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In this paper we report for the first time on the binary generalized synchronization, when for

the certain values of the coupling strength two unidirectionally coupled dynamical systems

generating the aperiodic binary sequences are in the generalized synchronization regime. The

presence of the binary generalized synchronization has been revealed with the help of both

the auxiliary system approach and the largest conditional Lyapunov exponent calculation. The

mechanism resulting in the binary generalized synchronization has been explained. The find-

ing discussed in this paper gives a strong potential for new applications under many relevant

circumstances.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Chaotic synchronization is known to be one of the fun-

damental phenomena, widely studied recently since it has

both the theoretical and applied significance [1,2]. The study

of the chaotic synchronization phenomenon is the central

branch of the dynamical chaos theory dictated by its major

fundamental significance accompanied with the broad spec-

trum of the practical applications including (but not limited

to) the biological [3–5], physiological [6–9], chemical [10,11],

controlling chaos [12,13] and information transmission

[14–22] tasks.

There are the different types of chaotic synchronization

revealed and studied recently such as phase synchroniza-

tion [23,24], generalized synchronization [25,26], lag syn-

chronization [27,28], complete synchronization [29,30], time

scale synchronization [31,32], anti-synchronization[33], pas-

sive synchronization [19], adaptive synchronization [34,35],
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projective synchronization [36–38], generalized projective

synchronization [39–41], modified generalized projective

synchronization [21], etc. Among the different types of

the synchronous behavior of chaotic systems the generalized

synchronization (GS) [25,26,42] stands out due to its inter-

esting features [43–46] and possible applications [18,47,48].

This kind of synchronous behavior means the state vectors of

the interacting chaotic systems being in the generalized syn-

chronization regime are related with each other. It has been

observed in many systems both numerically [43,49–51] and

experimentally [46,52,53].

The significant progress in the generalized synchroniza-

tion studies has been achieved recently. In parallel with the

revealing the mechanism being responsible for the general-

ized synchronization regime arising in the unidirectionally

coupled chaotic oscillators [45,54,55], the concept of the

generalized synchronization phenomenon has been ex-

tended to the mutually coupled systems and networks [56],

as well as the relationship between the interacting systems

has been clarified [57,58]. At the same time, generalized syn-

chronization has been observed hitherto only for the analog

systems (both the flows and maps), whereas phase syn-

chronization and complete synchronization are known to be
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found recently in the binary systems whose signals contain

only bits “0” and “1” (see Ref. [59] and Ref. [60], respectively).

Therefore, there is a fundamental problem, whether the

type of synchronization with the properties of GS can exist

for the systems generating the aperiodic binary signals. This

problem is important from the point of view of both the gen-

eralized synchronization theory development and the gen-

erality of the chaotic synchronization phenomenon. In other

words, the problem is the following: whether for the certain

values of the coupling strength ε two coupled dynamical sys-

tems x(t) and y(t) generating the aperiodic signals x(t) and

y(t) (where x(t) and y(t) take only the values “0” or “1”, t is

time which may be both continuous and discrete) can be in

the generalized synchronization regime.

In this work we report for the first time on the general-

ized synchronization between two unidirectionally coupled

binary systems. Such type of synchronization we call as bi-

nary generalized synchronization (BGS).

2. Binary generalized synchronization

Let x and y are the drive and response systems (coupled

unidirectionally with the coupling strength ε) generating the

aperiodic binary signals x = h(x) and y = g(y), where h and

g are some functions, with x and y taking only the values “0”

or “1”. The dynamics of the systems x and y are governed by

the evolution operators H[·] and G[·]
ẋ(t) = H[x(t)]

ẏ(t) = G[y(t), εx(t)] (1)

in the case of the flow systems and by

xn+1 = H[xn]

yn+1 = G[yn, εxn] (2)

in the case of the discrete maps.

The binary generalized synchronization takes place, when

the condition

y = F [x] (3)

is satisfied, where F[·] is the functional. The functional F[·]
means the state of the response system signal y depends not

only on the state of the drive signal x (whose value can be

“0” or “1”) at the fixed moment of the continuous or dis-

crete time, but on the pre-history of the evolution of the drive

system (see works [57,58] where this point is considered in

detail).

To detect the generalized synchronization regime in the

unidirectionally coupled systems the different techniques

have been proposed, e.g., the nearest neighbor method [25]

or the conditional Lyapunov exponent calculation [26].

Among these techniques the auxiliary system approach pro-

posed for the unidirectionally coupled chaotic oscillators

may be generally considered as the most easy, clear and pow-

erful tool to study the generalized synchronization regime

in chaotic systems. Starting from the seminal paper of Abar-

banel et al. [42], the auxiliary system approach has become

de-facto the standard of generalized synchronization stud-

ies. Although the auxiliary system approach is not applica-

ble for the mutual type of coupling [61] it is the very effec-

tive tool to detect the GS regime in unidirectionally coupled
chaotic systems. The auxiliary system approach has been

used in the plenty of theoretical and experimental works

(see, e.g., [52,54,62,63]).

