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The role of asymmetry in electrical synaptic connection between two neuronal oscillators is studied

in the Hindmarsh-Rose model. We demonstrate that the asymmetry induces multistability in spik-

ing dynamics of the coupled neuronal oscillators. The coexistence of at least three attractors, one

chaotic and two periodic orbits, for certain coupling strengths is demonstrated with time series,

phase portraits, bifurcation diagrams, basins of attraction of the coexisting states, Lyapunov expo-

nents, and standard deviations of peak amplitudes and interspike intervals. The experimental results

with analog electronic circuits are in good agreement with the results of numerical simulations.

Published by AIP Publishing. https://doi.org/10.1063/1.5003091

An electrical synapse is a conductive link between two

neurons in the form of a gap junction which allows a

direct exchange of small molecules and ions between the

cells. Although most gap junctions are bidirectional,

some of them present an asymmetry in the electrical cou-

pling.
1

In this paper, we show that this asymmetry can

induce multistability in the coupled neural system. Since

intrinsic noise in real systems can produce random

switches between coexisting states, this mechanism of the

intermittent behavior should be taken into account while

interpreting neurophysiological data.

I. INTRODUCTION

Multistability is a widespread phenomenon in nonlinear

science. The coexistence of multiple attractors has been

observed in many biological models and natural systems,

including biomedical systems and neuronal networks.2 It is

supposed that the brain, as a very complex system, exhibits a

huge number of coexisting states and that switches between

these states, induced by external stimuli and intrinsic noise,

are associated with information processing and mentality.3,4

Cooperative behavior of neurons in the neuronal network

plays a crucial role in normal brain functionality.5 It is widely

accepted that functional connectivity between different brain

regions and structural disconnection can be associated with

some brain diseases, such as schizophrenia, epilepsy,

Alzheimer’s disease, tinnitus, autism, and Parkinson.6,7 The

concepts of connectivity and synchronization in neuronal net-

works acquire special significance when we deal with

multistability.8,9

It is known that certain neurons in the mammalian brain

are joined by electrical synapses (gap junctions) involved in

several physiological mechanisms and anomalous population

activity, such as epilepsy.10,11 The gap junction creates chan-

nels through which ions and small molecules flow from one

cell to the other to depolarize a more negative cell, so that

the transjunction current makes the first cell less depolarized,

i.e., the coupling excites one cell while inhibiting the other.

Therefore, these synapses can be characterized as synchro-

nizing rather than excitatory or inhibitory. Although in most

of the papers, electrical synapses are considered to be bidi-

rectional (see, e.g., Ref. 12 for review), there are several gap

junctions which represent some asymmetry in the coupling.1

Bistable firing patterns were identified in many neuro-

physiological experiments with various species.13–15

Recently, Kim and Jones16 reported on their finding of bist-

ability in firing neural dynamics in the presence of asymme-

try in electrotonic coupling between the soma and dendrites.

On the basis of the Morris-Lecar equations17 and a two-

compartment motor neuron model,18 they developed a new

reduced modeling approach which allowed them to find the

coexistence of two different firing patterns. The authors

noted that due to the simplicity of the Morris-Lecar mecha-

nisms, they were able to find bistability only for a unique set

of parameters of the asymmetric model. The open problems

that still remain are whether the coexistence of attractors

also occurs in asymmetrically coupled neurons, and how the

asymmetry affects multistability.

To address this important issue, we consider a pair of

neuronal oscillators asymmetrically coupled via an electrical

synapse. Specifically, we focus on the Hindmarsh-Rose (HR)

model19 which is a simplified version of the physiological

Hodgkin-Huxley model.20 In spite of its simplicity, the HR

model allows basic phenomenological description of neuron

dynamics (resting, spiking, and bursting behaviors)21–24 and

reveals nonlinear mechanisms responsible for many impor-

tant biological processes. In a recent paper,25 it was shown

that bistability can appear in neuronal oscillators unidirec-

tionally coupled by electrical synapses. However, unidirec-

tional electrical coupling is not usual in real neurons. As a

rule, this kind of coupling is bidirectional, i.e., the exchange

of ions and small molecules between neural cells in gap

junctions occurs in both directions. In order to make oura)Electronic mail: alexander.pisarchik@ctb.upm.es
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model closer to reality, in this work, we explore bidirectional

electrical coupling, but add an asymmetry in the coupling.

