = zscore(s;), 1)

X = 1> [Ri(t) - Ri(1)],

S X3 (6)  Xu(D)
¢an<r>2\/zxw(t)2 ’

EFCNjjuw =

where Xj; is the resulting product pair time series, which we call the
edge time series in this paper. EFCN is the obtained edge functional
connection network. The network node of EFCN represents the con-
nection strength of i-th ROI and j-th ROI, and the edge represents
the co-fluctuation of the two connecting edges of ROI i and j, ROI
u and v, that is, the connection association between i and j, u and v.

Corresponding to EECN, we construct the edge-centric SCN, the
details are as follows:

0
Wi =<
u { max(SCy, SCyy),

if SC;=0 or SCy, =0;
otherwise.

3)

where SC means the SCN after the preprocessing of the subject’s
brain image data, and i,j,u, and v represent the index number of
the brain region. W represents the edge-centric SCN corresponding
to EECN, and W is a symmetric matrix. In order to avoid the problem
of matrix irreversibility caused by a singular matrix, noise with val-

ues between [107>,107*] is added to W, and then W is symmetrized.

2.2. Improved Granger causality method

2.2.1. Traditional Granger causality method

GC model is an analytical approach based on the vector autore-
gressive model, which combines the values of past time series lin-
early to indicate the values of current time series [23]. It is often
used to test causality in time series data. Through the analysis of
the brain network, it can reflect the direction of information trans-
mission between brain regions or neurons. In general, for two sta-
tionary time series x, and y,(t=1,2,...t), for predicting the
current value of x, if only using historical information of x is less
instrumental than the combination of historical information of x
and y, that is, the error of the latter gets declined. Then we can
believe y could be the Granger cause of x. The traditional GC test
only involves a causality test between two variables, and the equa-
tion is as follows:

q

Xe= Y GiXe i+ &, (4)
pa
q q

Xe=> @iXeit+ Yy baye i+ &, (5)
i1 i1

where q is the model order, that is the maximum number of lagged
samples, which is determined by the Akaike Information Criterion
(AIC) [24]. ay;,ay;, by are the model coefficient, &;; and & mean
the random error term independent of time.

The Granger causality of y to x is defined as follows:

var(éir)
var(&y)’

Fyx = (6)
when var(ég;;) > var(gz), we believe that the past value of y can
improve the result of prediction, F,_, > 0 at this time. In addition,
we can verify whether the value of GC is meaningful by F-test.
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2.2.2. Improved conditional Granger causality method

In general, traditional GC methods do not perform well in dis-
tinguishing direct causality from indirect causality. Therefore, Faes
et al. [22] introduced a new stationary variable z and proposed
conditional Granger causality (CGC) method based on the tradi-
tional GC method.

In order to make the constructed brain network more accu-
rately reflect the directionality of information transmission
between brain regions, we introduce the constraint relationship
between SCN and FCN into CGC. Specifically, the SCN generated
by MRI and DTI is processed to obtain edge-centric SCN, and the
edge-centric will be introduced into CGC as a parameter matrix.
The specific model is as follows:

Let U be a multivariate stationary time series,

q

U = ZAI Ui + & (7)
i-1

I'i=cov(U,U,;),i=...-2,-1,0,1,2... (8)

where I'; represents the autocovariance matrix of Uy, A; represents
the regression coefficient, ¢ means model order, and &, represents
error. Since the ECN is essentially FCN, SCN still has a limiting effect
on it. Then we introduce the edge-centric SCN as a parameter
matrix,

Li=wriwhi=0,1,2... (9)

I'o=WoTly (10)

According to the Yule-Walker equations [25], we could obtain

(T1...Tq) = (Ar...ApTo (11)

(Ar...Ag) = (T ...l"q)(l"o)’l (12)
q

e =U—> Ai-Upi (13)
i=1

Specifically, let X, y, and z be subsets of the multivariate stationary
time series U,