In our work we use two approaches mentioned above to

detect the BGS regime, namely the auxiliary system approach

and the largest conditional Lyapunov exponent calculation.

The core idea of the auxiliary method approach consists in

the parallel consideration of the dynamics of the response

system y and the auxiliary system z, whose dynamics is gov-

erned by

ż(t) = G[z(t), εx(t)] or zn+1 = G[zn, εxn]. (4)

The auxiliary system must be completely identical to the

response system y, but it starts with the other initial con-

ditions, i.e., u(t0) �= y(t0). If the generalized synchroniza-

tion regime takes place, the signals of the response system,

y = g(y), and the auxiliary system, z = g(z), become iden-

tical after the transient, since y = F [x] and, simultaneously,

z = F [x]. Obviously, in this case the condition y = z should be

fulfilled. On the contrary, in the case of the absence of gener-

alized synchronization, the dynamics of the response y and

auxiliary z systems are unrelated, y �= z. Therefore, to detect

the BGS regime, one has to compare the time series of the

response and auxiliary systems with each other. To compare

these time series, one can consider the error

E = y − z, (5)

between values of the response and auxiliary system signals.

The presence of the generalized synchronization may be

detected also with the help of the largest conditional Lya-

punov exponent calculation. If the dimensions of the drive

and response systems are equal to N, the Lyapunov exponent

spectrum of the interacting systems is �1 ≥ �2 ≥ · · · ≥ �2N .

Since the drive system dynamics is independent on the be-

havior of the response system, this spectrum may be divided

into two parts: exponents of the drive system �d
1

≥ · · · ≥ �d
N

and conditional Lyapunov exponents [30,64] �r
1

≥ · · · ≥ �r
N

.

The generalized synchronization regime takes place if and

only if � = �r
1 < 0 (see [26] for detail).

3. Binary generalized synchronization in discrete systems

We have observed the binary generalized synchronization

in two unidirectionally coupled systems whose equations

read as

xn+1 = H(ηn+1), ηn+1 = f (ηn, λd),

yn+1 = H(ζn+1), ζn+1 = f (ζn, λr) + εζ 2
n xn, (6)

where xn, yn are the binary sequences under study, ηn and

ζ n are supposed to be the interior (hidden) variables whose

dynamics is governed by the evolution operator

f (ξ , λ) = 1 − λξ 2, (7)

λd and λr are the control parameters of the drive and

response systems, respectively, ε is the coupling strength
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Fig. 1. (a) The bifurcation diagram of the evolution map (7) and (b) the de-

pendence of its Lyapunov exponent, �, on the λ-parameter. The values of

λd = 1.6 and λr = 1.54 corresponding to the drive and response systems,

respectively, are shown with the help of arrows.

Fig. 2. Asynchronous dynamics of two unidirectionally coupled binary sys-

tems, ε = 0.2. Time series shown in Figure correspond to (a) the drive sys-

tem, (b) the response system, (c) the auxiliary system and (d) the difference

E between the time series of the response and auxiliary systems.
and

H(ξ ) =
{

0, x < 0,

1, x ≥ 0,
(8)

is the Heaviside function. We have chosen the values of the

control parameters as λd = 1.6 and λr = 1.54 for both the

drive and response systems in the absence of coupling (i.e.,

for ε = 0, when the dynamics of the hidden variables ηn and

ζ n are governed by logistic map (7)) to exhibit the chaotic

behavior (see Fig. 1).

To reveal the BGS regime in (6) we have used the auxil-

iary system approach described above. In parallel with the

response system we have considered the auxiliary system zn

(see Eq. (4))

zn+1 = H(ςn+1), ςn+1 = f (ςn, λr) + ες2
n xn, (9)

which is completely identical to the response one, but starts

with the different initial condition in comparison with the

response system, i.e., ς0 �= ζ 0.

The behavior of two coupled systems (6) generating the

binary signals is illustrated in Figs. 2 and3 for two different

values of the coupling strength ε. Fig. 2 corresponds to the

relatively weak coupling ε = 0.2 between the systems when

the generalized synchronization is not observed. One can see

that the binary sequences generated by the drive, response

and auxiliary systems differ from each other (Fig. 2a–c). To

make sure that for ε = 0.2 the interacting systems are in the

asynchronous regime, in Fig. 2d the difference between the

states of the response and auxiliary systems, yn − zn, is given.