Then, using the coupling strengths in two directions as con-

trol parameters, we study the system dynamics under fixed

and random initial conditions. The analyses of time series,

phase space, amplitude and time coherence, Lyapunov expo-

nents, and basins of attraction allow us to reveal the coexis-

tence of attractors in this system.

In addition, we have to note that a major part of the

research on dynamics of coupled neuronal oscillators was

performed by numerical simulations on neural mod-

els.11,16,22,26–28 Significantly less attention was paid to the

electronic implementation of the HR model29 that can pro-

vide experimental evidence of theoretically predicted effects

in real experimental conditions in the presence of parameter

tolerances and inherent noise. Therefore, one of the aims of

this research is to check whether or not the predicted theoret-

ical findings reveal themselves in real experimental

conditions.

II. NUMERICAL SIMULATIONS

We start our research with numerical simulations and

then continue with experimental implementation in elec-

tronic circuits.

A. Model of coupled neural oscillators

We consider the system of two HR neurons bidirection-

ally coupled as follows:

_x1 ¼ y1 � ax3
1 þ bx2

1 � z1 þ Iext1 þ r1ðx2 � x1Þ;
_y1 ¼ c� dx2

1 � y1;
_z1 ¼ r sðx1 � x0Þ � z1½ �;
_x2 ¼ y2 � ax3

2 þ bx2
2 � z2 þ Iext2 þ r2ðx1 � x2Þ;

_y2 ¼ c� dx2
2 � y2;

_z2 ¼ r sðx2 � x0Þ � z2½ �;

(1)

where x1,2 are membrane potentials of neuron 1 and neuron 2,

y1,2 are recovery variables associated with a fast current of

Naþ or Kþ ions, z1,2 are adaptation currents associated with a

slow current of Caþ2 ions, Iext 1,2 are external input currents,

x0¼ –1.6 is the x-component of the stable equilibrium point

without input (Iext ¼ 0), and 0<r1,2< 1 are electrical coupling

strengths used as control parameters. In the numerical simula-

tions, we consider the following parameters: a¼ 1, b¼ 3,

c¼ 1, d¼ 5, s¼ 4, and r¼ 0.006. The solitary (uncoupled)

neurons oscillate periodically for small (1.4< Iext < 2.9) and

large (Iext > 3.4) external currents, whereas for intermediate

currents (2.9< Iext < 3.4), they are chaotic. In this paper, we

fix the currents for both neurons at Iext1¼ Iext2¼ Iext ¼ 1.4. For

the considered set of the parameters, the uncoupled neurons

oscillate in a periodic spiking regime.

1. Bifurcation diagrams

A simple way to reveal multistability in a dynamical

system is to construct bifurcation diagrams calculated by

using random initial conditions. Such diagrams for the sys-

tem in Eq. (1) are shown in Fig. 1 for r1¼ 0.051 using the

coupling strength r2 as a control parameter.

In the bifurcation diagrams, one can distinguish the dif-

ference between dynamics of two neurons. When the coupling

FIG. 1. Bifurcation diagrams of (a) and (b) local maxima of membrane potentials x1 and x2 and (c) and (d) inter-spike intervals (ISI) of membrane potentials of

two coupled neurons with respect to one of the coupling strengths (r2), while another coupling strength is fixed (r1¼ 0.051). The diagrams are obtained by

varying randomly initial conditions.
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r2 is sufficiently small, both neurons generate tonic spikes,

because both couplings are too weak to change the original

neural dynamics. An increase in r2 gives rise to other attrac-

tors, so that the system behavior becomes multistable. One

can see that the bifurcation diagrams consist of several

branches. The upper horizontal branch in all diagrams corre-

sponds to a tonic spiking regime which coexists with bursting

and chaotic regimes within a certain range of the control

parameter. In particular, for 0:12�r2�0:16 and

0:20�r2�0:24, we find the coexistence of periodic and cha-

otic attractors within a certain range of the control parameter.