X
U=1]y (14)
z

The Granger causality model is as follows:
q q

Xt = ZayXH' + ZC31‘ZH’ + &3, (15)
i-1 i-1
q q q

X = za4ixt—i + me‘ym + Z%‘ZH + &4 (16)
i=1 i=1 i=1

Similar to traditional GC, x,y and z are stationary time series,
as;, C3j, dqi and by and cy; are model coefficients, €3, and &4 are ran-
dom error terms independent of time.
When given z, the CGC from y to x conditional on z is:
var(&s;)

Fyowe = I (17)

If var(es;) > var(es), we believe that under the condition of z, the
introduction of y variable improves the prediction of x value, and
then F,_y, > 0. When the GC between x and y is completely medi-
ated by z, then by, = 0 and var(és;) = var(é4), so F,_y, = 0. Whether
causality is meaningful can also be verified by the F-test.

By substituting the constructed edge time series and edge-
centric SCN into the improved Granger method, an EECN can be
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obtained. Its nodes represent connections between two ROIs. Its
edges indicate a causal relationship between a connection between
two ROIs and a connection between two other ROIs, which is direc-

ted. The size of the EECN js Y- 5 M1,

Algorithm 1: Algorithm flow for the improved Granger
causality method.

Input: Uy, t=...—2,—-1,0,1,2..; ¢; W
Output: F

1 fori =1+t0oqdo

2 [; = cov (Uy,U—y);

3 Update I'; based on Eq.(9);

4 end

5 Update ['y based on Eq.(10);

6 Compute &, based on Eq.(11, 12,13);

7 Compute F based on Eq.(17);

8 return F

3. Experiments and results
3.1. Data collection

Three modalities of brain imaging data in the Alzheimer’s dis-
ease neuroimaging initiative (ADNI) [26] dataset (https://adni.
loni.usc.edu) are conjointly analyzed in this work, including MRI,
rs-fMRI, and DTI. ADNI enables researchers around the world to
share data about the early stage of AD. The goal of ADNI is to study
MCI and AD intervention, prevention, and treatment by using dif-
ferent biomarkers. We select 173 subjects that have all three
modalities, including 52 patients with EMCI (average age
75.8 years, 22 male and 30 female), 30 patients with LMCI (average
age 77.4 years, 20 male and 10 female), 34 patients with AD (aver-
age 74.7 years, 19 male and 15 female) and 57 age-matched NC
(average age 72.2 years, 32 male and 25 female). The details of
demographics and clinical characteristics are described in Table 1.

3.2. Data Description and Preprocessing

3.2.1. Data Description

The MRI data has field strength = 3.0 Tesla, FA = 90.0°, matrix =
240.0 x 256.0 x 176.0, slice thickness = 1.0 mm, pixel spacing =
1.0x 1.0 mm and TR = 2300 ms. The DTI data has strength
= 3.0 Tesla, FA = 90.0°, gradient directions = 54.0, matrix =
1044.0 x 1044.0 x 55.0, pixel spacing = 1.0 x 1.0mm, slice thick-
ness =2.0 mm, and TR/TE =7200/56 ms. The rs-fMRI data has field
strength = 3.0 Tesla, slice thickness = 3.4 mm, FA = 90.0°, matrix =
448 x 448, pixel spacing = 3.4 x 3.4mm and TR/TE = 3000.0/30.0
ms. Subjects are required to keep their eyes open, and remain
relaxed and awake during the scan.

Table 1
Demographic and Clinical Characteristics of Subjects.