With the increase of the coupling strength ε, the inter-

acting systems undergo into the generalized synchronization

regime (Fig. 3). Whereas the behavior of the drive system

remains unchanged (due to the unidirectional type of cou-

pling), after the short transient (approx. 100 units of the dis-

crete time) the dynamics of the response and auxiliary sys-

tems becomes identical (Fig. 3b–d) that is the evidence of the

generalized synchronization of the binary drive and response

systems (6).
To validate the presence of the generalized synchroniza-

tion regime, in parallel with the auxiliary system approach,

we have also used the calculation of the conditional Lya-

punov exponent (CLE) of the response system [26]. Although

for the binary signals there is no possibility to get the Lya-

punov exponent value (because the output variable takes

only two possible values “0” and “1” and one can not find

the small variable variation which is necessary for the LE cal-

culation), we can calculate CLE of the system (6) as

� = lim
n→∞

1

n

n−1∑
i=0

ln |2(εxi − λr)ζi|, (10)

since for the model system we can suppose that the hidden

variable ζ is known.

The dependencies of the conditional Lyapunov exponent

� of the response system on the coupling strength ε for three

different values of the control parameter λr are shown in

Fig. 4. One can see that for the considered above value λr =
1.54 the conditional Lyapunov exponent value decreases

with the increase of the coupling strength and becomes suf-

ficiently negative above εBGS ≈ 0.35 (the solid line 1 in Fig. 4)

that can be considered as the binary generalized synchro-

nization onset. With the growth of the control parameter λd

(curves 2 and 3 in Fig. 4), the dynamics of the response sys-

tem becomes more complex (see the corresponding values of

CLE for ε = 0) and, as a consequence, the coupling strength
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Fig. 3. Binary generalized synchronization regime, ε = 0.54. Time series

shown in Figure correspond to (a) the drive system, (b) the response system,

(c) the auxiliary system and (d) the difference E between the time series of

the response and auxiliary systems.

Fig. 4. The dependencies of the conditional Lyapunov exponent � of the

response system on the coupling strength ε for three different values of the

control parameter λr: λr = 1.54—solid line 1, λr = 1.62—dashed line 2, λr =
1.95—dotted line 3.

1 The SNR value has been calculated as SNR = 10 lg
Psign

Pnoise
, where Psign is a

power of chaotic signal, Pnoise is a power of noise affected the chaotic sys-

tem [68].
must be greater to get the binary generalized synchroniza-

tion regime. So, for λr = 1.62 the onset of BGS is at εBGS2 ≈
0.48 (the dashed line 2 in Fig. 4), whereas for λr = 1.95 the

binary generalized synchronization is not observed at all in

the considered range of the coupling strength values.

The consideration of the conditional Lyapunov exponent

allows also to understand the relationship between the syn-

chronous dynamics (from the point of view of the general-

ized synchronization regime) of the hidden and binary vari-
ables. It is obviously, that the generalized synchronization

of the hidden variables (i.e., ηn and ζ n) implies definitely

the generalized synchronization in terms of the binary vari-

ables, xn and yn. At the same time, the reverse relationship

is not so obvious, but, fortunately, CLE allows one to solve

this problem. Indeed, the increase/decrease of the difference

between the hidden variables of the response and auxiliary

systems, δ = ζ − ς, is determined completely by the sign of

CLE. When CLE is positive (the generalized synchronization

regime is not observed), the difference δ between the val-

ues of the hidden variables of the response and auxiliary sys-

tem increases, and, since the values of the hidden variables

are bounded (−ζm < ζ < ζm, −ζm < ς < ζm, 0 < ζ m ≤ 1), δ-

variable exhibits the chaotic behavior, with its value located

within the range (−2ζm, 2ζm). Obviously, when −2ζm < δ <

−ζm and ζ m < δ < 2ζ m the hidden variables ζ and ς are

characterized by the different signs, and, as a consequence,

the variables y and z corresponding to the response and aux-

iliary systems, respectively, are also different. So, the binary

variables are synchronized (in terms of the generalized syn-

chronization regime) if and only if the hidden variables are in

the generalized synchronization regime.

It should be noted that from the engineering point of

view the binary systems demonstrate several non-ideal be-

haviors such as jitter, time rise and time fall affecting the bi-

nary pulses (see, e.g., [65,66]). In numerical experiments on

the BGS such processes can be simulated by the addition of

noise in the systems under study or by the control param-

eter mismatch [67]. At the same time, as well as the GS of

unidirectionally coupled chaotic systems (see, e.g., [46]), the

BGS regime possess a great enough stability to the external

perturbations. In such case the stability of the synchronous

regime is defined by the stability of the GS regime established

between the hidden variables of interacting systems just in

the same way as for the GS phenomenon [46]. At the same

time, since the type of coupling between interacting systems

considered in [46] is different in comparison with the system

under study, the quantitative values of the boundaries of GS

and BGS regime stability are also differed.

To illustrate the stability of BGS in logistic maps (6) to

external noise we have analyzed the dependencies of the

boundary values of the synchronous regime onset on the

noise intensity. We have assumed that both the response and

auxiliary systems are subjected to the additional noise signal

Dξ where ξ is the stochastic process which probability den-

sity is distributed uniformly on the interval [0; 1], D defines

the intensity of noise.