2. Time series

The coexistence of three spiking regimes is clearly seen

in Fig. 2, where we plot the time series of membrane poten-

tials of two coupled neuronal oscillators Eq. (1) for asym-

metric coupling with r1¼ 0.051 and r2¼ 0.2. One can see

that two periodic orbits [Figs. 2(a)–2(d)] coexist with a cha-

otic attractor [Figs. 2(e) and 2(f)].

The membrane potential represents a spiking behavior

with either a single spike [Figs. 2(a) and 2(b)] or two spikes

[Fig. 2(d)] in one burst when the system is in the periodic

states or with a varying number of spikes in the chaotic

regime [Fig. 2(f)]. Note that the neurons fire with the same

bursting frequency; however, the number of spikes in each

burst is different.

3. Phase portraits

Since the coupled system in Eq. (1) is six-dimensional,

the complete phase space cannot be graphically presented.

Therefore, in Fig. 3, we plot the phase portraits of three

coexisting attractors in the (x1, y1, x2) plane.

Since each attractor has different regularity and stability,

it can be characterized by different coherence and different

Lyapunov exponents. In other words, different values of the

FIG. 2. Time series of membrane potentials of neuron 1 (left column) and

neuron 2 (middle column) of coexisting (a)–(d) periodic and (e) and (f) cha-

otic attractors for r1¼ 0.051 and r2¼ 0.2.

FIG. 3. Phase portraits of coexisting (a) and (b) periodic and (c) chaotic

attractors for r1¼ 0.051 and r2¼ 0.2, in (x1, y1, x2) plane.
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standard deviation (SD) and Lyapunov exponents for the

same parameters indicate the coexistence of different attrac-

tors. In the next two subsections, we will show how these

important measure reveal multistability.

4. Coherence

Evidently, dynamical regimes with different regularity

have different coherence. For instance, a periodic regime is

regular and therefore coherent, whereas a chaotic or noisy

regime is highly irregular and hence incoherent. As a quanti-

tative measure of the coherence, here we will use standard

deviation (SD) of the spike amplitude (amplitude coherence)

and normalized standard deviation (NSD) of the inter-spike

interval (ISI) (time coherence). These characteristics have

been successfully used for the estimation of the coherence in

coupled chaotic R€ossler oscillators.30,31

The effect of asymmetry in coupling is clearly seen in

Fig. 4, where we plot the bifurcation diagrams of SD of the

local maxima [Fig. 4(a)] and NSD of the ISI [Fig. 4(b)] of

the membrane potential x2, in the parameter space of two

coupling strengths. For the calculation of the local maxima,

we choose the threshold value xth
1 ¼ �0:5 to exclude small-

amplitude local maxima related to the postsynaptic potential

and relaxation oscillations.

Since the diagrams in Fig. 4 are constructed for fixed

initial conditions, not all attractors are presented. However,

the asymmetry with respect to the diagonal line in both dia-

grams indicates multistability, because the coupling scheme

in Eq. (1) is completely symmetric. Therefore, this asymme-

try is the consequence of the coexistence of different regular

and irregular dynamical regimes for the same pairs of the

coupling strengths r1 and r2.

5. Lyapunov exponents

Multistability in the coupled neuronal oscillators can

also be revealed through the analysis of Lyapunov expo-

nents. The leading Lyapunov exponents of the system in Eq.

(1) are plotted in Fig. 5 as a function of two coupling

strengths for fixed [Fig. 5(a)] and random [Fig. 5(b)] initial

conditions. While in a periodic regime the largest Lyapunov

exponent is zero, in a chaotic regime it is positive. One can

see from Fig. 5(a) that the largest Lyapunov exponent is pos-

itive in the region of the coupling strengths 0.01> r1> 0.05

and 0.10> r2> 0.21. At the same time, as seen from Fig.