Group Number Male/Female Age(Mean + SD)
NC 57 32/25 722 +6.9
EMCI 52 22/30 75.7 £ 6.8
LMCI 30 20/10 774 £ 6.3
AD 34 19/15 74.7 £ 6.1
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3.2.2. Data Preprocessing

We convert these three images to neuroimaging informatics
technology initiative (NIfTI) file format. For the structure images,
we use the PANDA toolbox and FreeSurfer V6.00 to perform image
preprocessing steps. For MRI, we carry out skull removal opera-
tions. Then, to eliminate the noise during scanning, the head
motion correction operation is carried out. In order to avoid the
influence of different subjects’ brain sizes, we carry out the spatial
standardization operation. To further eliminate the noise of the
subject scanning, spatial smoothing, and filtering are carried out.
Finally, the Anatomical Automatic Labeling (AAL) template [27] is
applied to segment the brain space into 90 ROIs. The MRI images
are used as templates for DTI and fMRI processes. For DTI images,
we do format conversion first. Then we do skull removal and cor-
rect the head motion. We do the eddy current correction to allevi-
ate the vortex distortion image. We calculate the Fractional
Anisotropy (FA) of each voxel, register the FA image with the cor-
responding processed MRI, and use the AAL map in the standard
space for segmentation. The cerebral cortex surface is divided into
90 regions, and each one is defined as a brain network node.
Finally, the structural connection network of each subject is
obtained. For rs-fMRI images, we preprocess them through DPARSF
[28] toolbox (http://rfmri.org/DPARSF). To eliminate the effect of
noise generated by the subject’s adaptation process during the ini-
tial scan, we delete the first 10 time points for each subject. We
conduct the steps including slice timing correction, register MRI
to rs-fMRI, motion rectification, normalization, smoothing, and
bandpass filtering. Then we segment the brain space into 90 ROIs.
At last, the time series of each subject is acquired from the BOLD
signals of all voxels.

3.3. Brain network regions selection

In this paper, we select 12 brain regions related to AD as ROIs
corresponding to the AAL template [27]. It includes right Precentral
gyrus, left Hippocampus, right Hippocampus, left Lingual gyrus,
right Lingual gyrus, right Superior occipital gyrus, left Middle
occipital gyrus, left Precuneus, right Precuneus, left Thalamus, right
Superior temporal gyrus, left Temporal pole: superior temporal
gyrus. We list and show them in Table 2 and Fig. 2.

3.4. Feature extraction/selection

We obtained the EECNs of all subjects in the four stages of AD,
LMCI, EMCI, and NC by the above method, and then we need to
extract useful features from the EECNs to effectively identify sub-
jects in the four states. Using the connection weight of the network
as the feature can avoid the influence of different kinds of features
on the experimental results, so we choose to use the connection
weight of EECN as the feature. The overall feature extraction pro-

Table 2
List of selected ROI names
No. ROI
1 R.Precentral gyrus
2 L.Hippocampus
3 R.Hippocampus
4 L.Lingual gyrus
5 R.Lingual gyrus
6 R.Superior occipital gyrus
7 L.Middle occipital gyrus
8 L.Precuneus
9 R.Precuneus
10 L.Thalamus
11 R.Superior temporal gyrus
12 L.Temporal pole: superior temporal gyrus
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Fig. 2. The distribution of the 12 selected ROIs in the brain.

cess is similar to FCN, but since EECN is an asymmetric graph, all
its connected edges need to be used as feature sets. If the number
of ROIs is N, the number of nodes in the EECN should be
N(N —1)/2, and there are N*(N — 1)>/4 edges. In order to solve
the problem of high-dimensional data, we use the mRMR method
[29] to select the features with the best compromise ability
between redundancy and correlation.

3.5. Experimental setting

In our experiments, we adopt the 10-fold cross-validation strat-
egy. In order to reduce the experimental error, we repeat 200 times
for all methods and calculate the average results as the final
results. We evaluated the performance using the support vector
machine (SVM) as a baseline test. Accuracy (ACC), sensitivity
(SEN), specificity (SPE), F1score (F1), and the area under the recei-
ver operating characteristic curve (AUC) are employed to measure
the performance in classification. They can be calculated as
follows:

PPV = TPT—fFP (19)
SEN = Tpi% (20)
SPE = %) (21)
pac =SSP (22)