Fig. 5 illustrates the dependencies of the threshold of the

BGS regime onset on the noise intensity for three different

values of the control parameter λr and fixed values of other

control parameters. On the horizontal axis the signal to noise

ratios (SNR, [dB]) corresponding to these noise intensities are

also indicated1. It is clearly seen that in all considered cases

the boundary value of the BGS regime does not practically

depend on the noise intensity D ∈ [0, Dc] where Dc (shown

by arrows in Fig. 5) depends on the choice of the control
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Fig. 5. Dependencies of the threshold value of the BGS regime onset in lo-

gistic maps (6) on the noise intensity (the SNR-values corresponding to the

noise intensities are also shown) for different values of the control parame-

ters: 1 − λr = 1.54, 2 − λr = 1.62, 3 − λr = 1.7. Critical values of the noise

intensity Dc , up to which the GS regime in system (6) is observed, are marked

by arrows.

Fig. 6. (a) the drive binary signal generated by systems (11) and (12), (b) the

asynchronous binary signals of the response and auxiliary systems (13) and

(14), ε = 0.05, (c) the binary generalized synchronization regime, ε = 0.13,

the binary signals of the response and auxiliary systems coincide with each

other.
parameters in the same way as it has been discussed in [46].

The further increase of the noise intensity D > Dc results in

the runaway of the representation point to infinity that is

caused by the properties of the logistic map itself (see [46]

for details). At the same time, for the selected values of the

control parameters Dc ∈ [0.12; 0.22] (SNR ∈ [19.07; 13.95] dB,

respectively). In other words, the BGS regime in the system

under study possesses high but limited stability to external

noise. It should be noted that if the response and auxiliary

systems would be subjected to different noise, the stability

of the synchronous regime would show the same properties

as for the systems being in the phase synchronization regime

(see, e.g. [18,69]).

4. Binary generalized synchronization in flow systems

To prove the generality of the revealed phenomenon we

have also shown that the binary generalized synchronization

may be also observed for the systems generating the contin-

uous binary signals, where the length of bits is variable (con-

trary to the discrete systems such as (6) generating the dis-

crete binary signals). For this purpose we have considered the

flow binary system based on Rössler oscillator being the stan-

dard object of the nonlinear dynamics. The irregular drive bi-

nary signal m(t) is supposed to be generated by Rössler sys-

tem

ẋd = −ωdyd − zd,

ẏd = ωdxd + ayd,

żd = p + zd(xd − c) (11)

as

m(t) = H(xth − xd(t)), (12)

where H(x) is the Heaviside function (8), xth = 5.0 is the

threshold value governing the switching between bits “0”

and “1”, the control parameters of Eq. (11) have been set to

a = 0.15, p = 0.2, c = 10.0, ωd = 0.93. The response binary

signal n(t), in turn, is generated by the response flow system

ẋr = −ωryr − zr − εmxr,

ẏr = ωrxr + ayr,

żr = p + zr(xr − c) (13)

as

n(t) = H(zr(t) − z ), (14)
th
where ωr = 0.95, the threshold value is set to zth = 3.0, the

parameter of coupling ε governs the response system dy-

namics. The values of the control parameters a, p, c, ωd, r pro-

vide the chaotic dynamics of the considered Rössler oscilla-

tors without coupling (i.e., for ε = 0) exactly just as in the

case of the discrete systems considered above in Section 3.

To detect the BGS regime in parallel with the response system

we have also consider the auxiliary system whose equations

coincide with Eqs. (13) and (14), but the initial conditions are

different.

The behavior of two coupled systems (11)–(14) generat-

ing the binary signals are illustrated by Fig. 6 for two different

values of the coupling strength ε. The drive binary signal m(t)

is shown in Fig. 6a. The switchings between states “0” and “1”

is realized practically immediately (in our numerical simula-

tions their length is equal to one time step, h = 10−3) and,

theoretically, the length of time intervals corresponding to

these switchings should be considered as zero. Since the cou-

pling between the systems is unidirectional, the dynamics of

the drive system does not depend on the coupling strength

and is the same for all values of parameter ε. The binary se-

quences n(t) and l(t) generated by the response and auxil-

iary systems, respectively, are given in Fig. 6b (ε = 0.05) and

Fig. 6c (ε = 0.13). One can see that for the small value of the

coupling strength ε = 0.05 the binary signals generated by

the response and auxiliary systems do not coincide with each

other (Fig. 6b) that is the evidence of the asynchronous dy-

namics. With the increase of the coupling strength (ε = 0.13),

the binary generalized synchronization takes place that is

proven both by the identical binary signals of the response

and auxiliary systems (Fig. 6c) and the behavior of the largest

conditional Lyapunov exponent calculated for the response

system (Fig. 7).
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Fig. 7. The dependence of the largest conditional Lyapunov exponent �

of the response Rössler system on the coupling strength ε. The coupling

strength values corresponding to Fig. 6 are shown by arrows.