5(b), the exponent is positive for 0.10> r1> 0.21 and

0.01>r1> 0.05, symmetrically with respect to the diagonal

r1¼ r2. This means that for these control parameters the

chaotic attractor coexists with periodic orbits. In other

words, when the initial conditions are randomly varied, dif-

ferent coexisting attractors randomly arise for the same con-

trol parameters, so that the diagram is almost symmetric

with respect to the diagonal [Fig. 5(b)].

B. Basins of attraction

Finally, Fig. 6 illustrates multistability with the basins

of attraction of three coexisting states. As mentioned earlier,

since our system is six-dimensional, we cannot visualize the

complete phase space. Instead, we plot the [y1(0), y2(0)] sec-

tion of the basins of attraction, keeping other initial condi-

tions fixed [x1(0)¼ –0.9221, z1(0)¼ 1.2556, x2(0)¼ –0.9127,

and z2(0)¼ 1.2603] for the fixed coupling strengths

r1¼ 0.051 and r2¼ 0.2.

We should note that the periodic attractor with a single

spike in one burst, shown in Figs. 2(a) and 2(b), has a larger

basin of attraction (green regions) than two other coexisting

attractors. One can also see that the chaotic attractor often

occurs when the initial conditions for the coupled oscillators

are close to each other, i.e., when y1(0)� y2(0) (blue dots on

the diagonal).

III. EXPERIMENTAL EVIDENCE

A. Electronic circuit

On the basis of the HR neuron model Eq. (1), we con-

struct the electronic circuits using Kirchoff’s law. The elec-

tronic scheme and general view of the Hindmarsh-Rose

circuit are shown in Fig. 7. The values of the electronic com-

ponents are presented in Table I.

The analog representation of the HR model Eq. (1)

based on the Kirchoff’s law can be written as follows:

FIG. 4. Bifurcation diagrams of (a) SD of local maxima and (b) NSD of the ISI of membrane potential x1 in the parameter space of two coupling strengths.

The diagrams are obtained using fixed initial conditions. The asymmetry with respect to the diagonal lines is a signature of multistability.
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_Vx ¼ Wð�AV3
x þ BV2

x þ CVy � DVz þ EIextÞ;
_Vy ¼ WðF� GV2

x � HVyÞ;
_Vz ¼ WK SðVx � V0Þ � Vz½ �; (2)

where Vx, Vy, and Vz are the voltages in the electronic circuit

associated with three variables, W¼ 10 kHz is the time-

scaling frequency, and Iext ¼Vext/R is the external current

(Vext and R being the external voltage and load resistance,

respectively). To satisfy the theoretical model in Eq. (1), we

use the following scaling coefficients: A¼ 106 V�2,

B¼ 3� 106 V�1, C¼D¼H¼ 104, E¼ 104 V/A, F¼ 104 V,

G¼ 5� 104 V�1, K¼ 50, S¼ 4, V0¼ 1.6 V, and Iext ¼ 2.4 A.

B. Experimental time series

In the experiment, we explore the same period-1 spiking

regime as in the numerical simulations, when the oscillators

are uncoupled. The coexistence of periodic and chaotic

orbits is observed for intermediate values of the coupling

strength r2 (0.25<r2< 0.69) when r1 is fixed to r1¼ 0.05.

Figure 8 shows typical time series of the coexisting regimes

when initial conditions are randomly changed by switching

on and off the power supply.

C. Experimental bifurcation diagram

In order to compare the experimental results with the

numerical ones, we fix the coupling strength to r1¼ 0.05 in

FIG. 5. Leading Lyapunov exponent as a function of coupling strengths r1 and r2 calculated for (a) fixed and (b) random initial conditions.

FIG. 6. Section of basins of attraction of coexisting periodic (green and red)

and chaotic (blue) attractors shown in Figs. 2 and 3 for initial conditions

x1(0)¼ –0.9221, z1(0)¼ 1.2556, x2(0)¼ –0.9127, and z2(0)¼ 1.2603.