L

where TP means true positive, TN means true negative, FP means
false positive, and FN means false negative respectively. AUC is
defined as the area under the ROC curve and the coordinate axis.
We take different effect network constructions as comparison
methods, mainly including node-centered ECN (NECN) based on
traditional GC method, NECN (NECN_SC) by improved GC construc-
tion proposed in this paper, edge-centered ECN (EECN) built by tra-
ditional GC method and edge time series, and EECN (EECN_SC)
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built by improved GC proposed in this paper. In addition, logistic
regression (LR) [30] and random forest (RF) [31] are used to con-
duct auxiliary comparative experiments to verify the effectiveness
of our proposed method. Six classification tasks are performed to
evaluate the performance, including (1) NC vs. EMCI classification.
(2) NC vs. LMCI classification. (3) NC vs. AD classification. (4) EMCI
vs. LMCI classification. (5) EMCI vs. AD classification. (6) LMCI vs.
AD classification.

3.6. Classification results using different methods

Based on NECN, NECN_SC, EECN, and EECN_SC, we repeated 200
experiments in six dichotomous tasks of NC, EMCI, LMCI, and AD,
and the final results are averaged. Table 3 summarizes the perfor-
mance of the above four methods on all classification tasks.

(1) In the classification task of NC and EMCI, the accuracy of
NECN, NECN_SC, EECN, and EECN_SC are 70.45%, 71.49%, 90.86%,
and 91.52% respectively. The balanced accuracy is 0.7108,0.7179,
0.9086 and 0.9196, respectively. AUCs are 0.7751, 0787, 0949,
0.9705, and F1 scores are 0.711, 0.7086, 0.9083, and 0.9108,
respectively. Compared with NECN, the ACC, BAC, and AUC of
NECN_SC are slightly improved, but the F1 score is slightly worse.
And all indexes of EECN_SC are slightly better than those of EECN
except SEN. Compared with Node-centric ECN, edge-centric ECN
has significant improvement in all our indicators. Compared with
NECN, the ACC, BAC, and AUC of NECN_SC are slightly improved,
but the F1 score is slightly worse. Compared with NECN, the ACC,
BAC, and AUC of NECN_SC are slightly improved, but the F1 score
is slightly worse. All indexes of EECN_SC are slightly better than
those of EECN except SEN. Compared with NECN, the ACC, BAC,
and AUC of NECN_SC are slightly improved, but the F1 score is
slightly worse. All indexes of EECN_SC are slightly better than
those of EECN except SEN. Compared with node-centric ECN,
edge-centric ECN has significant improvement in all aspects. (2)
In the classification task of NC and LMCI, the accuracy of NECN
method is 71.71%. After using the improved GC, the accuracy of
NECN_SC method was 83.32%, which is increased by 11.61%. More-
over, compared with NECN, BAC of NECN_SC increased by 0.1369,
AUC increased by 0.0767, and F1 score increased by 0.0823. After
the introduction of EECN, the ACC of EECN and EECN_SC increased

Neurocomputing 552 (2023) 126512

by 0.2126 and 0.1186, BAC increases by 0.2716 and 0.1476, AUC
increases by 0.1876 and 1158, compared with NECN and NECN_SC,
respectively. F1 score increased by 0.1473 and 0.087. Compared
with the classification task (1), the performance of the task (2) is
generally better, that is, LMCI is more distinguishable from NC than
EMCI. (3) In the classification task of EMCI and LMCI, the accuracy
of NECN method is 71.96%. After using the improved GC, the accu-
racy of NECN_SC method is 77.28%, which is increased by 5.32%.
EECN_SC performs better than EECN, with the accuracy increased
by 2.49%, and other indicators are also improved. (4) In the classi-
fication task of NC and AD, after using the improved GC, the accu-
racy of NECN_SC reaches 87.44%, which is 11.8% higher than that of
NECN, and the accuracy of EECN_SC reaches 98.3%. The accuracy of
EECN is 3.82% higher than that of EECN. And in other indicators, the
method using improved GC is significantly better than the original
GC method. As in the previous task, EECN and NECN, EECN_SC and
NECN_SC are significantly improved. In addition, compared with
task (1) and task (2), the performance of all methods in task (4)
is better, which indicates that the proposed brain network can bet-
ter analyze and diagnose the differences between NC, EMCI, LMCI
and AD, indicating the effectiveness of the proposed method. (5)
In the classification task of EMCI and AD, the accuracy of NECN_SC
is 11.34% higher than that of NECN, BAC increased by 0.0935, AUC
increased by 0.1093, and F1 score increased by 0.1716. In this clas-
sification task, the best performance is still the proposed EECN_SC,
the accuracy is 96.26%, BAC is 0.9558, AUC is 0.9904, F1 is 0.9657.
(6) In the classification task of EMCI and LMCI, the classification
accuracy of EECN_SC is 26.9% higher than that of NECN, 12.7%
higher than that of NECN_SC, and 6.23% higher than that of EECN.