Fig. 8. Dependencies of the threshold value of the BGS regime onset in

Rössler systems (11)–(14) on the noise intensity (the SNR-values corre-

sponding to the noise intensities are also shown) for different values of the

control parameters: 1 − ωr = 0.95, 2 − ωr = 0.99, 3 − ωr = 0.89.
The mechanism resulting in the binary generalized syn-

chronization can be explained within the framework of the

theory proposed earlier in [54]. There are known two main

mechanisms being responsible for the GS regime, namely,

(i) arising of the additional dissipation caused by the cou-

pling, which suppresses the proper chaotic dynamics of the

response system and (ii) the destruction of the proper chaotic

dynamics of the response system by the drive signal with the

large amplitude and moving the phase trajectory of the re-

sponse oscillator into the regions of the phase space with the

strong dissipation. As we have found out, arising of the binary

generalized synchronization in the considered systems is ex-

plained by the first mechanism. Indeed, the coupling term

changes the property of both the discrete (6) and flow sys-

tems (11)–(14) in such a way that the dissipation in the re-

sponse oscillator increases (that leads to the negativeness of

the largest conditional LE) resulting in arising of the general-

ized synchronization regime.

It should be noted that as in the case of the discrete maps

considered above, the BGS regime in flow systems also pos-

sesses a high enough stability to external noise. In particular,

if the response and auxiliary Rössler systems are addition-

ally subjected to the noise influence (the stochastic term Dξ
should be added to the first equation of the system (13) and

its replica) the boundary value of the synchronous regime

onset would be practically the same as in the noiseless case.

In Fig. 8 the dependencies of the boundary value of the BGS

regime onset in system (11)–(14) on the noise intensity for

different values of the control parameters have been shown.

It is clearly seen that in all considered cases the threshold
of the BGS regime onset does not change dramatically with

the noise intensity increasing, and even in the case when the

power of noise exceeds the power of signal considerably the

boundary of BGS would be practically the same as in the case

of the absence of noise.

5. Conclusion

In conclusion, in this paper we have reported for the

first time on the binary generalized synchronization, when

for certain values of the coupling strength two unidirection-

ally coupled dynamical systems generating aperiodic binary

sequences are in the generalized synchronization regime.

Along with the previously revealed possibility of the binary

systems to demonstrate the complete and phase synchro-

nization regimes [59,60], the results of our paper concerning

generalized synchronization, suggest the possibility of the

development of the theory of chaotic synchronization of bi-

nary systems. Due to the high enough stability of the BGS to

external perturbation we believe that the finding discussed

in this paper gives a strong potential for new applications un-

der many relevant circumstances including the chaotic com-

munication field.

Acknowledgment

This work has been supported by the Russian Science

Foundation (Grant 14-12-00324).

References

[1] Boccaletti S, Kurths J, Osipov GV, Valladares DL, Zhou CS. The synchro-
nization of chaotic systems. Phys Rep 2002;366:1–101.

[2] Balanov AG, Janson NB, Postnov DE, Sosnovtseva OV. Synchronization:
from simple to complex. Springer; 2009.

[3] Strogatz SH. Nonlinear dynamics and chaos, with applications to

physics, biology, chemistry, and engineering. New York: Addison-
Wesley; 1994.

[4] Glass L. Synchronization and rhythmic processes in physiology. Nature
(London) 2001;410:277–84.

[5] Rosenblum MG, Pikovsky AS, Kurths J. Synchronization approach to
analysis of biological systems. Fluct Noise Lett 2004;4(1):L53–62.

[6] Anishchenko VS, Balanov AG, Janson NB, Igosheva NB, Bordyugov GV.

Entrainment between heart rate and weak nonlinear forcing. Int J Bi-
furc Chaos 2000;10(10):2339–48.

[7] Mosekilde E, Maistrenko Y, Postnov DE. Chaotic synchronization, appli-
cations to living systems. series A, vol. 42. Singapore: World Scientific;

2002.
[8] Hramov AE, Koronovskii AA, Ponomarenko VI, Prokhorov MD. Detect-

ing synchronization of self-sustained oscillators by external driving

with varying frequency. Phys Rev E 2006;73(2):026208.
[9] Hramov AE, Koronovskii AA, Ponomarenko VI, Prokhorov MD. Detec-

tion of synchronization from univariate data using wavelet transform.
Phys Rev E 2007;75(5):056207.

[10] Rosenblum MG, Pikovsky AS. Synchronization: from pendulum
clocks to chaotic lasers and chemical oscillators. Contemp Phys

2003;44(5):401–16.