FIG. 7. Electronic scheme and general view of the electronic circuit based

on the Hindmarsh-Rose model.
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one direction and use the coupling strength r2 in another

direction as a control parameter. The resulting experimental

bifurcation diagram of the normalized standard deviation

(NSD) of the interspike interval (ISI) of the voltage Vx2 is

shown in Fig. 9.

D. Coherence

In a similar way to the numerical simulations, we exper-

imentally measure the coherence of the coupled oscillators

as standard deviation (SD) of the ISI of voltage Vx. The

results of this study are presented in Fig. 10 with the bifurca-

tion diagrams in the space of two coupling strengths. The

larger the SD, the lower the coherence. One can see that at

low couplings the system is weak coherent (less regular)

compared to that for strong coupling (more regular). The

asymmetry in the coherence with respect to the diagonal

r1¼ r2 is a signature of multistability. The difference

between the diagrams of two electronic neurons indicates

that they exhibit different dynamical behaviors even in the

presence of experimental noise.

It should be noted that due to inevitable experimental

noise, the experimental study of the multistable regimes is

difficult because the system switches from time to time

between different coexisting regimes, as shown in Fig. 11.

Such windows of intermittency appear randomly in one of

the neurons that often lead to their desynchronization.

TABLE I. Hindmarsh-Rose circuit’s electronic components.

Component Value

R1, R2, R3, R4, R5, R6, R7, R8, R10, R14, R15 10 kX
R4 333 X
R5 100 X
R9 0.2 kX
R11 2 MX
R12 500 kX
R13 100 kX
C1, C2, C3 0.01 lF

C4, C5 1 lF

U1, U2 LM324AN

U3, U4 AD633AN

V1, V2 615 V

V3 –1 V

V4 320 mV

V5 Voltage pulse

GND Ground

FIG. 8. Experimental time series of coexisting (a) periodic and (b) chaotic

regimes for r1¼ 0.05 and r2¼ 0.66.

FIG. 9. Experimental bifurcation diagram of NSD of ISI of Vx2 as a function

of the coupling strength r2 at r1¼ 0.05. Multistability emerges at intermedi-

ate coupling strengths.

FIG. 10. Experimental standard deviation of ISI (in seconds) of (a) Vx1 and

(b) Vx2 as a function of the coupling strengths. The asymmetry with respect

to the diagonal indicates multistability.
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Weakly coupled neurons oscillate asynchronously,

whereas for strong couplings they synchronize. Complete

synchronization can be characterized by average error E
¼ hjVx2 � Vx1ji between membrane potentials of the coupled

neurons. In the intermittency regime, the synchronization

error is high. In Fig. 12, we plot the normalized error in the

space of the coupling strengths. One can see that the large

error occurs for weak and intermediate coupling strengths,

whereas for large coupling strengths E¼ 0 (blue color in the

figure). The asymmetry in the error with respect to the diago-

nal is the consequence of multistability and multistate

intermittency.

IV. CONCLUSION

In this paper, we have demonstrated that asymmetric

electrical coupling can induce multistability in a coupled

neural system. The coexistence of attractors emerges at rela-

tively weak coupling strengths and depends on the asymme-

try. In the Hindmarsh-Rose model of two coupled neuronal

oscillators, we have found the coexistence of three attractors,

two periodic and one chaotic. The multistability has been

revealed through time series, phase portraits, bifurcation dia-

grams, coherence, Lyapunov exponents, and basins of attrac-

tion of the coexisting states. The coexistence of attractors

was observed for relatively small coupling, whereas for very

strong coupling, the system was monostable and completely

synchronized.

In addition, in this paper, we have provided the exper-

imental evidence of asymmetry-induced multistability

using electronic circuits simulating dynamical behavior of

coupled neurons. The experimental results are in a good

agreement with the numerical ones. Due to experimental

noise, multistate intermittency arose for certain coupling

strengths.

The results of this paper can explain the appearance of

different firing patterns in neurophysiological experiments.

The existence of multistability due to asymmetric coupling

and related effects, such as multistate intermittency due to

inherent noise, should be taken into account by considering

dynamics of complex neuronal networks.
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