Moreover, for the six classified tasks, we first compare them
based on NECN, NECN_SC, EECN, and EECN_SC. It can be seen that
the EECN_SC proposed in this paper has achieved the best results
in the six classification tasks, and the improvement is more obvi-
ous than the traditional NECN method. However, the results of
the same method on the six classification tasks differ greatly, so
the difficulty of the six classification tasks may be different. It
can be seen from the results that the classification task of NC and
AD can get better performance than other groups. The stage of
AD can be divided into NC, EMCI, LMCI, and AD according to the
severity of the disease. NC and EMCI are closer, and LMCI and AD

Table 3
The performance of the four methods on six classification tasks, and the boldface indicates the optimal value in a certain classification task.
Task Method ACC PPV SEN SPE BAC AUC F1
NC vs EMCI NECN 0.7045 0.7097 0.7585 0.663 0.7108 0.7751 0.711
NECN_SC 0.7149 0.7348 0.7232 0.7126 0.7179 0.787 0.7086
EECN 0.9086 0.8974 0.9351 0.8822 0.9086 0.949 0.9083
EECN_SC 0.9152 0.9457 0.8937 0.9454 0.9196 0.9705 0.9108
NC vs LMCI NECN 0.7171 0.7445 0.8786 0.4224 0.6505 0.7946 0.7903
NECN_SC 0.8332 0.8303 0.9422 0.6245 0.7834 0.8713 0.8726
EECN 0.9297 0.953 0.9346 0.9095 0.9221 0.9822 0.9376
EECN_SC 0.9518 0.9464 0.9808 0.8812 0.931 0.9871 0.9596
EMCI vs LMCI NECN 0.7196 0.7228 0.9122 0.419 0.6656 0.8104 0.7917
NECN_SC 0.7728 0.7588 0.9486 0.4725 0.7106 0.8449 0.8301
EECN 0.9104 0.8966 0.9736 0.777 0.8753 0.9489 0.9275
EECN_SC 0.9353 0.9217 0.983 0.8333 0.9082 0.9812 0.9468
NC vs AD NECN 0.7564 0.7751 0.8815 0.5458 0.7137 0.8687 0.808
NECN_SC 0.8744 0.8847 0.9221 0.7918 0.8569 0.9519 0.8946
EECN 0.9457 0.9466 0.9088 0.9651 0.9369 0.984 0.9175
EECN_SC 0.9839 0.982 0.9537 0.9945 0.9741 1 0.9718
EMCI vs AD NECN 0.7464 0.72 0.7703 0.7301 0.7502 0.8053 0.7082
NECN_SC 0.8598 0.8561 0.9263 0.7612 0.8437 0.9146 0.8798
EECN 0.9321 0.9296 0.9619 0.8782 0.9201 0.9835 0.9397
EECN_SC 0.9626 0.9585 0.9798 0.9319 0.9558 0.9904 0.9657
LMCI vs AD NECN 0.6911 0.7587 0.735 0.6383 0.6866 0.81 0.7228
NECN_SC 0.8331 0.8349 0.7849 0.8696 0.8273 0.9069 0.7827
EECN 0.8978 0.9054 0.938 0.8275 0.8827 0.962 0.9139
EECN_SC 0.9601 0.9634 0.9762 0.9298 0.953 0.9886 0.9669
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are closer. Therefore, the brain networks of NC and AD groups are
more different, so the differentiation is greater and the classifica-
tion performance is the best. Similarly, compared with the LMCI
group, the NC group, and the EMCI group has greater differentia-
tion and better classification performance.