[11] Kiss IZ, Hudson JL, Escalona J, Parmananda P. Noise-aided synchro-
nization of coupled chaotic electrochemical oscillators. Phys Rev E

2004;70(2):026210.
[12] Boccaletti S, Grebogi C, Lai YC, Mancini H, Maza D. The control of chaos:

theory and applications. Phys Rep 2000;329:103–97.
[13] Ticos CM, Rosa E, Pardo WB, Walkenstein JA, Monti M. Experimental

real-time phase synchronization of a paced chaotic plasma discharge.

Phys Rev Lett 2000;85(14):2929.
[14] Parlitz U, Chua LO, Kocarev L, Halle KS, Shang A. Transmission of digital

signal by chaotic synchronization. Int J Bifurc Chaos 1992;2(4):973–7.
[15] Cuomo MK, Oppenheim AV, Strogatz SH. Synchronization of Lorenz-

based chaotic circuits with application to communications. IEEE Trans
Circuits Syst 1993;40(10):626.

http://dx.doi.org/10.13039/501100006769
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0001
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0001
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0001
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0001
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0001
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0001
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0002
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0002
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0002
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0002
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0002
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0003
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0003
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0004
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0004
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0005
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0005
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0005
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0005
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0006
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0006
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0006
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0006
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0006
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0006
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0007
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0007
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0007
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0007
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0008
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0008
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0008
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0008
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0008
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0009
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0009
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0009
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0009
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0009
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0010
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0010
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0010
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0011
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0011
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0011
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0011
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0011
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0012
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0012
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0012
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0012
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0012
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0012
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0013
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0013
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0013
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0013
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0013
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0013
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0014
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0014
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0014
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0014
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0014
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0014
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0015
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0015
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0015
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0015


A.A. Koronovskii et al. / Chaos, Solitons and Fractals 83 (2016) 133–139 139
[16] Kocarev L, Parlitz U. General approach for chaotic synchronization with
application to communication. Phys Rev Lett 1995;74(25):5028–31.

[17] Argyris A, Syvridis D, Larger L, Annovazzi-Lodi V, Colet P, Fischer I, et al.
Chaos-based communications at high bit rates using commercial fibre-

optic links. Nature 2005;438(7066):343–6. doi:10.1038/nature04275
[18] Koronovskii AA, Moskalenko OI, Hramov AE. On the use of

chaotic synchronization for secure communication. Phys-Uspekhi

2009;52(12):1213–38.
[19] Wu X, Zhu C, Kan H. An improved secure communication scheme based

passive synchronization of hyperchaotic complex nonlinear system.
Appl Math Comput 2015;252:201–14.

[20] Yang J, Chen Y, Zhu F. Associated observer-based synchronization for
uncertain chaotic systems subject to channel noise and chaos-based

secure communication. Neurocomputing 2015;167:587–95.
[21] Wu X, Wang H, Lu H. Modified generalized projective synchroniza-

tion of a new fractional-order hyperchaotic system and its appli-

cation to secure communication. Nonlinear Anal: real World Appl
2012;13(3):1441–50.

[22] Moskalenko OI, Koronovskii AA, Hramov AE. Generalized synchroniza-
tion of chaos for secure communication: Remarkable stability to noise.

Phys Lett A 2010;374:2925–31.
[23] Pikovsky AS, Rosenblum MG, Kurths J. Synchronization: a universal

concept in nonlinear sciences. Cambridge University Press; 2001.

[24] Anishchenko VS, Astakhov V, Neiman A, Vadivasova TE, Schimansky-
Geier L. Nonlinear Dynamics of Chaotic and Stochastic Systems. Tuto-

rial and Modern Developments. Heidelberg: Springer–Verlag; 2001.
[25] Rulkov NF, Sushchik MM, Tsimring LS, Abarbanel HDI. Generalized syn-

chronization of chaos in directionally coupled chaotic systems. Phys
Rev E 1995;51(2):980–94.

[26] Pyragas K. Weak and strong synchronization of chaos. Phys Rev E

1996;54(5):R4508–11.
[27] Rosenblum MG, Pikovsky AS, Kurths J. From phase to lag synchroniza-

tion in coupled chaotic oscillators. Phys Rev Lett 1997;78(22):4193–6.
[28] Taherion S, Lai YC. Observability of lag synchronization of coupled

chaotic oscillators. Phys Rev E 1999;59(6):R6247–50.
[29] Pecora LM, Carroll TL. Synchronization in chaotic systems. Phys Rev Lett

1990;64(8):821–4.

[30] Pecora LM, Carroll TL. Driving systems with chaotic signals. Phys Rev A
1991;44(4):2374–83.

[31] Hramov AE, Koronovskii AA. An approach to chaotic synchronization.
Chaos 2004;14(3):603–10.

[32] Hramov AE, Koronovskii AA, Kurovskaya MK, Moskalenko OI. Synchro-
nization of spectral components and its regularities in chaotic dynam-

ical systems. Phys Rev E 2005;71(5):056204.

[33] El-Dessoky MM. Anti-synchronization of four scroll attractor
with fully unknown parameters. Nonlinear Anal: real World Appl

2010;11(2):778–83.
[34] Elabbasy EM, Agiza HN, El-Dessoky MM. Adaptive synchronization of a

hyperchaotic system with uncertain parameter. Chaos Solitons Fractals
2006;30(5):1133–42. doi:10.1016/j.chaos.2005.09.047

[35] Elabbasy E, Agiza H, El-Dessoky MM. Adaptive synchronization

of Lu system with uncertain parameters. Chaos Solitons Fractals
2004;21(3):657–67. doi:10.1016/j.chaos.2003.12.028

[36] Mainieri R, Rehacek J. Projective synchronization in three-
dimensional chaotic systems. Phys Rev Lett 1999;82:3042–5.

doi:10.1103/PhysRevLett.82.3042
[37] Hung Y, Yan J, Liao T. Projective synchronization of Chua’s chaotic

systems with dead-zone in the control input. Math Comput Simul
2008;77(4):374–82. doi:10.1016/j.matcom.2007.03.005

[38] Wang X, He Y. Projective synchronization of fractional order chaotic

system based on linear separation. Phys Lett A 2008;372(4):435–41.
[39] Hung M, Yan J, Liao T. Generalized projective synchronization of chaotic

nonlinear gyros coupled with dead-zone input. Chaos Solitons Fractals
2008;35(1):181–7. doi:10.1016/j.chaos.2006.05.050

[40] Hung Y, Hwang C, Liao T, Yan J. Generalized projective synchronization
of chaotic systems with unknown dead-zone input: observer-based ap-

proach. CHAOS 2006;16(3). doi:10.1063/1.2336728

[41] Wu X, Lu Y. Generalized projective synchronization of the fractional-
order chen hyperchaotic system. Nonlinear Dyn 2009;57(1-2):25–35.

[42] Abarbanel HDI, Rulkov NF, Sushchik MM. Generalized synchronization
of chaos: the auxiliary system approach. Phys Rev E 1996;53(5):4528–

35.
[43] Zheng Z, Hu G. Generalized synchronization versus phase synchroniza-

tion. Phys Rev E 2000;62(6):7882–5.
[44] Hramov AE, Koronovskii AA, Popov PV. Incomplete noise-induced
synchronization of spatially extended systems. Phys Rev E

2008;77(3):036215.
[45] Hramov AE, Koronovskii AA, Moskalenko OI. Are generalized synchro-

nization and noise-induced synchronization identical types of syn-
chronous behavior of chaotic oscillators? Phys Lett A 2006;354(5–

6):423–7.

[46] Moskalenko OI, Hramov AE, Koronovskii AA, Ovchinnikov AA. Effect of
noise on generalized synchronization of chaos: theory and experiment.

Europhys J B 2011;82(1):69–82.
[47] Murali K, Lakshmanan M. Secure communication using a compound

signal from generalized synchronizable chaotic systems. Phys Lett A
1998;241:303–10.

[48] Terry J, VanWiggeren G. Chaotic communication using generalized syn-
chronization. Chaos Solitons Fractals 2001;12:145–52.

[49] Kocarev L, Parlitz U. Generalized synchronization, predictability, and

equivalence of unidirectionally coupled dynamical systems. Phys Rev
Lett 1996;76(11):1816–19.

[50] Hramov AE, Koronovskii AA, Popov PV. Generalized synchronization
in coupled Ginzburg–Landau equations and mechanisms of its arising.

Phys Rev E 2005;72(3):037201.
[51] Filatov RA, Hramov AE, Koronovskii AA. Chaotic synchronization

in coupled spatially extended beam-plasma systems. Phys Lett A

2006;358:301–8.
[52] Rulkov NF. Images of synchronized chaos: experiments with circuits.

Chaos 1996;6:262–79.
[53] Dmitriev BS, Hramov AE, Koronovskii AA, Starodubov AV,

Trubetskov DI, Zharkov YD. First experimental observation of general-
ized synchronization phenomena in microwave oscillators. Phys Rev

Lett 2009;102(7):074101.

[54] Hramov AE, Koronovskii AA. Generalized synchronization: a modified
system approach. Phys Rev E 2005;71(6):067201.

[55] Hramov AE, Koronovskii AA, Moskalenko OI. Generalized synchroniza-
tion onset. Europhys Lett 2005c;72(6):901–7.

[56] Moskalenko OI, Koronovskii AA, Hramov AE, Boccaletti S. General-
ized synchronization in mutually coupled oscillators and complex net-

works. Phys Rev E 2012;86:036216.