In particular, we plot the ROC curves of these four methods in
six classification tasks, as shown in Fig. 3. The statistical bar charts
of each evaluation index are depicted in Fig. 5.

In order to further verify the robustness of the proposed method
(EECN_SC), we select SVM, LR and RF as classifiers to do compara-
tive experiments. Specifically, we conduct 200 comparative exper-
iments on each of the six classification tasks and finally take their
average values. The details are shown in Table 4. We select ACC,
AUC and F1 score as the main indicators and plot their results in
Fig. 4.

Moreover, we also compare the proposed method with other
recent algorithms related to AD diagnosis, and the results are
shown in Table 5. It can be seen that the proposed method gener-
ally achieves better performance than other methods, demonstrat-

NC_EMCI ROC Curve

NC_LMCI ROC Curve
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ing the effectiveness of the proposed EECN_SC method in the early
diagnosis of AD.

4. Discussion

In this paper, we propose a new framework for the construction
of EECN. EECN acts as a directed graph, where nodes represent the
connections of two ROIs and edges represent the fluctuating causal
relationships between two ROIs and the connections of two other
ROIs. It can help us to understand how communication between
different brain regions evolves.

In particular, to solve the problem of the low accuracy of the
traditional CGC method in constructing ECNs, we introduce the
SCN to FCN constraint relationship and improved the traditional
CGC method. The comparison experiments demonstrate that the
performance of the improved CGC method is better than the orig-
inal method. Then we process the BOLD time series into edge time
series, and then use the new CGC method to construct EECNs of NC,
EMCI, LMCI, and AD. The constructed EECN is described in Fig. 6.

EMCI_LMCI ROC Curve

1.0 1.0
D
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Fig. 3. ROC curves of different ECN construction methods on six classification tasks.
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Fig. 4. The performance of different classifiers using EECN_SC for six classification tasks.
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Fig. 5. Performance comparison among the methods using different ECNs for six classification tasks.
Table 4
The performance of different classifiers using EECN for six classification tasks.
Task Method AcCC PPV SEN SPE BAC AUC F1

NC vs EMCI SVM 0.9152 0.9457 0.8937 0.9454 0.9196 0.9705 0.9108
LR 0.9218 0.9284 0.9447 0.8825 0.9136 0.9741 0.9294
RF 0.8679 0.8453 0.9212 0.8231 0.8722 0.8725 0.8695
NC vs LMCI SVM 09518 0.9464 0.9808 0.8812 0.931 0.9871 0.9596
LR 0.9531 0.9507 0.9811 0.8868 0.934 0.9967 0.9621
RF 0.8798 0.8555 0.9842 0.6784 0.8313 0.8404 0.9079
EMCI vs LMCI SVM 0.9353 09217 0.983 0.8333 0.9082 0.9812 0.9468
LR 0.9529 0.9761 0.9311 0.9738 0.9524 0.9928 0.9489
RF 0.8472 0.8171 0.9773 0.6325 0.8049 0.808 0.8813
NC vs AD SVM 0.9839 0.982 0.9537 0.9945 0.9741 1 0.9718
LR 0.9695 0.9597 0.9945 0.9214 0.958 0.9982 0.9743
RF 0.8866 0.8529 0.9965 0.6932 0.8449 0.8515 0.9113
EMCI vs AD SVM 0.9626 0.9585 0.9798 0.9319 0.9558 0.9904 0.9656
LR 0.9599 0.9405 1 0.8814 0.9407 0.9996 0.9657
RF 0.8568 0.8277 0.9679 0.6863 0.8271 0.8303 0.8825
LMCI vs AD SVM 0.9601 0.9634 0.9762 0.9298 0.953 0.9886 0.9669
LR 0.9288 0.9002 0.9369 0.9113 0.9241 0.9913 0.9047
RF 0.8558 0.8468 0.844 0.8702 0.8571 0.8653 0.8194

The value of EECN reflects the transmission of the connection
fluctuation from two brain regions to the other two brain regions,
indicating the causal transmission relationship between them. As
can be seen from Fig. 6, the NC group has strong coordination
and information transmission ability. In the EMCI stage, the overall
EECN connection is relatively weaker than that in the NC group,

Table 5
Comparison with recent algorithms related to early diagnosis of AD.

but there are still some strong causal connections. With the grad-
ual deterioration of the disease, after reaching the stage of LMCI,
the information transmission between some brain regions is signif-
icantly weakened, and there are signs of connection loss. However,
in the AD group, the ability of information transmission between
some brain regions is weakened more significantly and some EECN

Method NC vs EMCI NC vs LMCI EMCI vs LMCI
ACC SEN SPE AUC F1 ACC SEN SPE AUC F1 ACC SEN SPE AUC F1
[32] 0.9090  0.9040 0914 0.967 - - - - - - 0.898 0.876 09140  0.9400 -
[33] 0.7431  0.7059  0.7759 - 0.72 0.7802 0.8235 0.725 - 0.8077 0.7347 0.8276 0.6 - 0.7869
[34] 09116  0.8255 0.957 - - 0.9422  0.9277 0.957 - - 0.9246  0.9397 0.8953 - -
[35] 0.8522 0.909 0.7954  0.8982 0.8902 0.8947 0.8863  0.9288 0.8658 0.921 0.8181  0.9426
[36] 0.925 0.95 0.90 0.98 - - - - -
[37] 0.8798 - - - - - - - - - 0.9014 - - - -
ours 09152 0.8937 09454 09705 0.9108 09518 09808 0.8812 0.9871 09596 0.9353 0.983 0.8333  0.9812  0.9468
Method EMCI vs AD NC vs AD LMCI vs AD
ACC SEN SPE AUC F1 ACC SEN SPE AUC F1 ACC SEN SPE AUC F1
[36] 0.865 0.88 0.85 0.94 - 093 0.93 0.93 0.99 - - - - - -
[37] - - - - - 0.9571 - - - - 0.9005 - - - -
[38] - - - - - 0.8884 0.8955 0.8825 0.9022 - - - - - -
ours 0.9626 0.9798 09319 0.9904 0.9657 0.9839 09537 0.9945 1 09718 0.9601 0.9762 09298 0.9886  0.9669
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values are close to 0. However, some connections are also
enhanced, which may be related to the compensatory mechanism
of the human brain [39]. Taken together, it could be that as the dis-
ease worsens, the brain atrophy is severely damaged. It weakens
the transmission of information between brain regions, leading
to a decline in cognitive function. From the perspective of the dis-
ease stage, the EECN of EMCI and NC groups is more similar, while
LMCI and AD are more similar. Therefore, timely detection and
treatment of the condition at or before the EMCI stage may play
an extremely important role in the deterioration of the condition
into AD. This experiment also proves the necessity of early diagno-
sis of AD.

In Fig. 6, we observe that with the worsening of the disease, the
causal relationship of information transmission between connec-
tions of some brain regions is gradually weakened or even missing.
These damaged connections may play a key role in finding impor-
tant indicators for the early diagnosis of AD. In fact, at the time of
the feature extraction step, these important connections have been
selected for feature classification. In order to better infer which
brain connections might be important indicators, we analyze the