[57] Koronovskii AA, Moskalenko OI, Hramov AE. Nearest neighbors,
phase tubes, and generalized synchronization. Phys Rev E 2011;84(3):

037201.
[58] Koronovskii AA, Moskalenko OI, Shurygina SA, Hramov AE. General-

ized synchronization in discrete maps. new point of view on weak and
strong synchronization. Chaos Solitons Fractals 2013;46:12–18.

[59] Parlitz U, Wedekind I. Chaotic phase synchronization based on binary

coupling signals. Int J Bifurc Chaos 2010;10:2527–32.
[60] Corron NJ, Pethel SD, Myneni K. Synchronizing the information con-

tent of a chaotic map and flow via symbolic dynamics. Phys Rev E
2002;66:036204.

[61] Moskalenko O, Koronovskii A, Hramov A. Inapplicability of an
auxiliary-system approach to chaotic oscillators with mutual-type cou-

pling and complex networks. Phys Rev E 2013;87:064901. doi:10.1103/

PhysRevE.87.064901
[62] Wong WK, Zhen B, Xu J, Wang Z. An analytic criterion for generalized

synchronization in unidirectionally coupled systems based on the aux-
iliary system approach. Chaos 2012;22(3):033146.

[63] Uchida A, McAllister R, Meucci R, Roy R. Generalized synchronization
of chaos in identical systems with hidden degrees of freedom. Phys Rev

Lett 2003;91(17):174101.
[64] Pyragas K. Conditional Lyapunov exponents from time series. Phys Rev

E 1997;56(5):5183–8.

[65] Tartaglia A, Ruggiero ML, Nagar A. Time delay in binary systems. Phys
Rev D 2005;71:023003. doi:10.1103/PhysRevD.71.023003

[66] Carusone AC. Jitter equalization for binary baseband communication.
In: Circuits and Systems, 2005. ISCAS 2005. IEEE International sympo-

sium on, Vol. 2; 2005. p. 936–9.
[67] Hramov AE, Khramova AE, Koronovskii AA, Boccaletti S. Syn-

chronization in networks of slightly nonidentical elements. IJBC

2008b;18(3):258–64.
[68] Sklar B. Digital communication. Fundamentals and application. New

Jersey: Prentice Hall PTR; 2001.
[69] Chen JY, Wong KW, Cheng LM, Shuai JW. A secure communication

scheme based on the phase synchronization of chaotic systems. Chaos
2003;13(2):508–14.

http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0016
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0016
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0016
http://dx.doi.org/10.1038/nature04275
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0018
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0018
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0018
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0018
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0019
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0019
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0019
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0019
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0020
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0020
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0020
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0020
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0021
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0021
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0021
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0021
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0022
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0022
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0022
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0022
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0023
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0023
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0023
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0023
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0024
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0024
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0024
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0024
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0024
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0024
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0025
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0025
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0025
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0025
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0025
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0026
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0026
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0027
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0027
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0027
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0027
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0028
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0028
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0028
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0029
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0029
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0029
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0030
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0030
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0030
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0031
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0031
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0031
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0032
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0032
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0032
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0032
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0032
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0033
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0033
http://dx.doi.org/10.1016/j.chaos.2005.09.047
http://dx.doi.org/10.1016/j.chaos.2003.12.028
http://dx.doi.org/10.1103/PhysRevLett.82.3042
http://dx.doi.org/10.1016/j.matcom.2007.03.005
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0038
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0038
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0038
http://dx.doi.org/10.1016/j.chaos.2006.05.050
http://dx.doi.org/10.1063/1.2336728
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0041
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0041
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0041
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0042
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0042
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0042
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0042
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0043
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0043
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0043
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0044
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0044
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0044
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0044
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0045
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0045
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0045
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0045
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0046
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0046
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0046
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0046
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0046
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0047
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0047
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0047
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0048
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0048
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0048
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0049
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0049
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0049
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0050
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0050
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0050
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0050
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0051
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0051
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0051
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0051
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0052
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0052
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0053
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0053
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0053
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0053
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0053
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0053
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0053
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0054
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0054
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0054
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0055
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0055
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0055
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0055
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0056
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0056
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0056
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0056
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0056
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0057
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0057
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0057
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0057
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0058
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0058
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0058
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0058
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0058
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0059
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0059
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0059
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0060
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0060
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0060
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0060
http://dx.doi.org/10.1103/PhysRevE.87.064901
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0062
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0062
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0062
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0062
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0062
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0063
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0063
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0063
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0063
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0063
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0064
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0064
http://dx.doi.org/10.1103/PhysRevD.71.023003
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0066
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0066
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0067
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0067
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0067
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0067
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0067
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0068
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0068
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0069
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0069
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0069
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0069
http://refhub.elsevier.com/S0960-0779(15)00421-X/sbref0069

	Binary generalized synchronization
	1 Introduction
	2 Binary generalized synchronization
	3 Binary generalized synchronization in discrete systems
	4 Binary generalized synchronization in flow systems
	5 Conclusion
	 Acknowledgment
	 References