20
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characteristics used for classification. Since the classification fea-
tures use the side causal connection between ROI-ROI, each feature
should have two ROI-ROI connections. Therefore, the selected fea-
tures have a high dimension and cannot be well mapped to the real
brain template, so the features need to be further disassembled.
First, the feature index corresponds to the specific ROI-ROI, and
then we carry out a statistical analysis of its occurrence times
and visualize it in Fig. 7. The horizontal and vertical coordinates
in Fig. 7 (a) represent the index of ROI, corresponding to the 12
brain regions selected at the beginning of the experiment, and
the value represents the number of occurrences of the correspond-
ing ROI sequence pairs in the classification features. Blue indicates
the number of occurrences is 0, green indicates the number of
occurrences is 1, and yellow indicates the number of occurrences
is 2. And we plot their distribution in the real brain in Fig. 7 (b).
Finally, we count 6 ROI-ROI connections with high frequency in
early diagnostic tasks for AD based on EECN method, and display
them in Table 6.

As shown in Table 4, some ROI-ROI connections such as L.Lin-
gual gyrus - R.Precental gyrus, L.Middle occipital gyrus - L.Lingual

EMCI

0.25

02

0.15

0.1

0.05

0.25

10.2

0.15

0.1

0.05

Fig. 6. The average EECNs of NC, EMCI, LMCI, and AD groups. The X-axis and Y-axis both mean the indexes of ROI-ROI.

9



S. Zhang, H. Zhao, W. Wang et al.

(a)

Neurocomputing 552 (2023) 126512

Fig. 7. (a) Analyze the features used by EECN for classification and disassemble some ROI-ROI connections. The X and Y coordinates correspond to the ROI index selected at
the beginning of the experiment, and the value represents the occurrence times of the corresponding ROI-ROI connection. (b) The distribution of these ROI-ROI connections in

the real brain, with the more frequent ones represented by the red line.

Table 6
The six most important ROI-ROI connections counted in early diagnostic tasks for AD
based on the EECN method.

No. ROI-ROI

L.Lingual gyrus - R.Precental gyrus
L.Middle occipital gyrus - L.Lingual gyrus
L.Middle occipital gyrus - R.Lingual gyrus

L.Middle occipital gyrus - R.Superior occipital gyrus
R.Precuneus - R.Precental gyrus
R.Precuneus - L.Hippocampus

U WN =

gyrus, L.Middle occipital gyrus - R.Lingual gyrus, L.Middle occipital
gyrus - R.Superior occipital gyrus, R.Precuneus - R.Precental gyrus,
and R.Precuneus - L.Hippocampus seem more crucial in the early
diagnosis of AD. Among them, the Lingual gyrus is related to visual
signal processing, as well as logical analysis and visual memory.
The Precental gyrus is the locus of the primary motor cortex, which
controls behavioral movement. The Middle occipital gyrus is asso-
ciated with spatial perception around the human body, and these
areas have been reported in many studies on the early diagnosis
of AD [40-44]. In addition, the Hippocampus plays a role in
short-term and long-term memory, as well as spatial orientation.
Studies have shown that AD patients have hippocampus damage,
memory decline, and loss of orientation perception [45,46].

5. Conclusion

In this paper, we first improve the traditional CGC method and
then propose a new edge-centric ECN construction framework.
This method provides us with important information about the
onset of AD from the perspective of ROI-ROI connections fluctua-
tion causal information, which is more in line with the character-
istics of biological interpretability. Finally, based on the data of
ADNI, we apply this method to the classification tasks of AD, LMCI,
EMCI, and NC, and achieved good results. These experiments
demonstrate the effectiveness of the proposed method.

However, this paper has some shortcomings, such as not con-
structing EECN at the whole brain level for analysis. The main rea-
son is the dimension size of the EECN. The number of EECN nodes
is N(N —1)/2, which means that if too many brain regions are

10

selected, it may lead to a dimension explosion when constructing
features. Therefore, our future work can be expanded by construct-
ing accurate EECNs at the whole brain level and then processing
ultra-high dimensional features. In addition, some work related
to neural networks that could integrate low-level details with
higher-level semantic features [47] can also be combined with
brain networks, which may produce some meaningful research
works. In conclusion, the work in this paper may play a positive
role in the diagnosis of brain diseases and the development of brain
connection networks in the future.
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